summaryrefslogtreecommitdiffstats
path: root/src/cmd/link/internal/riscv64/asm.go
blob: cb53a605d7175947c9491243467800c83d540ccd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package riscv64

import (
	"cmd/internal/obj/riscv"
	"cmd/internal/objabi"
	"cmd/internal/sys"
	"cmd/link/internal/ld"
	"cmd/link/internal/loader"
	"cmd/link/internal/sym"
	"debug/elf"
	"fmt"
	"log"
	"sort"
)

// fakeLabelName matches the RISCV_FAKE_LABEL_NAME from binutils.
const fakeLabelName = ".L0 "

func gentext(ctxt *ld.Link, ldr *loader.Loader) {
}

func genSymsLate(ctxt *ld.Link, ldr *loader.Loader) {
	if ctxt.LinkMode != ld.LinkExternal {
		return
	}

	// Generate a local text symbol for each relocation target, as the
	// R_RISCV_PCREL_LO12_* relocations generated by elfreloc1 need it.
	if ctxt.Textp == nil {
		log.Fatal("genSymsLate called before Textp has been assigned")
	}
	var hi20Syms []loader.Sym
	for _, s := range ctxt.Textp {
		relocs := ldr.Relocs(s)
		for ri := 0; ri < relocs.Count(); ri++ {
			r := relocs.At(ri)
			if r.Type() != objabi.R_RISCV_PCREL_ITYPE && r.Type() != objabi.R_RISCV_PCREL_STYPE &&
				r.Type() != objabi.R_RISCV_TLS_IE_ITYPE && r.Type() != objabi.R_RISCV_TLS_IE_STYPE {
				continue
			}
			if r.Off() == 0 && ldr.SymType(s) == sym.STEXT {
				// Use the symbol for the function instead of creating
				// an overlapping symbol.
				continue
			}

			// TODO(jsing): Consider generating ELF symbols without needing
			// loader symbols, in order to reduce memory consumption. This
			// would require changes to genelfsym so that it called
			// putelfsym and putelfsyment as appropriate.
			sb := ldr.MakeSymbolBuilder(fakeLabelName)
			sb.SetType(sym.STEXT)
			sb.SetValue(ldr.SymValue(s) + int64(r.Off()))
			sb.SetLocal(true)
			sb.SetReachable(true)
			sb.SetVisibilityHidden(true)
			sb.SetSect(ldr.SymSect(s))
			if outer := ldr.OuterSym(s); outer != 0 {
				ldr.AddInteriorSym(outer, sb.Sym())
			}
			hi20Syms = append(hi20Syms, sb.Sym())
		}
	}
	ctxt.Textp = append(ctxt.Textp, hi20Syms...)
	ldr.SortSyms(ctxt.Textp)
}

func findHI20Symbol(ctxt *ld.Link, ldr *loader.Loader, val int64) loader.Sym {
	idx := sort.Search(len(ctxt.Textp), func(i int) bool { return ldr.SymValue(ctxt.Textp[i]) >= val })
	if idx >= len(ctxt.Textp) {
		return 0
	}
	if s := ctxt.Textp[idx]; ldr.SymValue(s) == val && ldr.SymType(s) == sym.STEXT {
		return s
	}
	return 0
}

func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool {
	elfsym := ld.ElfSymForReloc(ctxt, r.Xsym)
	switch r.Type {
	case objabi.R_ADDR, objabi.R_DWARFSECREF:
		out.Write64(uint64(sectoff))
		switch r.Size {
		case 4:
			out.Write64(uint64(elf.R_RISCV_32) | uint64(elfsym)<<32)
		case 8:
			out.Write64(uint64(elf.R_RISCV_64) | uint64(elfsym)<<32)
		default:
			ld.Errorf(nil, "unknown size %d for %v relocation", r.Size, r.Type)
			return false
		}
		out.Write64(uint64(r.Xadd))

	case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP:
		out.Write64(uint64(sectoff))
		out.Write64(uint64(elf.R_RISCV_JAL) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))

	case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE, objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE:
		// Find the text symbol for the AUIPC instruction targeted
		// by this relocation.
		relocs := ldr.Relocs(s)
		offset := int64(relocs.At(ri).Off())
		hi20Sym := findHI20Symbol(ctxt, ldr, ldr.SymValue(s)+offset)
		if hi20Sym == 0 {
			ld.Errorf(nil, "failed to find text symbol for HI20 relocation at %d (%x)", sectoff, ldr.SymValue(s)+offset)
			return false
		}
		hi20ElfSym := ld.ElfSymForReloc(ctxt, hi20Sym)

		// Emit two relocations - a R_RISCV_PCREL_HI20 relocation and a
		// corresponding R_RISCV_PCREL_LO12_I or R_RISCV_PCREL_LO12_S relocation.
		// Note that the LO12 relocation must point to a target that has a valid
		// HI20 PC-relative relocation text symbol, which in turn points to the
		// given symbol. For further details see the ELF specification for RISC-V:
		//
		//   https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses
		//
		var hiRel, loRel elf.R_RISCV
		switch r.Type {
		case objabi.R_RISCV_PCREL_ITYPE:
			hiRel, loRel = elf.R_RISCV_PCREL_HI20, elf.R_RISCV_PCREL_LO12_I
		case objabi.R_RISCV_PCREL_STYPE:
			hiRel, loRel = elf.R_RISCV_PCREL_HI20, elf.R_RISCV_PCREL_LO12_S
		case objabi.R_RISCV_TLS_IE_ITYPE:
			hiRel, loRel = elf.R_RISCV_TLS_GOT_HI20, elf.R_RISCV_PCREL_LO12_I
		case objabi.R_RISCV_TLS_IE_STYPE:
			hiRel, loRel = elf.R_RISCV_TLS_GOT_HI20, elf.R_RISCV_PCREL_LO12_S
		}
		out.Write64(uint64(sectoff))
		out.Write64(uint64(hiRel) | uint64(elfsym)<<32)
		out.Write64(uint64(r.Xadd))
		out.Write64(uint64(sectoff + 4))
		out.Write64(uint64(loRel) | uint64(hi20ElfSym)<<32)
		out.Write64(uint64(0))

	default:
		return false
	}

	return true
}

func elfsetupplt(ctxt *ld.Link, plt, gotplt *loader.SymbolBuilder, dynamic loader.Sym) {
	log.Fatalf("elfsetupplt")
}

func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool {
	log.Fatalf("machoreloc1 not implemented")
	return false
}

func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (o int64, nExtReloc int, ok bool) {
	rs := r.Sym()
	pc := ldr.SymValue(s) + int64(r.Off())

	// If the call points to a trampoline, see if we can reach the symbol
	// directly. This situation can occur when the relocation symbol is
	// not assigned an address until after the trampolines are generated.
	if r.Type() == objabi.R_RISCV_CALL_TRAMP {
		relocs := ldr.Relocs(rs)
		if relocs.Count() != 1 {
			ldr.Errorf(s, "trampoline %v has %d relocations", ldr.SymName(rs), relocs.Count())
		}
		tr := relocs.At(0)
		if tr.Type() != objabi.R_RISCV_PCREL_ITYPE {
			ldr.Errorf(s, "trampoline %v has unexpected relocation %v", ldr.SymName(rs), tr.Type())
		}
		trs := tr.Sym()
		if ldr.SymValue(trs) != 0 && ldr.SymType(trs) != sym.SDYNIMPORT && ldr.SymType(trs) != sym.SUNDEFEXT {
			trsOff := ldr.SymValue(trs) + tr.Add() - pc
			if trsOff >= -(1<<20) && trsOff < (1<<20) {
				r.SetType(objabi.R_RISCV_CALL)
				r.SetSym(trs)
				r.SetAdd(tr.Add())
				rs = trs
			}
		}

	}

	if target.IsExternal() {
		switch r.Type() {
		case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP:
			return val, 1, true

		case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE, objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE:
			return val, 2, true
		}

		return val, 0, false
	}

	off := ldr.SymValue(rs) + r.Add() - pc

	switch r.Type() {
	case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP:
		// Generate instruction immediates.
		imm, err := riscv.EncodeJImmediate(off)
		if err != nil {
			ldr.Errorf(s, "cannot encode R_RISCV_CALL relocation offset for %s: %v", ldr.SymName(rs), err)
		}
		immMask := int64(riscv.JTypeImmMask)

		val = (val &^ immMask) | int64(imm)

		return val, 0, true

	case objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE:
		// TLS relocations are not currently handled for internal linking.
		// For now, TLS is only used when cgo is in use and cgo currently
		// requires external linking. However, we need to accept these
		// relocations so that code containing TLS variables will link,
		// even when they're not being used. For now, replace these
		// instructions with EBREAK to detect accidental use.
		const ebreakIns = 0x00100073
		return ebreakIns<<32 | ebreakIns, 0, true

	case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE:
		// Generate AUIPC and second instruction immediates.
		low, high, err := riscv.Split32BitImmediate(off)
		if err != nil {
			ldr.Errorf(s, "R_RISCV_PCREL_ relocation does not fit in 32 bits: %d", off)
		}

		auipcImm, err := riscv.EncodeUImmediate(high)
		if err != nil {
			ldr.Errorf(s, "cannot encode R_RISCV_PCREL_ AUIPC relocation offset for %s: %v", ldr.SymName(rs), err)
		}

		var secondImm, secondImmMask int64
		switch r.Type() {
		case objabi.R_RISCV_PCREL_ITYPE:
			secondImmMask = riscv.ITypeImmMask
			secondImm, err = riscv.EncodeIImmediate(low)
			if err != nil {
				ldr.Errorf(s, "cannot encode R_RISCV_PCREL_ITYPE I-type instruction relocation offset for %s: %v", ldr.SymName(rs), err)
			}
		case objabi.R_RISCV_PCREL_STYPE:
			secondImmMask = riscv.STypeImmMask
			secondImm, err = riscv.EncodeSImmediate(low)
			if err != nil {
				ldr.Errorf(s, "cannot encode R_RISCV_PCREL_STYPE S-type instruction relocation offset for %s: %v", ldr.SymName(rs), err)
			}
		default:
			panic(fmt.Sprintf("Unknown relocation type: %v", r.Type()))
		}

		auipc := int64(uint32(val))
		second := int64(uint32(val >> 32))

		auipc = (auipc &^ riscv.UTypeImmMask) | int64(uint32(auipcImm))
		second = (second &^ secondImmMask) | int64(uint32(secondImm))

		return second<<32 | auipc, 0, true
	}

	return val, 0, false
}

func archrelocvariant(*ld.Target, *loader.Loader, loader.Reloc, sym.RelocVariant, loader.Sym, int64, []byte) int64 {
	log.Fatalf("archrelocvariant")
	return -1
}

func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) {
	switch r.Type() {
	case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP:
		return ld.ExtrelocSimple(ldr, r), true

	case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE, objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE:
		return ld.ExtrelocViaOuterSym(ldr, r, s), true
	}
	return loader.ExtReloc{}, false
}

func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) {
	relocs := ldr.Relocs(s)
	r := relocs.At(ri)

	switch r.Type() {
	case objabi.R_RISCV_CALL:
		pc := ldr.SymValue(s) + int64(r.Off())
		off := ldr.SymValue(rs) + r.Add() - pc

		// Relocation symbol has an address and is directly reachable,
		// therefore there is no need for a trampoline.
		if ldr.SymValue(rs) != 0 && off >= -(1<<20) && off < (1<<20) && (*ld.FlagDebugTramp <= 1 || ldr.SymPkg(s) == ldr.SymPkg(rs)) {
			break
		}

		// Relocation symbol is too far for a direct call or has not
		// yet been given an address. See if an existing trampoline is
		// reachable and if so, reuse it. Otherwise we need to create
		// a new trampoline.
		var tramp loader.Sym
		for i := 0; ; i++ {
			oName := ldr.SymName(rs)
			name := fmt.Sprintf("%s-tramp%d", oName, i)
			if r.Add() != 0 {
				name = fmt.Sprintf("%s%+x-tramp%d", oName, r.Add(), i)
			}
			tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs)))
			ldr.SetAttrReachable(tramp, true)
			if ldr.SymType(tramp) == sym.SDYNIMPORT {
				// Do not reuse trampoline defined in other module.
				continue
			}
			if oName == "runtime.deferreturn" {
				ldr.SetIsDeferReturnTramp(tramp, true)
			}
			if ldr.SymValue(tramp) == 0 {
				// Either trampoline does not exist or we found one
				// that does not have an address assigned and will be
				// laid down immediately after the current function.
				break
			}

			trampOff := ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off()))
			if trampOff >= -(1<<20) && trampOff < (1<<20) {
				// An existing trampoline that is reachable.
				break
			}
		}
		if ldr.SymType(tramp) == 0 {
			trampb := ldr.MakeSymbolUpdater(tramp)
			ctxt.AddTramp(trampb)
			genCallTramp(ctxt.Arch, ctxt.LinkMode, ldr, trampb, rs, int64(r.Add()))
		}
		sb := ldr.MakeSymbolUpdater(s)
		if ldr.SymValue(rs) == 0 {
			// In this case the target symbol has not yet been assigned an
			// address, so we have to assume a trampoline is required. Mark
			// this as a call via a trampoline so that we can potentially
			// switch to a direct call during relocation.
			sb.SetRelocType(ri, objabi.R_RISCV_CALL_TRAMP)
		}
		relocs := sb.Relocs()
		r := relocs.At(ri)
		r.SetSym(tramp)
		r.SetAdd(0)

	default:
		ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type()))
	}
}

func genCallTramp(arch *sys.Arch, linkmode ld.LinkMode, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) {
	tramp.AddUint32(arch, 0x00000f97) // AUIPC	$0, X31
	tramp.AddUint32(arch, 0x000f8067) // JALR		X0, (X31)

	r, _ := tramp.AddRel(objabi.R_RISCV_PCREL_ITYPE)
	r.SetSiz(8)
	r.SetSym(target)
	r.SetAdd(offset)
}