summaryrefslogtreecommitdiffstats
path: root/src/crypto/internal/boring/rsa.go
blob: fa693ea3198da6b4c61ad93227df99bca9b548a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build boringcrypto && linux && (amd64 || arm64) && !android && !cmd_go_bootstrap && !msan

package boring

// #include "goboringcrypto.h"
import "C"
import (
	"crypto"
	"crypto/subtle"
	"errors"
	"hash"
	"runtime"
	"strconv"
	"unsafe"
)

func GenerateKeyRSA(bits int) (N, E, D, P, Q, Dp, Dq, Qinv BigInt, err error) {
	bad := func(e error) (N, E, D, P, Q, Dp, Dq, Qinv BigInt, err error) {
		return nil, nil, nil, nil, nil, nil, nil, nil, e
	}

	key := C._goboringcrypto_RSA_new()
	if key == nil {
		return bad(fail("RSA_new"))
	}
	defer C._goboringcrypto_RSA_free(key)

	if C._goboringcrypto_RSA_generate_key_fips(key, C.int(bits), nil) == 0 {
		return bad(fail("RSA_generate_key_fips"))
	}

	var n, e, d, p, q, dp, dq, qinv *C.GO_BIGNUM
	C._goboringcrypto_RSA_get0_key(key, &n, &e, &d)
	C._goboringcrypto_RSA_get0_factors(key, &p, &q)
	C._goboringcrypto_RSA_get0_crt_params(key, &dp, &dq, &qinv)
	return bnToBig(n), bnToBig(e), bnToBig(d), bnToBig(p), bnToBig(q), bnToBig(dp), bnToBig(dq), bnToBig(qinv), nil
}

type PublicKeyRSA struct {
	// _key MUST NOT be accessed directly. Instead, use the withKey method.
	_key *C.GO_RSA
}

func NewPublicKeyRSA(N, E BigInt) (*PublicKeyRSA, error) {
	key := C._goboringcrypto_RSA_new()
	if key == nil {
		return nil, fail("RSA_new")
	}
	if !bigToBn(&key.n, N) ||
		!bigToBn(&key.e, E) {
		return nil, fail("BN_bin2bn")
	}
	k := &PublicKeyRSA{_key: key}
	runtime.SetFinalizer(k, (*PublicKeyRSA).finalize)
	return k, nil
}

func (k *PublicKeyRSA) finalize() {
	C._goboringcrypto_RSA_free(k._key)
}

func (k *PublicKeyRSA) withKey(f func(*C.GO_RSA) C.int) C.int {
	// Because of the finalizer, any time _key is passed to cgo, that call must
	// be followed by a call to runtime.KeepAlive, to make sure k is not
	// collected (and finalized) before the cgo call returns.
	defer runtime.KeepAlive(k)
	return f(k._key)
}

type PrivateKeyRSA struct {
	// _key MUST NOT be accessed directly. Instead, use the withKey method.
	_key *C.GO_RSA
}

func NewPrivateKeyRSA(N, E, D, P, Q, Dp, Dq, Qinv BigInt) (*PrivateKeyRSA, error) {
	key := C._goboringcrypto_RSA_new()
	if key == nil {
		return nil, fail("RSA_new")
	}
	if !bigToBn(&key.n, N) ||
		!bigToBn(&key.e, E) ||
		!bigToBn(&key.d, D) ||
		!bigToBn(&key.p, P) ||
		!bigToBn(&key.q, Q) ||
		!bigToBn(&key.dmp1, Dp) ||
		!bigToBn(&key.dmq1, Dq) ||
		!bigToBn(&key.iqmp, Qinv) {
		return nil, fail("BN_bin2bn")
	}
	k := &PrivateKeyRSA{_key: key}
	runtime.SetFinalizer(k, (*PrivateKeyRSA).finalize)
	return k, nil
}

func (k *PrivateKeyRSA) finalize() {
	C._goboringcrypto_RSA_free(k._key)
}

func (k *PrivateKeyRSA) withKey(f func(*C.GO_RSA) C.int) C.int {
	// Because of the finalizer, any time _key is passed to cgo, that call must
	// be followed by a call to runtime.KeepAlive, to make sure k is not
	// collected (and finalized) before the cgo call returns.
	defer runtime.KeepAlive(k)
	return f(k._key)
}

func setupRSA(withKey func(func(*C.GO_RSA) C.int) C.int,
	padding C.int, h, mgfHash hash.Hash, label []byte, saltLen int, ch crypto.Hash,
	init func(*C.GO_EVP_PKEY_CTX) C.int) (pkey *C.GO_EVP_PKEY, ctx *C.GO_EVP_PKEY_CTX, err error) {
	defer func() {
		if err != nil {
			if pkey != nil {
				C._goboringcrypto_EVP_PKEY_free(pkey)
				pkey = nil
			}
			if ctx != nil {
				C._goboringcrypto_EVP_PKEY_CTX_free(ctx)
				ctx = nil
			}
		}
	}()

	pkey = C._goboringcrypto_EVP_PKEY_new()
	if pkey == nil {
		return nil, nil, fail("EVP_PKEY_new")
	}
	if withKey(func(key *C.GO_RSA) C.int {
		return C._goboringcrypto_EVP_PKEY_set1_RSA(pkey, key)
	}) == 0 {
		return nil, nil, fail("EVP_PKEY_set1_RSA")
	}
	ctx = C._goboringcrypto_EVP_PKEY_CTX_new(pkey, nil)
	if ctx == nil {
		return nil, nil, fail("EVP_PKEY_CTX_new")
	}
	if init(ctx) == 0 {
		return nil, nil, fail("EVP_PKEY_operation_init")
	}
	if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_padding(ctx, padding) == 0 {
		return nil, nil, fail("EVP_PKEY_CTX_set_rsa_padding")
	}
	if padding == C.GO_RSA_PKCS1_OAEP_PADDING {
		md := hashToMD(h)
		if md == nil {
			return nil, nil, errors.New("crypto/rsa: unsupported hash function")
		}
		mgfMD := hashToMD(mgfHash)
		if mgfMD == nil {
			return nil, nil, errors.New("crypto/rsa: unsupported hash function")
		}
		if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md) == 0 {
			return nil, nil, fail("EVP_PKEY_set_rsa_oaep_md")
		}
		if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgfMD) == 0 {
			return nil, nil, fail("EVP_PKEY_set_rsa_mgf1_md")
		}
		// ctx takes ownership of label, so malloc a copy for BoringCrypto to free.
		clabel := (*C.uint8_t)(C._goboringcrypto_OPENSSL_malloc(C.size_t(len(label))))
		if clabel == nil {
			return nil, nil, fail("OPENSSL_malloc")
		}
		copy((*[1 << 30]byte)(unsafe.Pointer(clabel))[:len(label)], label)
		if C._goboringcrypto_EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, clabel, C.size_t(len(label))) == 0 {
			return nil, nil, fail("EVP_PKEY_CTX_set0_rsa_oaep_label")
		}
	}
	if padding == C.GO_RSA_PKCS1_PSS_PADDING {
		if saltLen != 0 {
			if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, C.int(saltLen)) == 0 {
				return nil, nil, fail("EVP_PKEY_set_rsa_pss_saltlen")
			}
		}
		md := cryptoHashToMD(ch)
		if md == nil {
			return nil, nil, errors.New("crypto/rsa: unsupported hash function")
		}
		if C._goboringcrypto_EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, md) == 0 {
			return nil, nil, fail("EVP_PKEY_set_rsa_mgf1_md")
		}
	}

	return pkey, ctx, nil
}

func cryptRSA(withKey func(func(*C.GO_RSA) C.int) C.int,
	padding C.int, h, mgfHash hash.Hash, label []byte, saltLen int, ch crypto.Hash,
	init func(*C.GO_EVP_PKEY_CTX) C.int,
	crypt func(*C.GO_EVP_PKEY_CTX, *C.uint8_t, *C.size_t, *C.uint8_t, C.size_t) C.int,
	in []byte) ([]byte, error) {

	pkey, ctx, err := setupRSA(withKey, padding, h, mgfHash, label, saltLen, ch, init)
	if err != nil {
		return nil, err
	}
	defer C._goboringcrypto_EVP_PKEY_free(pkey)
	defer C._goboringcrypto_EVP_PKEY_CTX_free(ctx)

	var outLen C.size_t
	if crypt(ctx, nil, &outLen, base(in), C.size_t(len(in))) == 0 {
		return nil, fail("EVP_PKEY_decrypt/encrypt")
	}
	out := make([]byte, outLen)
	if crypt(ctx, base(out), &outLen, base(in), C.size_t(len(in))) == 0 {
		return nil, fail("EVP_PKEY_decrypt/encrypt")
	}
	return out[:outLen], nil
}

func DecryptRSAOAEP(h, mgfHash hash.Hash, priv *PrivateKeyRSA, ciphertext, label []byte) ([]byte, error) {
	return cryptRSA(priv.withKey, C.GO_RSA_PKCS1_OAEP_PADDING, h, mgfHash, label, 0, 0, decryptInit, decrypt, ciphertext)
}

func EncryptRSAOAEP(h, mgfHash hash.Hash, pub *PublicKeyRSA, msg, label []byte) ([]byte, error) {
	return cryptRSA(pub.withKey, C.GO_RSA_PKCS1_OAEP_PADDING, h, mgfHash, label, 0, 0, encryptInit, encrypt, msg)
}

func DecryptRSAPKCS1(priv *PrivateKeyRSA, ciphertext []byte) ([]byte, error) {
	return cryptRSA(priv.withKey, C.GO_RSA_PKCS1_PADDING, nil, nil, nil, 0, 0, decryptInit, decrypt, ciphertext)
}

func EncryptRSAPKCS1(pub *PublicKeyRSA, msg []byte) ([]byte, error) {
	return cryptRSA(pub.withKey, C.GO_RSA_PKCS1_PADDING, nil, nil, nil, 0, 0, encryptInit, encrypt, msg)
}

func DecryptRSANoPadding(priv *PrivateKeyRSA, ciphertext []byte) ([]byte, error) {
	return cryptRSA(priv.withKey, C.GO_RSA_NO_PADDING, nil, nil, nil, 0, 0, decryptInit, decrypt, ciphertext)
}

func EncryptRSANoPadding(pub *PublicKeyRSA, msg []byte) ([]byte, error) {
	return cryptRSA(pub.withKey, C.GO_RSA_NO_PADDING, nil, nil, nil, 0, 0, encryptInit, encrypt, msg)
}

// These dumb wrappers work around the fact that cgo functions cannot be used as values directly.

func decryptInit(ctx *C.GO_EVP_PKEY_CTX) C.int {
	return C._goboringcrypto_EVP_PKEY_decrypt_init(ctx)
}

func decrypt(ctx *C.GO_EVP_PKEY_CTX, out *C.uint8_t, outLen *C.size_t, in *C.uint8_t, inLen C.size_t) C.int {
	return C._goboringcrypto_EVP_PKEY_decrypt(ctx, out, outLen, in, inLen)
}

func encryptInit(ctx *C.GO_EVP_PKEY_CTX) C.int {
	return C._goboringcrypto_EVP_PKEY_encrypt_init(ctx)
}

func encrypt(ctx *C.GO_EVP_PKEY_CTX, out *C.uint8_t, outLen *C.size_t, in *C.uint8_t, inLen C.size_t) C.int {
	return C._goboringcrypto_EVP_PKEY_encrypt(ctx, out, outLen, in, inLen)
}

var invalidSaltLenErr = errors.New("crypto/rsa: PSSOptions.SaltLength cannot be negative")

func SignRSAPSS(priv *PrivateKeyRSA, h crypto.Hash, hashed []byte, saltLen int) ([]byte, error) {
	md := cryptoHashToMD(h)
	if md == nil {
		return nil, errors.New("crypto/rsa: unsupported hash function")
	}

	// A salt length of -2 is valid in BoringSSL, but not in crypto/rsa, so reject
	// it, and lengths < -2, before we convert to the BoringSSL sentinel values.
	if saltLen <= -2 {
		return nil, invalidSaltLenErr
	}

	// BoringSSL uses sentinel salt length values like we do, but the values don't
	// fully match what we use. We both use -1 for salt length equal to hash length,
	// but BoringSSL uses -2 to mean maximal size where we use 0. In the latter
	// case convert to the BoringSSL version.
	if saltLen == 0 {
		saltLen = -2
	}

	var out []byte
	var outLen C.size_t
	if priv.withKey(func(key *C.GO_RSA) C.int {
		out = make([]byte, C._goboringcrypto_RSA_size(key))
		return C._goboringcrypto_RSA_sign_pss_mgf1(key, &outLen, base(out), C.size_t(len(out)),
			base(hashed), C.size_t(len(hashed)), md, nil, C.int(saltLen))
	}) == 0 {
		return nil, fail("RSA_sign_pss_mgf1")
	}

	return out[:outLen], nil
}

func VerifyRSAPSS(pub *PublicKeyRSA, h crypto.Hash, hashed, sig []byte, saltLen int) error {
	md := cryptoHashToMD(h)
	if md == nil {
		return errors.New("crypto/rsa: unsupported hash function")
	}

	// A salt length of -2 is valid in BoringSSL, but not in crypto/rsa, so reject
	// it, and lengths < -2, before we convert to the BoringSSL sentinel values.
	if saltLen <= -2 {
		return invalidSaltLenErr
	}

	// BoringSSL uses sentinel salt length values like we do, but the values don't
	// fully match what we use. We both use -1 for salt length equal to hash length,
	// but BoringSSL uses -2 to mean maximal size where we use 0. In the latter
	// case convert to the BoringSSL version.
	if saltLen == 0 {
		saltLen = -2
	}

	if pub.withKey(func(key *C.GO_RSA) C.int {
		return C._goboringcrypto_RSA_verify_pss_mgf1(key, base(hashed), C.size_t(len(hashed)),
			md, nil, C.int(saltLen), base(sig), C.size_t(len(sig)))
	}) == 0 {
		return fail("RSA_verify_pss_mgf1")
	}
	return nil
}

func SignRSAPKCS1v15(priv *PrivateKeyRSA, h crypto.Hash, hashed []byte) ([]byte, error) {
	if h == 0 {
		// No hashing.
		var out []byte
		var outLen C.size_t
		if priv.withKey(func(key *C.GO_RSA) C.int {
			out = make([]byte, C._goboringcrypto_RSA_size(key))
			return C._goboringcrypto_RSA_sign_raw(key, &outLen, base(out), C.size_t(len(out)),
				base(hashed), C.size_t(len(hashed)), C.GO_RSA_PKCS1_PADDING)
		}) == 0 {
			return nil, fail("RSA_sign_raw")
		}
		return out[:outLen], nil
	}

	md := cryptoHashToMD(h)
	if md == nil {
		return nil, errors.New("crypto/rsa: unsupported hash function: " + strconv.Itoa(int(h)))
	}
	nid := C._goboringcrypto_EVP_MD_type(md)
	var out []byte
	var outLen C.uint
	if priv.withKey(func(key *C.GO_RSA) C.int {
		out = make([]byte, C._goboringcrypto_RSA_size(key))
		return C._goboringcrypto_RSA_sign(nid, base(hashed), C.uint(len(hashed)),
			base(out), &outLen, key)
	}) == 0 {
		return nil, fail("RSA_sign")
	}
	return out[:outLen], nil
}

func VerifyRSAPKCS1v15(pub *PublicKeyRSA, h crypto.Hash, hashed, sig []byte) error {
	if h == 0 {
		var out []byte
		var outLen C.size_t
		if pub.withKey(func(key *C.GO_RSA) C.int {
			out = make([]byte, C._goboringcrypto_RSA_size(key))
			return C._goboringcrypto_RSA_verify_raw(key, &outLen, base(out),
				C.size_t(len(out)), base(sig), C.size_t(len(sig)), C.GO_RSA_PKCS1_PADDING)
		}) == 0 {
			return fail("RSA_verify")
		}
		if subtle.ConstantTimeCompare(hashed, out[:outLen]) != 1 {
			return fail("RSA_verify")
		}
		return nil
	}
	md := cryptoHashToMD(h)
	if md == nil {
		return errors.New("crypto/rsa: unsupported hash function")
	}
	nid := C._goboringcrypto_EVP_MD_type(md)
	if pub.withKey(func(key *C.GO_RSA) C.int {
		return C._goboringcrypto_RSA_verify(nid, base(hashed), C.size_t(len(hashed)),
			base(sig), C.size_t(len(sig)), key)
	}) == 0 {
		return fail("RSA_verify")
	}
	return nil
}