1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ld
import (
"cmd/internal/goobj"
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"fmt"
"internal/buildcfg"
"os"
"path/filepath"
"strings"
)
const funcSize = 11 * 4 // funcSize is the size of the _func object in runtime/runtime2.go
// pclntab holds the state needed for pclntab generation.
type pclntab struct {
// The first and last functions found.
firstFunc, lastFunc loader.Sym
// Running total size of pclntab.
size int64
// runtime.pclntab's symbols
carrier loader.Sym
pclntab loader.Sym
pcheader loader.Sym
funcnametab loader.Sym
findfunctab loader.Sym
cutab loader.Sym
filetab loader.Sym
pctab loader.Sym
// The number of functions + number of TEXT sections - 1. This is such an
// unexpected value because platforms that have more than one TEXT section
// get a dummy function inserted between because the external linker can place
// functions in those areas. We mark those areas as not covered by the Go
// runtime.
//
// On most platforms this is the number of reachable functions.
nfunc int32
// The number of filenames in runtime.filetab.
nfiles uint32
}
// addGeneratedSym adds a generator symbol to pclntab, returning the new Sym.
// It is the caller's responsibility to save the symbol in state.
func (state *pclntab) addGeneratedSym(ctxt *Link, name string, size int64, f generatorFunc) loader.Sym {
size = Rnd(size, int64(ctxt.Arch.PtrSize))
state.size += size
s := ctxt.createGeneratorSymbol(name, 0, sym.SPCLNTAB, size, f)
ctxt.loader.SetAttrReachable(s, true)
ctxt.loader.SetCarrierSym(s, state.carrier)
ctxt.loader.SetAttrNotInSymbolTable(s, true)
return s
}
// makePclntab makes a pclntab object, and assembles all the compilation units
// we'll need to write pclntab. Returns the pclntab structure, a slice of the
// CompilationUnits we need, and a slice of the function symbols we need to
// generate pclntab.
func makePclntab(ctxt *Link, container loader.Bitmap) (*pclntab, []*sym.CompilationUnit, []loader.Sym) {
ldr := ctxt.loader
state := new(pclntab)
// Gather some basic stats and info.
seenCUs := make(map[*sym.CompilationUnit]struct{})
compUnits := []*sym.CompilationUnit{}
funcs := []loader.Sym{}
for _, s := range ctxt.Textp {
if !emitPcln(ctxt, s, container) {
continue
}
funcs = append(funcs, s)
state.nfunc++
if state.firstFunc == 0 {
state.firstFunc = s
}
state.lastFunc = s
// We need to keep track of all compilation units we see. Some symbols
// (eg, go.buildid, _cgoexp_, etc) won't have a compilation unit.
cu := ldr.SymUnit(s)
if _, ok := seenCUs[cu]; cu != nil && !ok {
seenCUs[cu] = struct{}{}
cu.PclnIndex = len(compUnits)
compUnits = append(compUnits, cu)
}
}
return state, compUnits, funcs
}
func emitPcln(ctxt *Link, s loader.Sym, container loader.Bitmap) bool {
// We want to generate func table entries only for the "lowest
// level" symbols, not containers of subsymbols.
return !container.Has(s)
}
func computeDeferReturn(ctxt *Link, deferReturnSym, s loader.Sym) uint32 {
ldr := ctxt.loader
target := ctxt.Target
deferreturn := uint32(0)
lastWasmAddr := uint32(0)
relocs := ldr.Relocs(s)
for ri := 0; ri < relocs.Count(); ri++ {
r := relocs.At(ri)
if target.IsWasm() && r.Type() == objabi.R_ADDR {
// wasm/ssa.go generates an ARESUMEPOINT just
// before the deferreturn call. The "PC" of
// the deferreturn call is stored in the
// R_ADDR relocation on the ARESUMEPOINT.
lastWasmAddr = uint32(r.Add())
}
if r.Type().IsDirectCall() && (r.Sym() == deferReturnSym || ldr.IsDeferReturnTramp(r.Sym())) {
if target.IsWasm() {
deferreturn = lastWasmAddr - 1
} else {
// Note: the relocation target is in the call instruction, but
// is not necessarily the whole instruction (for instance, on
// x86 the relocation applies to bytes [1:5] of the 5 byte call
// instruction).
deferreturn = uint32(r.Off())
switch target.Arch.Family {
case sys.AMD64, sys.I386:
deferreturn--
case sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64:
// no change
case sys.S390X:
deferreturn -= 2
default:
panic(fmt.Sprint("Unhandled architecture:", target.Arch.Family))
}
}
break // only need one
}
}
return deferreturn
}
// genInlTreeSym generates the InlTree sym for a function with the
// specified FuncInfo.
func genInlTreeSym(ctxt *Link, cu *sym.CompilationUnit, fi loader.FuncInfo, arch *sys.Arch, nameOffsets map[loader.Sym]uint32) loader.Sym {
ldr := ctxt.loader
its := ldr.CreateExtSym("", 0)
inlTreeSym := ldr.MakeSymbolUpdater(its)
// Note: the generated symbol is given a type of sym.SGOFUNC, as a
// signal to the symtab() phase that it needs to be grouped in with
// other similar symbols (gcdata, etc); the dodata() phase will
// eventually switch the type back to SRODATA.
inlTreeSym.SetType(sym.SGOFUNC)
ldr.SetAttrReachable(its, true)
ldr.SetSymAlign(its, 4) // it has 32-bit fields
ninl := fi.NumInlTree()
for i := 0; i < int(ninl); i++ {
call := fi.InlTree(i)
nameOff, ok := nameOffsets[call.Func]
if !ok {
panic("couldn't find function name offset")
}
inlFunc := ldr.FuncInfo(call.Func)
var funcID objabi.FuncID
startLine := int32(0)
if inlFunc.Valid() {
funcID = inlFunc.FuncID()
startLine = inlFunc.StartLine()
} else if !ctxt.linkShared {
// Inlined functions are always Go functions, and thus
// must have FuncInfo.
//
// Unfortunately, with -linkshared, the inlined
// function may be external symbols (from another
// shared library), and we don't load FuncInfo from the
// shared library. We will report potentially incorrect
// FuncID in this case. See https://go.dev/issue/55954.
panic(fmt.Sprintf("inlined function %s missing func info", ldr.SymName(call.Func)))
}
// Construct runtime.inlinedCall value.
const size = 16
inlTreeSym.SetUint8(arch, int64(i*size+0), uint8(funcID))
// Bytes 1-3 are unused.
inlTreeSym.SetUint32(arch, int64(i*size+4), uint32(nameOff))
inlTreeSym.SetUint32(arch, int64(i*size+8), uint32(call.ParentPC))
inlTreeSym.SetUint32(arch, int64(i*size+12), uint32(startLine))
}
return its
}
// makeInlSyms returns a map of loader.Sym that are created inlSyms.
func makeInlSyms(ctxt *Link, funcs []loader.Sym, nameOffsets map[loader.Sym]uint32) map[loader.Sym]loader.Sym {
ldr := ctxt.loader
// Create the inline symbols we need.
inlSyms := make(map[loader.Sym]loader.Sym)
for _, s := range funcs {
if fi := ldr.FuncInfo(s); fi.Valid() {
fi.Preload()
if fi.NumInlTree() > 0 {
inlSyms[s] = genInlTreeSym(ctxt, ldr.SymUnit(s), fi, ctxt.Arch, nameOffsets)
}
}
}
return inlSyms
}
// generatePCHeader creates the runtime.pcheader symbol, setting it up as a
// generator to fill in its data later.
func (state *pclntab) generatePCHeader(ctxt *Link) {
ldr := ctxt.loader
textStartOff := int64(8 + 2*ctxt.Arch.PtrSize)
size := int64(8 + 8*ctxt.Arch.PtrSize)
writeHeader := func(ctxt *Link, s loader.Sym) {
header := ctxt.loader.MakeSymbolUpdater(s)
writeSymOffset := func(off int64, ws loader.Sym) int64 {
diff := ldr.SymValue(ws) - ldr.SymValue(s)
if diff <= 0 {
name := ldr.SymName(ws)
panic(fmt.Sprintf("expected runtime.pcheader(%x) to be placed before %s(%x)", ldr.SymValue(s), name, ldr.SymValue(ws)))
}
return header.SetUintptr(ctxt.Arch, off, uintptr(diff))
}
// Write header.
// Keep in sync with runtime/symtab.go:pcHeader and package debug/gosym.
header.SetUint32(ctxt.Arch, 0, 0xfffffff1)
header.SetUint8(ctxt.Arch, 6, uint8(ctxt.Arch.MinLC))
header.SetUint8(ctxt.Arch, 7, uint8(ctxt.Arch.PtrSize))
off := header.SetUint(ctxt.Arch, 8, uint64(state.nfunc))
off = header.SetUint(ctxt.Arch, off, uint64(state.nfiles))
if off != textStartOff {
panic(fmt.Sprintf("pcHeader textStartOff: %d != %d", off, textStartOff))
}
off += int64(ctxt.Arch.PtrSize) // skip runtimeText relocation
off = writeSymOffset(off, state.funcnametab)
off = writeSymOffset(off, state.cutab)
off = writeSymOffset(off, state.filetab)
off = writeSymOffset(off, state.pctab)
off = writeSymOffset(off, state.pclntab)
if off != size {
panic(fmt.Sprintf("pcHeader size: %d != %d", off, size))
}
}
state.pcheader = state.addGeneratedSym(ctxt, "runtime.pcheader", size, writeHeader)
// Create the runtimeText relocation.
sb := ldr.MakeSymbolUpdater(state.pcheader)
sb.SetAddr(ctxt.Arch, textStartOff, ldr.Lookup("runtime.text", 0))
}
// walkFuncs iterates over the funcs, calling a function for each unique
// function and inlined function.
func walkFuncs(ctxt *Link, funcs []loader.Sym, f func(loader.Sym)) {
ldr := ctxt.loader
seen := make(map[loader.Sym]struct{})
for _, s := range funcs {
if _, ok := seen[s]; !ok {
f(s)
seen[s] = struct{}{}
}
fi := ldr.FuncInfo(s)
if !fi.Valid() {
continue
}
fi.Preload()
for i, ni := 0, fi.NumInlTree(); i < int(ni); i++ {
call := fi.InlTree(i).Func
if _, ok := seen[call]; !ok {
f(call)
seen[call] = struct{}{}
}
}
}
}
// generateFuncnametab creates the function name table. Returns a map of
// func symbol to the name offset in runtime.funcnamtab.
func (state *pclntab) generateFuncnametab(ctxt *Link, funcs []loader.Sym) map[loader.Sym]uint32 {
nameOffsets := make(map[loader.Sym]uint32, state.nfunc)
// The name used by the runtime is the concatenation of the 3 returned strings.
// For regular functions, only one returned string is nonempty.
// For generic functions, we use three parts so that we can print everything
// within the outermost "[]" as "...".
nameParts := func(name string) (string, string, string) {
i := strings.IndexByte(name, '[')
if i < 0 {
return name, "", ""
}
// TODO: use LastIndexByte once the bootstrap compiler is >= Go 1.5.
j := len(name) - 1
for j > i && name[j] != ']' {
j--
}
if j <= i {
return name, "", ""
}
return name[:i], "[...]", name[j+1:]
}
// Write the null terminated strings.
writeFuncNameTab := func(ctxt *Link, s loader.Sym) {
symtab := ctxt.loader.MakeSymbolUpdater(s)
for s, off := range nameOffsets {
a, b, c := nameParts(ctxt.loader.SymName(s))
o := int64(off)
o = symtab.AddStringAt(o, a)
o = symtab.AddStringAt(o, b)
_ = symtab.AddCStringAt(o, c)
}
}
// Loop through the CUs, and calculate the size needed.
var size int64
walkFuncs(ctxt, funcs, func(s loader.Sym) {
nameOffsets[s] = uint32(size)
a, b, c := nameParts(ctxt.loader.SymName(s))
size += int64(len(a) + len(b) + len(c) + 1) // NULL terminate
})
state.funcnametab = state.addGeneratedSym(ctxt, "runtime.funcnametab", size, writeFuncNameTab)
return nameOffsets
}
// walkFilenames walks funcs, calling a function for each filename used in each
// function's line table.
func walkFilenames(ctxt *Link, funcs []loader.Sym, f func(*sym.CompilationUnit, goobj.CUFileIndex)) {
ldr := ctxt.loader
// Loop through all functions, finding the filenames we need.
for _, s := range funcs {
fi := ldr.FuncInfo(s)
if !fi.Valid() {
continue
}
fi.Preload()
cu := ldr.SymUnit(s)
for i, nf := 0, int(fi.NumFile()); i < nf; i++ {
f(cu, fi.File(i))
}
for i, ninl := 0, int(fi.NumInlTree()); i < ninl; i++ {
call := fi.InlTree(i)
f(cu, call.File)
}
}
}
// generateFilenameTabs creates LUTs needed for filename lookup. Returns a slice
// of the index at which each CU begins in runtime.cutab.
//
// Function objects keep track of the files they reference to print the stack.
// This function creates a per-CU list of filenames if CU[M] references
// files[1-N], the following is generated:
//
// runtime.cutab:
// CU[M]
// offsetToFilename[0]
// offsetToFilename[1]
// ..
//
// runtime.filetab
// filename[0]
// filename[1]
//
// Looking up a filename then becomes:
// 0. Given a func, and filename index [K]
// 1. Get Func.CUIndex: M := func.cuOffset
// 2. Find filename offset: fileOffset := runtime.cutab[M+K]
// 3. Get the filename: getcstring(runtime.filetab[fileOffset])
func (state *pclntab) generateFilenameTabs(ctxt *Link, compUnits []*sym.CompilationUnit, funcs []loader.Sym) []uint32 {
// On a per-CU basis, keep track of all the filenames we need.
//
// Note, that we store the filenames in a separate section in the object
// files, and deduplicate based on the actual value. It would be better to
// store the filenames as symbols, using content addressable symbols (and
// then not loading extra filenames), and just use the hash value of the
// symbol name to do this cataloging.
//
// TODO: Store filenames as symbols. (Note this would be easiest if you
// also move strings to ALWAYS using the larger content addressable hash
// function, and use that hash value for uniqueness testing.)
cuEntries := make([]goobj.CUFileIndex, len(compUnits))
fileOffsets := make(map[string]uint32)
// Walk the filenames.
// We store the total filename string length we need to load, and the max
// file index we've seen per CU so we can calculate how large the
// CU->global table needs to be.
var fileSize int64
walkFilenames(ctxt, funcs, func(cu *sym.CompilationUnit, i goobj.CUFileIndex) {
// Note we use the raw filename for lookup, but use the expanded filename
// when we save the size.
filename := cu.FileTable[i]
if _, ok := fileOffsets[filename]; !ok {
fileOffsets[filename] = uint32(fileSize)
fileSize += int64(len(expandFile(filename)) + 1) // NULL terminate
}
// Find the maximum file index we've seen.
if cuEntries[cu.PclnIndex] < i+1 {
cuEntries[cu.PclnIndex] = i + 1 // Store max + 1
}
})
// Calculate the size of the runtime.cutab variable.
var totalEntries uint32
cuOffsets := make([]uint32, len(cuEntries))
for i, entries := range cuEntries {
// Note, cutab is a slice of uint32, so an offset to a cu's entry is just the
// running total of all cu indices we've needed to store so far, not the
// number of bytes we've stored so far.
cuOffsets[i] = totalEntries
totalEntries += uint32(entries)
}
// Write cutab.
writeCutab := func(ctxt *Link, s loader.Sym) {
sb := ctxt.loader.MakeSymbolUpdater(s)
var off int64
for i, max := range cuEntries {
// Write the per CU LUT.
cu := compUnits[i]
for j := goobj.CUFileIndex(0); j < max; j++ {
fileOffset, ok := fileOffsets[cu.FileTable[j]]
if !ok {
// We're looping through all possible file indices. It's possible a file's
// been deadcode eliminated, and although it's a valid file in the CU, it's
// not needed in this binary. When that happens, use an invalid offset.
fileOffset = ^uint32(0)
}
off = sb.SetUint32(ctxt.Arch, off, fileOffset)
}
}
}
state.cutab = state.addGeneratedSym(ctxt, "runtime.cutab", int64(totalEntries*4), writeCutab)
// Write filetab.
writeFiletab := func(ctxt *Link, s loader.Sym) {
sb := ctxt.loader.MakeSymbolUpdater(s)
// Write the strings.
for filename, loc := range fileOffsets {
sb.AddStringAt(int64(loc), expandFile(filename))
}
}
state.nfiles = uint32(len(fileOffsets))
state.filetab = state.addGeneratedSym(ctxt, "runtime.filetab", fileSize, writeFiletab)
return cuOffsets
}
// generatePctab creates the runtime.pctab variable, holding all the
// deduplicated pcdata.
func (state *pclntab) generatePctab(ctxt *Link, funcs []loader.Sym) {
ldr := ctxt.loader
// Pctab offsets of 0 are considered invalid in the runtime. We respect
// that by just padding a single byte at the beginning of runtime.pctab,
// that way no real offsets can be zero.
size := int64(1)
// Walk the functions, finding offset to store each pcdata.
seen := make(map[loader.Sym]struct{})
saveOffset := func(pcSym loader.Sym) {
if _, ok := seen[pcSym]; !ok {
datSize := ldr.SymSize(pcSym)
if datSize != 0 {
ldr.SetSymValue(pcSym, size)
} else {
// Invalid PC data, record as zero.
ldr.SetSymValue(pcSym, 0)
}
size += datSize
seen[pcSym] = struct{}{}
}
}
var pcsp, pcline, pcfile, pcinline loader.Sym
var pcdata []loader.Sym
for _, s := range funcs {
fi := ldr.FuncInfo(s)
if !fi.Valid() {
continue
}
fi.Preload()
pcsp, pcfile, pcline, pcinline, pcdata = ldr.PcdataAuxs(s, pcdata)
pcSyms := []loader.Sym{pcsp, pcfile, pcline}
for _, pcSym := range pcSyms {
saveOffset(pcSym)
}
for _, pcSym := range pcdata {
saveOffset(pcSym)
}
if fi.NumInlTree() > 0 {
saveOffset(pcinline)
}
}
// TODO: There is no reason we need a generator for this variable, and it
// could be moved to a carrier symbol. However, carrier symbols containing
// carrier symbols don't work yet (as of Aug 2020). Once this is fixed,
// runtime.pctab could just be a carrier sym.
writePctab := func(ctxt *Link, s loader.Sym) {
ldr := ctxt.loader
sb := ldr.MakeSymbolUpdater(s)
for sym := range seen {
sb.SetBytesAt(ldr.SymValue(sym), ldr.Data(sym))
}
}
state.pctab = state.addGeneratedSym(ctxt, "runtime.pctab", size, writePctab)
}
// numPCData returns the number of PCData syms for the FuncInfo.
// NB: Preload must be called on valid FuncInfos before calling this function.
func numPCData(ldr *loader.Loader, s loader.Sym, fi loader.FuncInfo) uint32 {
if !fi.Valid() {
return 0
}
numPCData := uint32(ldr.NumPcdata(s))
if fi.NumInlTree() > 0 {
if numPCData < objabi.PCDATA_InlTreeIndex+1 {
numPCData = objabi.PCDATA_InlTreeIndex + 1
}
}
return numPCData
}
// generateFunctab creates the runtime.functab
//
// runtime.functab contains two things:
//
// - pc->func look up table.
// - array of func objects, interleaved with pcdata and funcdata
func (state *pclntab) generateFunctab(ctxt *Link, funcs []loader.Sym, inlSyms map[loader.Sym]loader.Sym, cuOffsets []uint32, nameOffsets map[loader.Sym]uint32) {
// Calculate the size of the table.
size, startLocations := state.calculateFunctabSize(ctxt, funcs)
writePcln := func(ctxt *Link, s loader.Sym) {
ldr := ctxt.loader
sb := ldr.MakeSymbolUpdater(s)
// Write the data.
writePCToFunc(ctxt, sb, funcs, startLocations)
writeFuncs(ctxt, sb, funcs, inlSyms, startLocations, cuOffsets, nameOffsets)
}
state.pclntab = state.addGeneratedSym(ctxt, "runtime.functab", size, writePcln)
}
// funcData returns the funcdata and offsets for the FuncInfo.
// The funcdata are written into runtime.functab after each func
// object. This is a helper function to make querying the FuncInfo object
// cleaner.
//
// NB: Preload must be called on the FuncInfo before calling.
// NB: fdSyms is used as scratch space.
func funcData(ldr *loader.Loader, s loader.Sym, fi loader.FuncInfo, inlSym loader.Sym, fdSyms []loader.Sym) []loader.Sym {
fdSyms = fdSyms[:0]
if fi.Valid() {
fdSyms = ldr.Funcdata(s, fdSyms)
if fi.NumInlTree() > 0 {
if len(fdSyms) < objabi.FUNCDATA_InlTree+1 {
fdSyms = append(fdSyms, make([]loader.Sym, objabi.FUNCDATA_InlTree+1-len(fdSyms))...)
}
fdSyms[objabi.FUNCDATA_InlTree] = inlSym
}
}
return fdSyms
}
// calculateFunctabSize calculates the size of the pclntab, and the offsets in
// the output buffer for individual func entries.
func (state pclntab) calculateFunctabSize(ctxt *Link, funcs []loader.Sym) (int64, []uint32) {
ldr := ctxt.loader
startLocations := make([]uint32, len(funcs))
// Allocate space for the pc->func table. This structure consists of a pc offset
// and an offset to the func structure. After that, we have a single pc
// value that marks the end of the last function in the binary.
size := int64(int(state.nfunc)*2*4 + 4)
// Now find the space for the func objects. We do this in a running manner,
// so that we can find individual starting locations.
for i, s := range funcs {
size = Rnd(size, int64(ctxt.Arch.PtrSize))
startLocations[i] = uint32(size)
fi := ldr.FuncInfo(s)
size += funcSize
if fi.Valid() {
fi.Preload()
numFuncData := ldr.NumFuncdata(s)
if fi.NumInlTree() > 0 {
if numFuncData < objabi.FUNCDATA_InlTree+1 {
numFuncData = objabi.FUNCDATA_InlTree + 1
}
}
size += int64(numPCData(ldr, s, fi) * 4)
size += int64(numFuncData * 4)
}
}
return size, startLocations
}
// writePCToFunc writes the PC->func lookup table.
func writePCToFunc(ctxt *Link, sb *loader.SymbolBuilder, funcs []loader.Sym, startLocations []uint32) {
ldr := ctxt.loader
textStart := ldr.SymValue(ldr.Lookup("runtime.text", 0))
pcOff := func(s loader.Sym) uint32 {
off := ldr.SymValue(s) - textStart
if off < 0 {
panic(fmt.Sprintf("expected func %s(%x) to be placed at or after textStart (%x)", ldr.SymName(s), ldr.SymValue(s), textStart))
}
return uint32(off)
}
for i, s := range funcs {
sb.SetUint32(ctxt.Arch, int64(i*2*4), pcOff(s))
sb.SetUint32(ctxt.Arch, int64((i*2+1)*4), startLocations[i])
}
// Final entry of table is just end pc offset.
lastFunc := funcs[len(funcs)-1]
sb.SetUint32(ctxt.Arch, int64(len(funcs))*2*4, pcOff(lastFunc)+uint32(ldr.SymSize(lastFunc)))
}
// writeFuncs writes the func structures and pcdata to runtime.functab.
func writeFuncs(ctxt *Link, sb *loader.SymbolBuilder, funcs []loader.Sym, inlSyms map[loader.Sym]loader.Sym, startLocations, cuOffsets []uint32, nameOffsets map[loader.Sym]uint32) {
ldr := ctxt.loader
deferReturnSym := ldr.Lookup("runtime.deferreturn", abiInternalVer)
gofunc := ldr.Lookup("go:func.*", 0)
gofuncBase := ldr.SymValue(gofunc)
textStart := ldr.SymValue(ldr.Lookup("runtime.text", 0))
funcdata := []loader.Sym{}
var pcsp, pcfile, pcline, pcinline loader.Sym
var pcdata []loader.Sym
// Write the individual func objects.
for i, s := range funcs {
startLine := int32(0)
fi := ldr.FuncInfo(s)
if fi.Valid() {
fi.Preload()
pcsp, pcfile, pcline, pcinline, pcdata = ldr.PcdataAuxs(s, pcdata)
startLine = fi.StartLine()
}
off := int64(startLocations[i])
// entryOff uint32 (offset of func entry PC from textStart)
entryOff := ldr.SymValue(s) - textStart
if entryOff < 0 {
panic(fmt.Sprintf("expected func %s(%x) to be placed before or at textStart (%x)", ldr.SymName(s), ldr.SymValue(s), textStart))
}
off = sb.SetUint32(ctxt.Arch, off, uint32(entryOff))
// nameOff int32
nameOff, ok := nameOffsets[s]
if !ok {
panic("couldn't find function name offset")
}
off = sb.SetUint32(ctxt.Arch, off, uint32(nameOff))
// args int32
// TODO: Move into funcinfo.
args := uint32(0)
if fi.Valid() {
args = uint32(fi.Args())
}
off = sb.SetUint32(ctxt.Arch, off, args)
// deferreturn
deferreturn := computeDeferReturn(ctxt, deferReturnSym, s)
off = sb.SetUint32(ctxt.Arch, off, deferreturn)
// pcdata
if fi.Valid() {
off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcsp)))
off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcfile)))
off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcline)))
} else {
off += 12
}
off = sb.SetUint32(ctxt.Arch, off, uint32(numPCData(ldr, s, fi)))
// Store the offset to compilation unit's file table.
cuIdx := ^uint32(0)
if cu := ldr.SymUnit(s); cu != nil {
cuIdx = cuOffsets[cu.PclnIndex]
}
off = sb.SetUint32(ctxt.Arch, off, cuIdx)
// startLine int32
off = sb.SetUint32(ctxt.Arch, off, uint32(startLine))
// funcID uint8
var funcID objabi.FuncID
if fi.Valid() {
funcID = fi.FuncID()
}
off = sb.SetUint8(ctxt.Arch, off, uint8(funcID))
// flag uint8
var flag objabi.FuncFlag
if fi.Valid() {
flag = fi.FuncFlag()
}
off = sb.SetUint8(ctxt.Arch, off, uint8(flag))
off += 1 // pad
// nfuncdata must be the final entry.
funcdata = funcData(ldr, s, fi, 0, funcdata)
off = sb.SetUint8(ctxt.Arch, off, uint8(len(funcdata)))
// Output the pcdata.
if fi.Valid() {
for j, pcSym := range pcdata {
sb.SetUint32(ctxt.Arch, off+int64(j*4), uint32(ldr.SymValue(pcSym)))
}
if fi.NumInlTree() > 0 {
sb.SetUint32(ctxt.Arch, off+objabi.PCDATA_InlTreeIndex*4, uint32(ldr.SymValue(pcinline)))
}
}
// Write funcdata refs as offsets from go:func.* and go:funcrel.*.
funcdata = funcData(ldr, s, fi, inlSyms[s], funcdata)
// Missing funcdata will be ^0. See runtime/symtab.go:funcdata.
off = int64(startLocations[i] + funcSize + numPCData(ldr, s, fi)*4)
for j := range funcdata {
dataoff := off + int64(4*j)
fdsym := funcdata[j]
if fdsym == 0 {
sb.SetUint32(ctxt.Arch, dataoff, ^uint32(0)) // ^0 is a sentinel for "no value"
continue
}
if outer := ldr.OuterSym(fdsym); outer != gofunc {
panic(fmt.Sprintf("bad carrier sym for symbol %s (funcdata %s#%d), want go:func.* got %s", ldr.SymName(fdsym), ldr.SymName(s), j, ldr.SymName(outer)))
}
sb.SetUint32(ctxt.Arch, dataoff, uint32(ldr.SymValue(fdsym)-gofuncBase))
}
}
}
// pclntab initializes the pclntab symbol with
// runtime function and file name information.
// pclntab generates the pcln table for the link output.
func (ctxt *Link) pclntab(container loader.Bitmap) *pclntab {
// Go 1.2's symtab layout is documented in golang.org/s/go12symtab, but the
// layout and data has changed since that time.
//
// As of August 2020, here's the layout of pclntab:
//
// .gopclntab/__gopclntab [elf/macho section]
// runtime.pclntab
// Carrier symbol for the entire pclntab section.
//
// runtime.pcheader (see: runtime/symtab.go:pcHeader)
// 8-byte magic
// nfunc [thearch.ptrsize bytes]
// offset to runtime.funcnametab from the beginning of runtime.pcheader
// offset to runtime.pclntab_old from beginning of runtime.pcheader
//
// runtime.funcnametab
// []list of null terminated function names
//
// runtime.cutab
// for i=0..#CUs
// for j=0..#max used file index in CU[i]
// uint32 offset into runtime.filetab for the filename[j]
//
// runtime.filetab
// []null terminated filename strings
//
// runtime.pctab
// []byte of deduplicated pc data.
//
// runtime.functab
// function table, alternating PC and offset to func struct [each entry thearch.ptrsize bytes]
// end PC [thearch.ptrsize bytes]
// func structures, pcdata offsets, func data.
state, compUnits, funcs := makePclntab(ctxt, container)
ldr := ctxt.loader
state.carrier = ldr.LookupOrCreateSym("runtime.pclntab", 0)
ldr.MakeSymbolUpdater(state.carrier).SetType(sym.SPCLNTAB)
ldr.SetAttrReachable(state.carrier, true)
setCarrierSym(sym.SPCLNTAB, state.carrier)
state.generatePCHeader(ctxt)
nameOffsets := state.generateFuncnametab(ctxt, funcs)
cuOffsets := state.generateFilenameTabs(ctxt, compUnits, funcs)
state.generatePctab(ctxt, funcs)
inlSyms := makeInlSyms(ctxt, funcs, nameOffsets)
state.generateFunctab(ctxt, funcs, inlSyms, cuOffsets, nameOffsets)
return state
}
func gorootFinal() string {
root := buildcfg.GOROOT
if final := os.Getenv("GOROOT_FINAL"); final != "" {
root = final
}
return root
}
func expandGoroot(s string) string {
const n = len("$GOROOT")
if len(s) >= n+1 && s[:n] == "$GOROOT" && (s[n] == '/' || s[n] == '\\') {
if final := gorootFinal(); final != "" {
return filepath.ToSlash(filepath.Join(final, s[n:]))
}
}
return s
}
const (
BUCKETSIZE = 256 * MINFUNC
SUBBUCKETS = 16
SUBBUCKETSIZE = BUCKETSIZE / SUBBUCKETS
NOIDX = 0x7fffffff
)
// findfunctab generates a lookup table to quickly find the containing
// function for a pc. See src/runtime/symtab.go:findfunc for details.
func (ctxt *Link) findfunctab(state *pclntab, container loader.Bitmap) {
ldr := ctxt.loader
// find min and max address
min := ldr.SymValue(ctxt.Textp[0])
lastp := ctxt.Textp[len(ctxt.Textp)-1]
max := ldr.SymValue(lastp) + ldr.SymSize(lastp)
// for each subbucket, compute the minimum of all symbol indexes
// that map to that subbucket.
n := int32((max - min + SUBBUCKETSIZE - 1) / SUBBUCKETSIZE)
nbuckets := int32((max - min + BUCKETSIZE - 1) / BUCKETSIZE)
size := 4*int64(nbuckets) + int64(n)
writeFindFuncTab := func(_ *Link, s loader.Sym) {
t := ldr.MakeSymbolUpdater(s)
indexes := make([]int32, n)
for i := int32(0); i < n; i++ {
indexes[i] = NOIDX
}
idx := int32(0)
for i, s := range ctxt.Textp {
if !emitPcln(ctxt, s, container) {
continue
}
p := ldr.SymValue(s)
var e loader.Sym
i++
if i < len(ctxt.Textp) {
e = ctxt.Textp[i]
}
for e != 0 && !emitPcln(ctxt, e, container) && i < len(ctxt.Textp) {
e = ctxt.Textp[i]
i++
}
q := max
if e != 0 {
q = ldr.SymValue(e)
}
//print("%d: [%lld %lld] %s\n", idx, p, q, s->name);
for ; p < q; p += SUBBUCKETSIZE {
i = int((p - min) / SUBBUCKETSIZE)
if indexes[i] > idx {
indexes[i] = idx
}
}
i = int((q - 1 - min) / SUBBUCKETSIZE)
if indexes[i] > idx {
indexes[i] = idx
}
idx++
}
// fill in table
for i := int32(0); i < nbuckets; i++ {
base := indexes[i*SUBBUCKETS]
if base == NOIDX {
Errorf(nil, "hole in findfunctab")
}
t.SetUint32(ctxt.Arch, int64(i)*(4+SUBBUCKETS), uint32(base))
for j := int32(0); j < SUBBUCKETS && i*SUBBUCKETS+j < n; j++ {
idx = indexes[i*SUBBUCKETS+j]
if idx == NOIDX {
Errorf(nil, "hole in findfunctab")
}
if idx-base >= 256 {
Errorf(nil, "too many functions in a findfunc bucket! %d/%d %d %d", i, nbuckets, j, idx-base)
}
t.SetUint8(ctxt.Arch, int64(i)*(4+SUBBUCKETS)+4+int64(j), uint8(idx-base))
}
}
}
state.findfunctab = ctxt.createGeneratorSymbol("runtime.findfunctab", 0, sym.SRODATA, size, writeFindFuncTab)
ldr.SetAttrReachable(state.findfunctab, true)
ldr.SetAttrLocal(state.findfunctab, true)
}
// findContainerSyms returns a bitmap, indexed by symbol number, where there's
// a 1 for every container symbol.
func (ctxt *Link) findContainerSyms() loader.Bitmap {
ldr := ctxt.loader
container := loader.MakeBitmap(ldr.NSym())
// Find container symbols and mark them as such.
for _, s := range ctxt.Textp {
outer := ldr.OuterSym(s)
if outer != 0 {
container.Set(outer)
}
}
return container
}
|