summaryrefslogtreecommitdiffstats
path: root/src/crypto/aes/gcm_s390x.go
blob: d95f1694c66578c9c7226e1b7af780150eba1dd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package aes

import (
	"crypto/cipher"
	"crypto/internal/alias"
	"crypto/subtle"
	"encoding/binary"
	"errors"
	"internal/cpu"
)

// This file contains two implementations of AES-GCM. The first implementation
// (gcmAsm) uses the KMCTR instruction to encrypt using AES in counter mode and
// the KIMD instruction for GHASH. The second implementation (gcmKMA) uses the
// newer KMA instruction which performs both operations.

// gcmCount represents a 16-byte big-endian count value.
type gcmCount [16]byte

// inc increments the rightmost 32-bits of the count value by 1.
func (x *gcmCount) inc() {
	binary.BigEndian.PutUint32(x[len(x)-4:], binary.BigEndian.Uint32(x[len(x)-4:])+1)
}

// gcmLengths writes len0 || len1 as big-endian values to a 16-byte array.
func gcmLengths(len0, len1 uint64) [16]byte {
	v := [16]byte{}
	binary.BigEndian.PutUint64(v[0:], len0)
	binary.BigEndian.PutUint64(v[8:], len1)
	return v
}

// gcmHashKey represents the 16-byte hash key required by the GHASH algorithm.
type gcmHashKey [16]byte

type gcmAsm struct {
	block     *aesCipherAsm
	hashKey   gcmHashKey
	nonceSize int
	tagSize   int
}

const (
	gcmBlockSize         = 16
	gcmTagSize           = 16
	gcmMinimumTagSize    = 12 // NIST SP 800-38D recommends tags with 12 or more bytes.
	gcmStandardNonceSize = 12
)

var errOpen = errors.New("cipher: message authentication failed")

// Assert that aesCipherAsm implements the gcmAble interface.
var _ gcmAble = (*aesCipherAsm)(nil)

// NewGCM returns the AES cipher wrapped in Galois Counter Mode. This is only
// called by crypto/cipher.NewGCM via the gcmAble interface.
func (c *aesCipherAsm) NewGCM(nonceSize, tagSize int) (cipher.AEAD, error) {
	var hk gcmHashKey
	c.Encrypt(hk[:], hk[:])
	g := gcmAsm{
		block:     c,
		hashKey:   hk,
		nonceSize: nonceSize,
		tagSize:   tagSize,
	}
	if cpu.S390X.HasAESGCM {
		g := gcmKMA{g}
		return &g, nil
	}
	return &g, nil
}

func (g *gcmAsm) NonceSize() int {
	return g.nonceSize
}

func (g *gcmAsm) Overhead() int {
	return g.tagSize
}

// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
	if total := len(in) + n; cap(in) >= total {
		head = in[:total]
	} else {
		head = make([]byte, total)
		copy(head, in)
	}
	tail = head[len(in):]
	return
}

// ghash uses the GHASH algorithm to hash data with the given key. The initial
// hash value is given by hash which will be updated with the new hash value.
// The length of data must be a multiple of 16-bytes.
//
//go:noescape
func ghash(key *gcmHashKey, hash *[16]byte, data []byte)

// paddedGHASH pads data with zeroes until its length is a multiple of
// 16-bytes. It then calculates a new value for hash using the GHASH algorithm.
func (g *gcmAsm) paddedGHASH(hash *[16]byte, data []byte) {
	siz := len(data) &^ 0xf // align size to 16-bytes
	if siz > 0 {
		ghash(&g.hashKey, hash, data[:siz])
		data = data[siz:]
	}
	if len(data) > 0 {
		var s [16]byte
		copy(s[:], data)
		ghash(&g.hashKey, hash, s[:])
	}
}

// cryptBlocksGCM encrypts src using AES in counter mode using the given
// function code and key. The rightmost 32-bits of the counter are incremented
// between each block as required by the GCM spec. The initial counter value
// is given by cnt, which is updated with the value of the next counter value
// to use.
//
// The lengths of both dst and buf must be greater than or equal to the length
// of src. buf may be partially or completely overwritten during the execution
// of the function.
//
//go:noescape
func cryptBlocksGCM(fn code, key, dst, src, buf []byte, cnt *gcmCount)

// counterCrypt encrypts src using AES in counter mode and places the result
// into dst. cnt is the initial count value and will be updated with the next
// count value. The length of dst must be greater than or equal to the length
// of src.
func (g *gcmAsm) counterCrypt(dst, src []byte, cnt *gcmCount) {
	// Copying src into a buffer improves performance on some models when
	// src and dst point to the same underlying array. We also need a
	// buffer for counter values.
	var ctrbuf, srcbuf [2048]byte
	for len(src) >= 16 {
		siz := len(src)
		if len(src) > len(ctrbuf) {
			siz = len(ctrbuf)
		}
		siz &^= 0xf // align siz to 16-bytes
		copy(srcbuf[:], src[:siz])
		cryptBlocksGCM(g.block.function, g.block.key, dst[:siz], srcbuf[:siz], ctrbuf[:], cnt)
		src = src[siz:]
		dst = dst[siz:]
	}
	if len(src) > 0 {
		var x [16]byte
		g.block.Encrypt(x[:], cnt[:])
		for i := range src {
			dst[i] = src[i] ^ x[i]
		}
		cnt.inc()
	}
}

// deriveCounter computes the initial GCM counter state from the given nonce.
// See NIST SP 800-38D, section 7.1.
func (g *gcmAsm) deriveCounter(nonce []byte) gcmCount {
	// GCM has two modes of operation with respect to the initial counter
	// state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path"
	// for nonces of other lengths. For a 96-bit nonce, the nonce, along
	// with a four-byte big-endian counter starting at one, is used
	// directly as the starting counter. For other nonce sizes, the counter
	// is computed by passing it through the GHASH function.
	var counter gcmCount
	if len(nonce) == gcmStandardNonceSize {
		copy(counter[:], nonce)
		counter[gcmBlockSize-1] = 1
	} else {
		var hash [16]byte
		g.paddedGHASH(&hash, nonce)
		lens := gcmLengths(0, uint64(len(nonce))*8)
		g.paddedGHASH(&hash, lens[:])
		copy(counter[:], hash[:])
	}
	return counter
}

// auth calculates GHASH(ciphertext, additionalData), masks the result with
// tagMask and writes the result to out.
func (g *gcmAsm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
	var hash [16]byte
	g.paddedGHASH(&hash, additionalData)
	g.paddedGHASH(&hash, ciphertext)
	lens := gcmLengths(uint64(len(additionalData))*8, uint64(len(ciphertext))*8)
	g.paddedGHASH(&hash, lens[:])

	copy(out, hash[:])
	for i := range out {
		out[i] ^= tagMask[i]
	}
}

// Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for
// details.
func (g *gcmAsm) Seal(dst, nonce, plaintext, data []byte) []byte {
	if len(nonce) != g.nonceSize {
		panic("crypto/cipher: incorrect nonce length given to GCM")
	}
	if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize {
		panic("crypto/cipher: message too large for GCM")
	}

	ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize)
	if alias.InexactOverlap(out[:len(plaintext)], plaintext) {
		panic("crypto/cipher: invalid buffer overlap")
	}

	counter := g.deriveCounter(nonce)

	var tagMask [gcmBlockSize]byte
	g.block.Encrypt(tagMask[:], counter[:])
	counter.inc()

	var tagOut [gcmTagSize]byte
	g.counterCrypt(out, plaintext, &counter)
	g.auth(tagOut[:], out[:len(plaintext)], data, &tagMask)
	copy(out[len(plaintext):], tagOut[:])

	return ret
}

// Open authenticates and decrypts ciphertext. See the cipher.AEAD interface
// for details.
func (g *gcmAsm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
	if len(nonce) != g.nonceSize {
		panic("crypto/cipher: incorrect nonce length given to GCM")
	}
	// Sanity check to prevent the authentication from always succeeding if an implementation
	// leaves tagSize uninitialized, for example.
	if g.tagSize < gcmMinimumTagSize {
		panic("crypto/cipher: incorrect GCM tag size")
	}
	if len(ciphertext) < g.tagSize {
		return nil, errOpen
	}
	if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(BlockSize)+uint64(g.tagSize) {
		return nil, errOpen
	}

	tag := ciphertext[len(ciphertext)-g.tagSize:]
	ciphertext = ciphertext[:len(ciphertext)-g.tagSize]

	counter := g.deriveCounter(nonce)

	var tagMask [gcmBlockSize]byte
	g.block.Encrypt(tagMask[:], counter[:])
	counter.inc()

	var expectedTag [gcmTagSize]byte
	g.auth(expectedTag[:], ciphertext, data, &tagMask)

	ret, out := sliceForAppend(dst, len(ciphertext))
	if alias.InexactOverlap(out, ciphertext) {
		panic("crypto/cipher: invalid buffer overlap")
	}

	if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 {
		// The AESNI code decrypts and authenticates concurrently, and
		// so overwrites dst in the event of a tag mismatch. That
		// behavior is mimicked here in order to be consistent across
		// platforms.
		for i := range out {
			out[i] = 0
		}
		return nil, errOpen
	}

	g.counterCrypt(out, ciphertext, &counter)
	return ret, nil
}

// gcmKMA implements the cipher.AEAD interface using the KMA instruction. It should
// only be used if hasKMA is true.
type gcmKMA struct {
	gcmAsm
}

// flags for the KMA instruction
const (
	kmaHS      = 1 << 10 // hash subkey supplied
	kmaLAAD    = 1 << 9  // last series of additional authenticated data
	kmaLPC     = 1 << 8  // last series of plaintext or ciphertext blocks
	kmaDecrypt = 1 << 7  // decrypt
)

// kmaGCM executes the encryption or decryption operation given by fn. The tag
// will be calculated and written to tag. cnt should contain the current
// counter state and will be overwritten with the updated counter state.
// TODO(mundaym): could pass in hash subkey
//
//go:noescape
func kmaGCM(fn code, key, dst, src, aad []byte, tag *[16]byte, cnt *gcmCount)

// Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for
// details.
func (g *gcmKMA) Seal(dst, nonce, plaintext, data []byte) []byte {
	if len(nonce) != g.nonceSize {
		panic("crypto/cipher: incorrect nonce length given to GCM")
	}
	if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize {
		panic("crypto/cipher: message too large for GCM")
	}

	ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize)
	if alias.InexactOverlap(out[:len(plaintext)], plaintext) {
		panic("crypto/cipher: invalid buffer overlap")
	}

	counter := g.deriveCounter(nonce)
	fc := g.block.function | kmaLAAD | kmaLPC

	var tag [gcmTagSize]byte
	kmaGCM(fc, g.block.key, out[:len(plaintext)], plaintext, data, &tag, &counter)
	copy(out[len(plaintext):], tag[:])

	return ret
}

// Open authenticates and decrypts ciphertext. See the cipher.AEAD interface
// for details.
func (g *gcmKMA) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
	if len(nonce) != g.nonceSize {
		panic("crypto/cipher: incorrect nonce length given to GCM")
	}
	if len(ciphertext) < g.tagSize {
		return nil, errOpen
	}
	if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(BlockSize)+uint64(g.tagSize) {
		return nil, errOpen
	}

	tag := ciphertext[len(ciphertext)-g.tagSize:]
	ciphertext = ciphertext[:len(ciphertext)-g.tagSize]
	ret, out := sliceForAppend(dst, len(ciphertext))
	if alias.InexactOverlap(out, ciphertext) {
		panic("crypto/cipher: invalid buffer overlap")
	}

	if g.tagSize < gcmMinimumTagSize {
		panic("crypto/cipher: incorrect GCM tag size")
	}

	counter := g.deriveCounter(nonce)
	fc := g.block.function | kmaLAAD | kmaLPC | kmaDecrypt

	var expectedTag [gcmTagSize]byte
	kmaGCM(fc, g.block.key, out[:len(ciphertext)], ciphertext, data, &expectedTag, &counter)

	if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 {
		// The AESNI code decrypts and authenticates concurrently, and
		// so overwrites dst in the event of a tag mismatch. That
		// behavior is mimicked here in order to be consistent across
		// platforms.
		for i := range out {
			out[i] = 0
		}
		return nil, errOpen
	}

	return ret, nil
}