summaryrefslogtreecommitdiffstats
path: root/src/crypto/hmac/hmac.go
blob: ed3ebc06027092bb8aea36ab1aa04a11f77f8e2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

/*
Package hmac implements the Keyed-Hash Message Authentication Code (HMAC) as
defined in U.S. Federal Information Processing Standards Publication 198.
An HMAC is a cryptographic hash that uses a key to sign a message.
The receiver verifies the hash by recomputing it using the same key.

Receivers should be careful to use Equal to compare MACs in order to avoid
timing side-channels:

	// ValidMAC reports whether messageMAC is a valid HMAC tag for message.
	func ValidMAC(message, messageMAC, key []byte) bool {
		mac := hmac.New(sha256.New, key)
		mac.Write(message)
		expectedMAC := mac.Sum(nil)
		return hmac.Equal(messageMAC, expectedMAC)
	}
*/
package hmac

import (
	"crypto/internal/boring"
	"crypto/subtle"
	"hash"
)

// FIPS 198-1:
// https://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

// key is zero padded to the block size of the hash function
// ipad = 0x36 byte repeated for key length
// opad = 0x5c byte repeated for key length
// hmac = H([key ^ opad] H([key ^ ipad] text))

// Marshalable is the combination of encoding.BinaryMarshaler and
// encoding.BinaryUnmarshaler. Their method definitions are repeated here to
// avoid a dependency on the encoding package.
type marshalable interface {
	MarshalBinary() ([]byte, error)
	UnmarshalBinary([]byte) error
}

type hmac struct {
	opad, ipad   []byte
	outer, inner hash.Hash

	// If marshaled is true, then opad and ipad do not contain a padded
	// copy of the key, but rather the marshaled state of outer/inner after
	// opad/ipad has been fed into it.
	marshaled bool
}

func (h *hmac) Sum(in []byte) []byte {
	origLen := len(in)
	in = h.inner.Sum(in)

	if h.marshaled {
		if err := h.outer.(marshalable).UnmarshalBinary(h.opad); err != nil {
			panic(err)
		}
	} else {
		h.outer.Reset()
		h.outer.Write(h.opad)
	}
	h.outer.Write(in[origLen:])
	return h.outer.Sum(in[:origLen])
}

func (h *hmac) Write(p []byte) (n int, err error) {
	return h.inner.Write(p)
}

func (h *hmac) Size() int      { return h.outer.Size() }
func (h *hmac) BlockSize() int { return h.inner.BlockSize() }

func (h *hmac) Reset() {
	if h.marshaled {
		if err := h.inner.(marshalable).UnmarshalBinary(h.ipad); err != nil {
			panic(err)
		}
		return
	}

	h.inner.Reset()
	h.inner.Write(h.ipad)

	// If the underlying hash is marshalable, we can save some time by
	// saving a copy of the hash state now, and restoring it on future
	// calls to Reset and Sum instead of writing ipad/opad every time.
	//
	// If either hash is unmarshalable for whatever reason,
	// it's safe to bail out here.
	marshalableInner, innerOK := h.inner.(marshalable)
	if !innerOK {
		return
	}
	marshalableOuter, outerOK := h.outer.(marshalable)
	if !outerOK {
		return
	}

	imarshal, err := marshalableInner.MarshalBinary()
	if err != nil {
		return
	}

	h.outer.Reset()
	h.outer.Write(h.opad)
	omarshal, err := marshalableOuter.MarshalBinary()
	if err != nil {
		return
	}

	// Marshaling succeeded; save the marshaled state for later
	h.ipad = imarshal
	h.opad = omarshal
	h.marshaled = true
}

// New returns a new HMAC hash using the given hash.Hash type and key.
// New functions like sha256.New from crypto/sha256 can be used as h.
// h must return a new Hash every time it is called.
// Note that unlike other hash implementations in the standard library,
// the returned Hash does not implement encoding.BinaryMarshaler
// or encoding.BinaryUnmarshaler.
func New(h func() hash.Hash, key []byte) hash.Hash {
	if boring.Enabled {
		hm := boring.NewHMAC(h, key)
		if hm != nil {
			return hm
		}
		// BoringCrypto did not recognize h, so fall through to standard Go code.
	}
	hm := new(hmac)
	hm.outer = h()
	hm.inner = h()
	unique := true
	func() {
		defer func() {
			// The comparison might panic if the underlying types are not comparable.
			_ = recover()
		}()
		if hm.outer == hm.inner {
			unique = false
		}
	}()
	if !unique {
		panic("crypto/hmac: hash generation function does not produce unique values")
	}
	blocksize := hm.inner.BlockSize()
	hm.ipad = make([]byte, blocksize)
	hm.opad = make([]byte, blocksize)
	if len(key) > blocksize {
		// If key is too big, hash it.
		hm.outer.Write(key)
		key = hm.outer.Sum(nil)
	}
	copy(hm.ipad, key)
	copy(hm.opad, key)
	for i := range hm.ipad {
		hm.ipad[i] ^= 0x36
	}
	for i := range hm.opad {
		hm.opad[i] ^= 0x5c
	}
	hm.inner.Write(hm.ipad)

	return hm
}

// Equal compares two MACs for equality without leaking timing information.
func Equal(mac1, mac2 []byte) bool {
	// We don't have to be constant time if the lengths of the MACs are
	// different as that suggests that a completely different hash function
	// was used.
	return subtle.ConstantTimeCompare(mac1, mac2) == 1
}