1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// This is a port of the s390x asm implementation.
// to ppc64le.
// Some changes were needed due to differences in
// the Go opcodes and/or available instructions
// between s390x and ppc64le.
// 1. There were operand order differences in the
// VSUBUQM, VSUBCUQ, and VSEL instructions.
// 2. ppc64 does not have a multiply high and low
// like s390x, so those were implemented using
// macros to compute the equivalent values.
// 3. The LVX, STVX instructions on ppc64 require
// 16 byte alignment of the data. To avoid that
// requirement, data is loaded using LXVD2X and
// STXVD2X with VPERM to reorder bytes correctly.
// I have identified some areas where I believe
// changes would be needed to make this work for big
// endian; however additional changes beyond what I
// have noted are most likely needed to make it work.
// - The string used with VPERM to swap the byte order
// for loads and stores.
// - The constants that are loaded from CPOOL.
//
// The following constants are defined in an order
// that is correct for use with LXVD2X/STXVD2X
// on little endian.
DATA p256<>+0x00(SB)/8, $0xffffffff00000001 // P256
DATA p256<>+0x08(SB)/8, $0x0000000000000000 // P256
DATA p256<>+0x10(SB)/8, $0x00000000ffffffff // P256
DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256
DATA p256<>+0x20(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x28(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x30(SB)/8, $0x0000000010111213 // SEL 0 d1 d0 0
DATA p256<>+0x38(SB)/8, $0x1415161700000000 // SEL 0 d1 d0 0
DATA p256<>+0x40(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x48(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x00(SB)/8, $0x00000000ffffffff // P256 original
DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256
DATA p256mul<>+0x10(SB)/8, $0xffffffff00000001 // P256 original
DATA p256mul<>+0x18(SB)/8, $0x0000000000000000 // P256
DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0
DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0
DATA p256mul<>+0x30(SB)/8, $0x0001020304050607 // SEL d0 0 d1 d0
DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL d0 0 d1 d0
DATA p256mul<>+0x40(SB)/8, $0x040506071c1d1e1f // SEL 0 d1 d0 d1
DATA p256mul<>+0x48(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL 0 d1 d0 d1
DATA p256mul<>+0x50(SB)/8, $0x0405060704050607 // SEL 0 0 d1 d0
DATA p256mul<>+0x58(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0
DATA p256mul<>+0x60(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x68(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x70(SB)/8, $0x141516170c0d0e0f // SEL 0 d1 d0 0
DATA p256mul<>+0x78(SB)/8, $0x1c1d1e1f14151617 // SEL 0 d1 d0 0
DATA p256mul<>+0x80(SB)/8, $0xffffffff00000000 // (1*2^256)%P256
DATA p256mul<>+0x88(SB)/8, $0x0000000000000001 // (1*2^256)%P256
DATA p256mul<>+0x90(SB)/8, $0x00000000fffffffe // (1*2^256)%P256
DATA p256mul<>+0x98(SB)/8, $0xffffffffffffffff // (1*2^256)%P256
// External declarations for constants
GLOBL p256ord<>(SB), 8, $32
GLOBL p256<>(SB), 8, $80
GLOBL p256mul<>(SB), 8, $160
// The following macros are used to implement the ppc64le
// equivalent function from the corresponding s390x
// instruction for vector multiply high, low, and add,
// since there aren't exact equivalent instructions.
// The corresponding s390x instructions appear in the
// comments.
// Implementation for big endian would have to be
// investigated, I think it would be different.
//
//
// Vector multiply word
//
// VMLF x0, x1, out_low
// VMLHF x0, x1, out_hi
#define VMULT(x1, x2, out_low, out_hi) \
VMULEUW x1, x2, TMP1; \
VMULOUW x1, x2, TMP2; \
VMRGEW TMP1, TMP2, out_hi; \
VMRGOW TMP1, TMP2, out_low
//
// Vector multiply add word
//
// VMALF x0, x1, y, out_low
// VMALHF x0, x1, y, out_hi
#define VMULT_ADD(x1, x2, y, one, out_low, out_hi) \
VMULEUW y, one, TMP2; \
VMULOUW y, one, TMP1; \
VMULEUW x1, x2, out_low; \
VMULOUW x1, x2, out_hi; \
VADDUDM TMP2, out_low, TMP2; \
VADDUDM TMP1, out_hi, TMP1; \
VMRGOW TMP2, TMP1, out_low; \
VMRGEW TMP2, TMP1, out_hi
#define res_ptr R3
#define a_ptr R4
#undef res_ptr
#undef a_ptr
#define P1ptr R3
#define CPOOL R7
#define Y1L V0
#define Y1H V1
#define T1L V2
#define T1H V3
#define PL V30
#define PH V31
#define CAR1 V6
// func p256NegCond(val *p256Point, cond int)
TEXT ·p256NegCond(SB), NOSPLIT, $0-16
MOVD val+0(FP), P1ptr
MOVD $16, R16
MOVD cond+8(FP), R6
CMP $0, R6
BC 12, 2, LR // just return if cond == 0
MOVD $p256mul<>+0x00(SB), CPOOL
LXVD2X (P1ptr)(R0), Y1L
LXVD2X (P1ptr)(R16), Y1H
XXPERMDI Y1H, Y1H, $2, Y1H
XXPERMDI Y1L, Y1L, $2, Y1L
LXVD2X (CPOOL)(R0), PL
LXVD2X (CPOOL)(R16), PH
VSUBCUQ PL, Y1L, CAR1 // subtract part2 giving carry
VSUBUQM PL, Y1L, T1L // subtract part2 giving result
VSUBEUQM PH, Y1H, CAR1, T1H // subtract part1 using carry from part2
XXPERMDI T1H, T1H, $2, T1H
XXPERMDI T1L, T1L, $2, T1L
STXVD2X T1L, (R0+P1ptr)
STXVD2X T1H, (R16+P1ptr)
RET
#undef P1ptr
#undef CPOOL
#undef Y1L
#undef Y1H
#undef T1L
#undef T1H
#undef PL
#undef PH
#undef CAR1
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define SEL V12
#define ZER V13
// This function uses LXVD2X and STXVD2X to avoid the
// data alignment requirement for LVX, STVX. Since
// this code is just moving bytes and not doing arithmetic,
// order of the bytes doesn't matter.
//
// func p256MovCond(res, a, b *p256Point, cond int)
TEXT ·p256MovCond(SB), NOSPLIT, $0-32
MOVD res+0(FP), P3ptr
MOVD a+8(FP), P1ptr
MOVD b+16(FP), P2ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $56, R21
MOVD $64, R19
MOVD $80, R20
// cond is R1 + 24 (cond offset) + 32
LXVDSX (R1)(R21), SEL
VSPLTISB $0, ZER
// SEL controls whether to store a or b
VCMPEQUD SEL, ZER, SEL
LXVD2X (P1ptr+R0), X1H
LXVD2X (P1ptr+R16), X1L
LXVD2X (P1ptr+R17), Y1H
LXVD2X (P1ptr+R18), Y1L
LXVD2X (P1ptr+R19), Z1H
LXVD2X (P1ptr+R20), Z1L
LXVD2X (P2ptr+R0), X2H
LXVD2X (P2ptr+R16), X2L
LXVD2X (P2ptr+R17), Y2H
LXVD2X (P2ptr+R18), Y2L
LXVD2X (P2ptr+R19), Z2H
LXVD2X (P2ptr+R20), Z2L
VSEL X1H, X2H, SEL, X1H
VSEL X1L, X2L, SEL, X1L
VSEL Y1H, Y2H, SEL, Y1H
VSEL Y1L, Y2L, SEL, Y1L
VSEL Z1H, Z2H, SEL, Z1H
VSEL Z1L, Z2L, SEL, Z1L
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
STXVD2X Z1H, (P3ptr+R19)
STXVD2X Z1L, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef P2ptr
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef SEL
#undef ZER
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL2 V21
// func p256Select(point *p256Point, table *p256Table, idx int)
TEXT ·p256Select(SB), NOSPLIT, $0-24
MOVD res+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVDSX (R1)(R18), SEL1 // VLREPG idx+32(FP), SEL1
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // VREPIB $1, ONE
VSPLTISB $1, SEL2 // VREPIB $1, SEL2
MOVD $17, COUNT
MOVD COUNT, CTR // set up ctr
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
VSPLTISB $0, Z1H // VZERO Z1H
VSPLTISB $0, Z1L // VZERO Z1L
loop_select:
// LVXD2X is used here since data alignment doesn't
// matter.
LXVD2X (P1ptr+R0), X2H
LXVD2X (P1ptr+R16), X2L
LXVD2X (P1ptr+R17), Y2H
LXVD2X (P1ptr+R18), Y2L
LXVD2X (P1ptr+R19), Z2H
LXVD2X (P1ptr+R20), Z2L
VCMPEQUD SEL2, IDX, SEL1 // VCEQG SEL2, IDX, SEL1 OK
// This will result in SEL1 being all 0s or 1s, meaning
// the result is either X1L or X2L, no individual byte
// selection.
VSEL X1L, X2L, SEL1, X1L
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VSEL Z1L, Z2L, SEL1, Z1L
VSEL Z1H, Z2H, SEL1, Z1H
// Add 1 to all bytes in SEL2
VADDUBM SEL2, ONE, SEL2 // VAB SEL2, ONE, SEL2 OK
ADD $96, P1ptr
BDNZ loop_select
// STXVD2X is used here so that alignment doesn't
// need to be verified. Since values were loaded
// using LXVD2X this is OK.
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
STXVD2X Z1H, (P3ptr+R19)
STXVD2X Z1L, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef ONE
#undef IDX
#undef SEL1
#undef SEL2
// The following functions all reverse the byte order.
//func p256BigToLittle(res *p256Element, in *[32]byte)
TEXT ·p256BigToLittle(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256LittleToBig(res *[32]byte, in *p256Element)
TEXT ·p256LittleToBig(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
TEXT ·p256OrdBigToLittle(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
TEXT ·p256OrdLittleToBig(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
TEXT p256InternalEndianSwap<>(SB), NOSPLIT, $0-0
// Index registers needed for BR movs
MOVD $8, R9
MOVD $16, R10
MOVD $24, R14
MOVDBR (R0)(R4), R5
MOVDBR (R9)(R4), R6
MOVDBR (R10)(R4), R7
MOVDBR (R14)(R4), R8
MOVD R8, 0(R3)
MOVD R7, 8(R3)
MOVD R6, 16(R3)
MOVD R5, 24(R3)
RET
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL2 V21
// func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
TEXT ·p256SelectAffine(SB), NOSPLIT, $0-24
MOVD res+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
LXVDSX (R1)(R18), SEL1
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // Vector with byte 1s
VSPLTISB $1, SEL2 // Vector with byte 1s
MOVD $64, COUNT
MOVD COUNT, CTR // loop count
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
loop_select:
LXVD2X (P1ptr+R0), X2H
LXVD2X (P1ptr+R16), X2L
LXVD2X (P1ptr+R17), Y2H
LXVD2X (P1ptr+R18), Y2L
VCMPEQUD SEL2, IDX, SEL1 // Compare against idx
VSEL X1L, X2L, SEL1, X1L // Select if idx matched
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VADDUBM SEL2, ONE, SEL2 // Increment SEL2 bytes by 1
ADD $64, P1ptr // Next chunk
BDNZ loop_select
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef ONE
#undef IDX
#undef SEL1
#undef SEL2
#define res_ptr R3
#define x_ptr R4
#define CPOOL R7
#define T0 V0
#define T1 V1
#define T2 V2
#define TT0 V3
#define TT1 V4
#define ZER V6
#define SEL1 V7
#define SEL2 V8
#define CAR1 V9
#define CAR2 V10
#define RED1 V11
#define RED2 V12
#define PL V13
#define PH V14
// func p256FromMont(res, in *p256Element)
TEXT ·p256FromMont(SB), NOSPLIT, $0-16
MOVD res+0(FP), res_ptr
MOVD in+8(FP), x_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $p256<>+0x00(SB), CPOOL
VSPLTISB $0, T2 // VZERO T2
VSPLTISB $0, ZER // VZERO ZER
// Constants are defined so that the LXVD2X is correct
LXVD2X (CPOOL+R0), PH
LXVD2X (CPOOL+R16), PL
// VPERM byte selections
LXVD2X (CPOOL+R18), SEL2
LXVD2X (CPOOL+R19), SEL1
LXVD2X (R16)(x_ptr), T1
LXVD2X (R0)(x_ptr), T0
// Put in true little endian order
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
// First round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Second round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Third round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Last round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// ---------------------------------------------------
VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1
VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0
VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2
VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1
VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2
VSEL TT0, T0, T2, T0
VSEL TT1, T1, T2, T1
// Reorder the bytes so STXVD2X can be used.
// TT0, TT1 used for VPERM result in case
// the caller expects T0, T1 to be good.
XXPERMDI T0, T0, $2, TT0
XXPERMDI T1, T1, $2, TT1
STXVD2X TT0, (R0)(res_ptr)
STXVD2X TT1, (R16)(res_ptr)
RET
#undef res_ptr
#undef x_ptr
#undef CPOOL
#undef T0
#undef T1
#undef T2
#undef TT0
#undef TT1
#undef ZER
#undef SEL1
#undef SEL2
#undef CAR1
#undef CAR2
#undef RED1
#undef RED2
#undef PL
#undef PH
// ---------------------------------------
// p256MulInternal
// V0-V3 V30,V31 - Not Modified
// V4-V15 V27-V29 - Volatile
#define CPOOL R7
// Parameters
#define X0 V0 // Not modified
#define X1 V1 // Not modified
#define Y0 V2 // Not modified
#define Y1 V3 // Not modified
#define T0 V4 // Result
#define T1 V5 // Result
#define P0 V30 // Not modified
#define P1 V31 // Not modified
// Temporaries: lots of reused vector regs
#define YDIG V6 // Overloaded with CAR2
#define ADD1H V7 // Overloaded with ADD3H
#define ADD2H V8 // Overloaded with ADD4H
#define ADD3 V9 // Overloaded with SEL2,SEL5
#define ADD4 V10 // Overloaded with SEL3,SEL6
#define RED1 V11 // Overloaded with CAR2
#define RED2 V12
#define RED3 V13 // Overloaded with SEL1
#define T2 V14
// Overloaded temporaries
#define ADD1 V4 // Overloaded with T0
#define ADD2 V5 // Overloaded with T1
#define ADD3H V7 // Overloaded with ADD1H
#define ADD4H V8 // Overloaded with ADD2H
#define ZER V28 // Overloaded with TMP1
#define CAR1 V6 // Overloaded with YDIG
#define CAR2 V11 // Overloaded with RED1
// Constant Selects
#define SEL1 V13 // Overloaded with RED3
#define SEL2 V9 // Overloaded with ADD3,SEL5
#define SEL3 V10 // Overloaded with ADD4,SEL6
#define SEL4 V6 // Overloaded with YDIG,CAR1
#define SEL5 V9 // Overloaded with ADD3,SEL2
#define SEL6 V10 // Overloaded with ADD4,SEL3
// TMP1, TMP2 used in
// VMULT macros
#define TMP1 V13 // Overloaded with RED3
#define TMP2 V27
#define ONE V29 // 1s splatted by word
/* *
* To follow the flow of bits, for your own sanity a stiff drink, need you shall.
* Of a single round, a 'helpful' picture, here is. Meaning, column position has.
* With you, SIMD be...
*
* +--------+--------+
* +--------| RED2 | RED1 |
* | +--------+--------+
* | ---+--------+--------+
* | +---- T2| T1 | T0 |--+
* | | ---+--------+--------+ |
* | | |
* | | ======================= |
* | | |
* | | +--------+--------+<-+
* | +-------| ADD2 | ADD1 |--|-----+
* | | +--------+--------+ | |
* | | +--------+--------+<---+ |
* | | | ADD2H | ADD1H |--+ |
* | | +--------+--------+ | |
* | | +--------+--------+<-+ |
* | | | ADD4 | ADD3 |--|-+ |
* | | +--------+--------+ | | |
* | | +--------+--------+<---+ | |
* | | | ADD4H | ADD3H |------|-+ |(+vzero)
* | | +--------+--------+ | | V
* | | ------------------------ | | +--------+
* | | | | | RED3 | [d0 0 0 d0]
* | | | | +--------+
* | +---->+--------+--------+ | | |
* (T2[1w]||ADD2[4w]||ADD1[3w]) +--------| T1 | T0 | | | |
* | +--------+--------+ | | |
* +---->---+--------+--------+ | | |
* T2| T1 | T0 |----+ | |
* ---+--------+--------+ | | |
* ---+--------+--------+<---+ | |
* +--- T2| T1 | T0 |----------+
* | ---+--------+--------+ | |
* | +--------+--------+<-------------+
* | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0]
* | +--------+--------+ | | |
* | +--------+<----------------------+
* | | RED3 |--------------+ | [0 0 d1 d0]
* | +--------+ | |
* +--->+--------+--------+ | |
* | T1 | T0 |--------+
* +--------+--------+ | |
* --------------------------- | |
* | |
* +--------+--------+<----+ |
* | RED2 | RED1 | |
* +--------+--------+ |
* ---+--------+--------+<-------+
* T2| T1 | T0 | (H1P-H1P-H00RRAY!)
* ---+--------+--------+
*
* *Mi obra de arte de siglo XXI @vpaprots
*
*
* First group is special, doesn't get the two inputs:
* +--------+--------+<-+
* +-------| ADD2 | ADD1 |--|-----+
* | +--------+--------+ | |
* | +--------+--------+<---+ |
* | | ADD2H | ADD1H |--+ |
* | +--------+--------+ | |
* | +--------+--------+<-+ |
* | | ADD4 | ADD3 |--|-+ |
* | +--------+--------+ | | |
* | +--------+--------+<---+ | |
* | | ADD4H | ADD3H |------|-+ |(+vzero)
* | +--------+--------+ | | V
* | ------------------------ | | +--------+
* | | | | RED3 | [d0 0 0 d0]
* | | | +--------+
* +---->+--------+--------+ | | |
* (T2[1w]||ADD2[4w]||ADD1[3w]) | T1 | T0 |----+ | |
* +--------+--------+ | | |
* ---+--------+--------+<---+ | |
* +--- T2| T1 | T0 |----------+
* | ---+--------+--------+ | |
* | +--------+--------+<-------------+
* | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0]
* | +--------+--------+ | | |
* | +--------+<----------------------+
* | | RED3 |--------------+ | [0 0 d1 d0]
* | +--------+ | |
* +--->+--------+--------+ | |
* | T1 | T0 |--------+
* +--------+--------+ | |
* --------------------------- | |
* | |
* +--------+--------+<----+ |
* | RED2 | RED1 | |
* +--------+--------+ |
* ---+--------+--------+<-------+
* T2| T1 | T0 | (H1P-H1P-H00RRAY!)
* ---+--------+--------+
*
* Last 'group' needs to RED2||RED1 shifted less
*/
TEXT p256MulInternal<>(SB), NOSPLIT, $0-16
// CPOOL loaded from caller
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $96, R21
MOVD $112, R22
// ---------------------------------------------------
VSPLTW $3, Y0, YDIG // VREPF Y0 is input
// VMLHF X0, YDIG, ADD1H
// VMLHF X1, YDIG, ADD2H
// VMLF X0, YDIG, ADD1
// VMLF X1, YDIG, ADD2
//
VMULT(X0, YDIG, ADD1, ADD1H)
VMULT(X1, YDIG, ADD2, ADD2H)
VSPLTISW $1, ONE
VSPLTW $2, Y0, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
LXVD2X (R17)(CPOOL), SEL1
VSPLTISB $0, ZER // VZERO ZER
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB
VSLDOI $12, ZER, ADD2, T1 // ADD2 Free // VSLDB
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // ADD3 Free // VAQ
VADDECUQ T1, ADD4, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // ADD4 Free // VACQ
LXVD2X (R18)(CPOOL), SEL2
LXVD2X (R19)(CPOOL), SEL3
LXVD2X (R20)(CPOOL), SEL4
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow -->? // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $1, Y0, YDIG // VREPF
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1 // T0 Free->ADD1
// VMALF X1, YDIG, T1, ADD2 // T1 Free->ADD2
VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H)
VSPLTW $0, Y0, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free->ADD3H
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free->ADD4H , YDIG Free->ZER
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free->T0 // VSLDB
VSLDOI $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R18)(CPOOL), SEL2
LXVD2X (R19)(CPOOL), SEL3
LXVD2X (R20)(CPOOL), SEL4
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $3, Y1, YDIG // VREPF
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1
// VMALF X1, YDIG, T1, ADD2
VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H)
VSPLTW $2, Y1, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
LXVD2X (R17)(CPOOL), SEL1
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB
VSLDOI $12, T2, ADD2, T1 // ADD2 Free // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R18)(CPOOL), SEL2
LXVD2X (R19)(CPOOL), SEL3
LXVD2X (R20)(CPOOL), SEL4
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $1, Y1, YDIG // VREPF
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1
// VMALF X1, YDIG, T1, ADD2
VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H)
VSPLTW $0, Y1, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H
// VMALHF X1, YDIG, ADD2H, ADD4H
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // VSLDB
VSLDOI $12, T2, ADD2, T1 // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R21)(CPOOL), SEL5
LXVD2X (R22)(CPOOL), SEL6
VPERM T0, RED3, SEL5, RED2 // [d1 d0 d1 d0]
VPERM T0, RED3, SEL6, RED1 // [ 0 d1 d0 0]
VSUBUQM RED2, RED1, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
// ---------------------------------------------------
VSPLTISB $0, RED3 // VZERO RED3
VSUBCUQ T0, P0, CAR1 // VSCBIQ
VSUBUQM T0, P0, ADD1H // VSQ
VSUBECUQ T1, P1, CAR1, CAR2 // VSBCBIQ
VSUBEUQM T1, P1, CAR1, ADD2H // VSBIQ
VSUBEUQM T2, RED3, CAR2, T2 // VSBIQ
// what output to use, ADD2H||ADD1H or T1||T0?
VSEL ADD1H, T0, T2, T0
VSEL ADD2H, T1, T2, T1
RET
#undef CPOOL
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef P0
#undef P1
#undef SEL1
#undef SEL2
#undef SEL3
#undef SEL4
#undef SEL5
#undef SEL6
#undef YDIG
#undef ADD1H
#undef ADD2H
#undef ADD3
#undef ADD4
#undef RED1
#undef RED2
#undef RED3
#undef T2
#undef ADD1
#undef ADD2
#undef ADD3H
#undef ADD4H
#undef ZER
#undef CAR1
#undef CAR2
#undef TMP1
#undef TMP2
#define p256SubInternal(T1, T0, X1, X0, Y1, Y0) \
VSPLTISB $0, ZER \ // VZERO
VSUBCUQ X0, Y0, CAR1 \
VSUBUQM X0, Y0, T0 \
VSUBECUQ X1, Y1, CAR1, SEL1 \
VSUBEUQM X1, Y1, CAR1, T1 \
VSUBUQM ZER, SEL1, SEL1 \ // VSQ
\
VADDCUQ T0, PL, CAR1 \ // VACCQ
VADDUQM T0, PL, TT0 \ // VAQ
VADDEUQM T1, PH, CAR1, TT1 \ // VACQ
\
VSEL TT0, T0, SEL1, T0 \
VSEL TT1, T1, SEL1, T1 \
#define p256AddInternal(T1, T0, X1, X0, Y1, Y0) \
VADDCUQ X0, Y0, CAR1 \
VADDUQM X0, Y0, T0 \
VADDECUQ X1, Y1, CAR1, T2 \ // VACCCQ
VADDEUQM X1, Y1, CAR1, T1 \
\
VSPLTISB $0, ZER \
VSUBCUQ T0, PL, CAR1 \ // VSCBIQ
VSUBUQM T0, PL, TT0 \
VSUBECUQ T1, PH, CAR1, CAR2 \ // VSBCBIQ
VSUBEUQM T1, PH, CAR1, TT1 \ // VSBIQ
VSUBEUQM T2, ZER, CAR2, SEL1 \
\
VSEL TT0, T0, SEL1, T0 \
VSEL TT1, T1, SEL1, T1
#define p256HalfInternal(T1, T0, X1, X0) \
VSPLTISB $0, ZER \
VSUBEUQM ZER, ZER, X0, SEL1 \
\
VADDCUQ X0, PL, CAR1 \
VADDUQM X0, PL, T0 \
VADDECUQ X1, PH, CAR1, T2 \
VADDEUQM X1, PH, CAR1, T1 \
\
VSEL T0, X0, SEL1, T0 \
VSEL T1, X1, SEL1, T1 \
VSEL T2, ZER, SEL1, T2 \
\
VSLDOI $15, T2, ZER, TT1 \
VSLDOI $15, T1, ZER, TT0 \
VSPLTISB $1, SEL1 \
VSR T0, SEL1, T0 \ // VSRL
VSR T1, SEL1, T1 \
VSPLTISB $7, SEL1 \ // VREPIB
VSL TT0, SEL1, TT0 \
VSL TT1, SEL1, TT1 \
VOR T0, TT0, T0 \
VOR T1, TT1, T1
#define res_ptr R3
#define x_ptr R4
#define y_ptr R5
#define CPOOL R7
#define TEMP R8
#define N R9
// Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
// Constants
#define P0 V30
#define P1 V31
// func p256MulAsm(res, in1, in2 *p256Element)
TEXT ·p256Mul(SB), NOSPLIT, $0-24
MOVD res+0(FP), res_ptr
MOVD in1+8(FP), x_ptr
MOVD in2+16(FP), y_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $p256mul<>+0x00(SB), CPOOL
LXVD2X (R0)(x_ptr), X0
LXVD2X (R16)(x_ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
LXVD2X (R0)(y_ptr), Y0
LXVD2X (R16)(y_ptr), Y1
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
LXVD2X (R16)(CPOOL), P1
LXVD2X (R0)(CPOOL), P0
CALL p256MulInternal<>(SB)
MOVD $p256mul<>+0x00(SB), CPOOL
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
STXVD2X T0, (R0)(res_ptr)
STXVD2X T1, (R16)(res_ptr)
RET
// func p256Sqr(res, in *p256Element, n int)
TEXT ·p256Sqr(SB), NOSPLIT, $0-24
MOVD res+0(FP), res_ptr
MOVD in+8(FP), x_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $p256mul<>+0x00(SB), CPOOL
LXVD2X (R0)(x_ptr), X0
LXVD2X (R16)(x_ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
sqrLoop:
// Sqr uses same value for both
VOR X0, X0, Y0
VOR X1, X1, Y1
LXVD2X (R16)(CPOOL), P1
LXVD2X (R0)(CPOOL), P0
CALL p256MulInternal<>(SB)
MOVD n+16(FP), N
ADD $-1, N
CMP $0, N
BEQ done
MOVD N, n+16(FP) // Save counter to avoid clobber
VOR T0, T0, X0
VOR T1, T1, X1
BR sqrLoop
done:
MOVD $p256mul<>+0x00(SB), CPOOL
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
STXVD2X T0, (R0)(res_ptr)
STXVD2X T1, (R16)(res_ptr)
RET
#undef res_ptr
#undef x_ptr
#undef y_ptr
#undef CPOOL
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef P0
#undef P1
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define CPOOL R7
// Temporaries in REGs
#define Y2L V15
#define Y2H V16
#define T1L V17
#define T1H V18
#define T2L V19
#define T2H V20
#define T3L V21
#define T3H V22
#define T4L V23
#define T4H V24
// Temps for Sub and Add
#define TT0 V11
#define TT1 V12
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
#define PL V30
#define PH V31
// Names for zero/sel selects
#define X1L V0
#define X1H V1
#define Y1L V2 // p256MulAsmParmY
#define Y1H V3 // p256MulAsmParmY
#define Z1L V4
#define Z1H V5
#define X2L V0
#define X2H V1
#define Z2L V4
#define Z2H V5
#define X3L V17 // T1L
#define X3H V18 // T1H
#define Y3L V21 // T3L
#define Y3H V22 // T3H
#define Z3L V25
#define Z3H V26
#define ZER V6
#define SEL1 V7
#define CAR1 V8
#define CAR2 V9
/* *
* Three operand formula:
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
* T1 = Z1²
* T2 = T1*Z1
* T1 = T1*X2
* T2 = T2*Y2
* T1 = T1-X1
* T2 = T2-Y1
* Z3 = Z1*T1
* T3 = T1²
* T4 = T3*T1
* T3 = T3*X1
* T1 = 2*T3
* X3 = T2²
* X3 = X3-T1
* X3 = X3-T4
* T3 = T3-X3
* T3 = T3*T2
* T4 = T4*Y1
* Y3 = T3-T4
* Three operand formulas, but with MulInternal X,Y used to store temps
X=Z1; Y=Z1; MUL;T- // T1 = Z1² T1
X=T ; Y- ; MUL;T2=T // T2 = T1*Z1 T1 T2
X- ; Y=X2; MUL;T1=T // T1 = T1*X2 T1 T2
X=T2; Y=Y2; MUL;T- // T2 = T2*Y2 T1 T2
SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2
SUB(Y<T1-X1) // T1 = T1-X1 T1 T2
X=Z1; Y- ; MUL;Z3:=T// Z3 = Z1*T1 T2
X=Y; Y- ; MUL;X=T // T3 = T1*T1 T2
X- ; Y- ; MUL;T4=T // T4 = T3*T1 T2 T4
X- ; Y=X1; MUL;T3=T // T3 = T3*X1 T2 T3 T4
ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4
X=T2; Y=T2; MUL;T- // X3 = T2*T2 T1 T2 T3 T4
SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4
SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4
SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4
X- ; Y- ; MUL;T3=T // T3 = T3*T2 T2 T3 T4
X=T4; Y=Y1; MUL;T- // T4 = T4*Y1 T3 T4
SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4
*/
//
// V27 is clobbered by p256MulInternal so must be
// saved in a temp.
//
// func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int)
TEXT ·p256PointAddAffineAsm(SB), NOSPLIT, $16-48
MOVD res+0(FP), P3ptr
MOVD in1+8(FP), P1ptr
MOVD in2+16(FP), P2ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $96, R21
MOVD $112, R22
MOVD $128, R23
MOVD $144, R24
MOVD $160, R25
MOVD $104, R26 // offset of sign+24(FP)
LXVD2X (R16)(CPOOL), PH
LXVD2X (R0)(CPOOL), PL
LXVD2X (R17)(P2ptr), Y2L
LXVD2X (R18)(P2ptr), Y2H
XXPERMDI Y2H, Y2H, $2, Y2H
XXPERMDI Y2L, Y2L, $2, Y2L
// Equivalent of VLREPG sign+24(FP), SEL1
LXVDSX (R1)(R26), SEL1
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSUBCUQ PL, Y2L, CAR1
VSUBUQM PL, Y2L, T1L
VSUBEUQM PH, Y2H, CAR1, T1H
VSEL T1L, Y2L, SEL1, Y2L
VSEL T1H, Y2H, SEL1, Y2H
/* *
* Three operand formula:
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
*/
// X=Z1; Y=Z1; MUL; T- // T1 = Z1² T1
LXVD2X (R19)(P1ptr), X0 // Z1H
LXVD2X (R20)(P1ptr), X1 // Z1L
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y- ; MUL; T2=T // T2 = T1*Z1 T1 T2
VOR T0, T0, X0
VOR T1, T1, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, T2L
VOR T1, T1, T2H
// X- ; Y=X2; MUL; T1=T // T1 = T1*X2 T1 T2
MOVD in2+16(FP), P2ptr
LXVD2X (R0)(P2ptr), Y0 // X2H
LXVD2X (R16)(P2ptr), Y1 // X2L
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T1L
VOR T1, T1, T1H
// X=T2; Y=Y2; MUL; T- // T2 = T2*Y2 T1 T2
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR Y2L, Y2L, Y0
VOR Y2H, Y2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2
MOVD in1+8(FP), P1ptr
LXVD2X (R17)(P1ptr), Y1L
LXVD2X (R18)(P1ptr), Y1H
XXPERMDI Y1H, Y1H, $2, Y1H
XXPERMDI Y1L, Y1L, $2, Y1L
p256SubInternal(T2H,T2L,T1,T0,Y1H,Y1L)
// SUB(Y<T1-X1) // T1 = T1-X1 T1 T2
LXVD2X (R0)(P1ptr), X1L
LXVD2X (R16)(P1ptr), X1H
XXPERMDI X1H, X1H, $2, X1H
XXPERMDI X1L, X1L, $2, X1L
p256SubInternal(Y1,Y0,T1H,T1L,X1H,X1L)
// X=Z1; Y- ; MUL; Z3:=T// Z3 = Z1*T1 T2
LXVD2X (R19)(P1ptr), X0 // Z1H
LXVD2X (R20)(P1ptr), X1 // Z1L
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, Z3L
VOR T1, T1, Z3H
// X=Y; Y- ; MUL; X=T // T3 = T1*T1 T2
VOR Y0, Y0, X0
VOR Y1, Y1, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, X0
VOR T1, T1, X1
// X- ; Y- ; MUL; T4=T // T4 = T3*T1 T2 T4
CALL p256MulInternal<>(SB)
VOR T0, T0, T4L
VOR T1, T1, T4H
// X- ; Y=X1; MUL; T3=T // T3 = T3*X1 T2 T3 T4
MOVD in1+8(FP), P1ptr
LXVD2X (R0)(P1ptr), Y0 // X1H
LXVD2X (R16)(P1ptr), Y1 // X1L
XXPERMDI Y1, Y1, $2, Y1
XXPERMDI Y0, Y0, $2, Y0
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4
p256AddInternal(T1H,T1L, T1,T0,T1,T0)
// X=T2; Y=T2; MUL; T- // X3 = T2*T2 T1 T2 T3 T4
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4 (T1 = X3)
p256SubInternal(T1,T0,T1,T0,T1H,T1L)
// SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4
p256SubInternal(T1,T0,T1,T0,T4H,T4L)
VOR T0, T0, X3L
VOR T1, T1, X3H
// SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4
p256SubInternal(X1,X0,T3H,T3L,T1,T0)
// X- ; Y- ; MUL; T3=T // T3 = T3*T2 T2 T3 T4
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// X=T4; Y=Y1; MUL; T- // T4 = T4*Y1 T3 T4
VOR T4L, T4L, X0
VOR T4H, T4H, X1
MOVD in1+8(FP), P1ptr
LXVD2X (R17)(P1ptr), Y0 // Y1H
LXVD2X (R18)(P1ptr), Y1 // Y1L
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4 (T3 = Y3)
p256SubInternal(Y3H,Y3L,T3H,T3L,T1,T0)
// if (sel == 0) {
// copy(P3.x[:], X1)
// copy(P3.y[:], Y1)
// copy(P3.z[:], Z1)
// }
LXVD2X (R0)(P1ptr), X1L
LXVD2X (R16)(P1ptr), X1H
XXPERMDI X1H, X1H, $2, X1H
XXPERMDI X1L, X1L, $2, X1L
// Y1 already loaded, left over from addition
LXVD2X (R19)(P1ptr), Z1L
LXVD2X (R20)(P1ptr), Z1H
XXPERMDI Z1H, Z1H, $2, Z1H
XXPERMDI Z1L, Z1L, $2, Z1L
MOVD $112, R26 // Get offset to sel+32
LXVDSX (R1)(R26), SEL1
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSEL X3L, X1L, SEL1, X3L
VSEL X3H, X1H, SEL1, X3H
VSEL Y3L, Y1L, SEL1, Y3L
VSEL Y3H, Y1H, SEL1, Y3H
VSEL Z3L, Z1L, SEL1, Z3L
VSEL Z3H, Z1H, SEL1, Z3H
MOVD in2+16(FP), P2ptr
LXVD2X (R0)(P2ptr), X2L
LXVD2X (R16)(P2ptr), X2H
XXPERMDI X2H, X2H, $2, X2H
XXPERMDI X2L, X2L, $2, X2L
// Y2 already loaded
LXVD2X (R23)(CPOOL), Z2L
LXVD2X (R24)(CPOOL), Z2H
MOVD $120, R26 // Get the value from zero+40(FP)
LXVDSX (R1)(R26), SEL1
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSEL X3L, X2L, SEL1, X3L
VSEL X3H, X2H, SEL1, X3H
VSEL Y3L, Y2L, SEL1, Y3L
VSEL Y3H, Y2H, SEL1, Y3H
VSEL Z3L, Z2L, SEL1, Z3L
VSEL Z3H, Z2H, SEL1, Z3H
// Reorder the bytes so they can be stored using STXVD2X.
MOVD res+0(FP), P3ptr
XXPERMDI X3H, X3H, $2, X3H
XXPERMDI X3L, X3L, $2, X3L
XXPERMDI Y3H, Y3H, $2, Y3H
XXPERMDI Y3L, Y3L, $2, Y3L
XXPERMDI Z3H, Z3H, $2, Z3H
XXPERMDI Z3L, Z3L, $2, Z3L
STXVD2X X3L, (R0)(P3ptr)
STXVD2X X3H, (R16)(P3ptr)
STXVD2X Y3L, (R17)(P3ptr)
STXVD2X Y3H, (R18)(P3ptr)
STXVD2X Z3L, (R19)(P3ptr)
STXVD2X Z3H, (R20)(P3ptr)
RET
#undef P3ptr
#undef P1ptr
#undef P2ptr
#undef CPOOL
#undef Y2L
#undef Y2H
#undef T1L
#undef T1H
#undef T2L
#undef T2H
#undef T3L
#undef T3H
#undef T4L
#undef T4H
#undef TT0
#undef TT1
#undef T2
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef PL
#undef PH
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Z2L
#undef Z2H
#undef X3L
#undef X3H
#undef Y3L
#undef Y3H
#undef Z3L
#undef Z3H
#undef ZER
#undef SEL1
#undef CAR1
#undef CAR2
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-projective-3.html
#define P3ptr R3
#define P1ptr R4
#define CPOOL R7
// Temporaries in REGs
#define X3L V15
#define X3H V16
#define Y3L V17
#define Y3H V18
#define T1L V19
#define T1H V20
#define T2L V21
#define T2H V22
#define T3L V23
#define T3H V24
#define X1L V6
#define X1H V7
#define Y1L V8
#define Y1H V9
#define Z1L V10
#define Z1H V11
// Temps for Sub and Add
#define TT0 V11
#define TT1 V12
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
#define PL V30
#define PH V31
#define Z3L V23
#define Z3H V24
#define ZER V26
#define SEL1 V27
#define CAR1 V28
#define CAR2 V29
/*
* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2004-hmv
* Cost: 4M + 4S + 1*half + 5add + 2*2 + 1*3.
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
* A = 3(X₁-Z₁²)×(X₁+Z₁²)
* B = 2Y₁
* Z₃ = B×Z₁
* C = B²
* D = C×X₁
* X₃ = A²-2D
* Y₃ = (D-X₃)×A-C²/2
*
* Three-operand formula:
* T1 = Z1²
* T2 = X1-T1
* T1 = X1+T1
* T2 = T2*T1
* T2 = 3*T2
* Y3 = 2*Y1
* Z3 = Y3*Z1
* Y3 = Y3²
* T3 = Y3*X1
* Y3 = Y3²
* Y3 = half*Y3
* X3 = T2²
* T1 = 2*T3
* X3 = X3-T1
* T1 = T3-X3
* T1 = T1*T2
* Y3 = T1-Y3
*/
// p256PointDoubleAsm(res, in1 *p256Point)
TEXT ·p256PointDoubleAsm(SB), NOSPLIT, $0-16
MOVD res+0(FP), P3ptr
MOVD in+8(FP), P1ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVD2X (R16)(CPOOL), PH
LXVD2X (R0)(CPOOL), PL
// X=Z1; Y=Z1; MUL; T- // T1 = Z1²
LXVD2X (R19)(P1ptr), X0 // Z1H
LXVD2X (R20)(P1ptr), X1 // Z1L
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// SUB(X<X1-T) // T2 = X1-T1
LXVD2X (R0)(P1ptr), X1L
LXVD2X (R16)(P1ptr), X1H
XXPERMDI X1L, X1L, $2, X1L
XXPERMDI X1H, X1H, $2, X1H
p256SubInternal(X1,X0,X1H,X1L,T1,T0)
// ADD(Y<X1+T) // T1 = X1+T1
p256AddInternal(Y1,Y0,X1H,X1L,T1,T0)
// X- ; Y- ; MUL; T- // T2 = T2*T1
CALL p256MulInternal<>(SB)
// ADD(T2<T+T); ADD(T2<T2+T) // T2 = 3*T2
p256AddInternal(T2H,T2L,T1,T0,T1,T0)
p256AddInternal(T2H,T2L,T2H,T2L,T1,T0)
// ADD(X<Y1+Y1) // Y3 = 2*Y1
LXVD2X (R17)(P1ptr), Y1L
LXVD2X (R18)(P1ptr), Y1H
XXPERMDI Y1L, Y1L, $2, Y1L
XXPERMDI Y1H, Y1H, $2, Y1H
p256AddInternal(X1,X0,Y1H,Y1L,Y1H,Y1L)
// X- ; Y=Z1; MUL; Z3:=T // Z3 = Y3*Z1
LXVD2X (R19)(P1ptr), Y0
LXVD2X (R20)(P1ptr), Y1
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
// Leave T0, T1 as is.
XXPERMDI T0, T0, $2, TT0
XXPERMDI T1, T1, $2, TT1
STXVD2X TT0, (R19)(P3ptr)
STXVD2X TT1, (R20)(P3ptr)
// X- ; Y=X ; MUL; T- // Y3 = Y3²
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y=X1; MUL; T3=T // T3 = Y3*X1
VOR T0, T0, X0
VOR T1, T1, X1
LXVD2X (R0)(P1ptr), Y0
LXVD2X (R16)(P1ptr), Y1
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// X- ; Y=X ; MUL; T- // Y3 = Y3²
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// HAL(Y3<T) // Y3 = half*Y3
p256HalfInternal(Y3H,Y3L, T1,T0)
// X=T2; Y=T2; MUL; T- // X3 = T2²
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// ADD(T1<T3+T3) // T1 = 2*T3
p256AddInternal(T1H,T1L,T3H,T3L,T3H,T3L)
// SUB(X3<T-T1) X3:=X3 // X3 = X3-T1
p256SubInternal(X3H,X3L,T1,T0,T1H,T1L)
XXPERMDI X3L, X3L, $2, TT0
XXPERMDI X3H, X3H, $2, TT1
STXVD2X TT0, (R0)(P3ptr)
STXVD2X TT1, (R16)(P3ptr)
// SUB(X<T3-X3) // T1 = T3-X3
p256SubInternal(X1,X0,T3H,T3L,X3H,X3L)
// X- ; Y- ; MUL; T- // T1 = T1*T2
CALL p256MulInternal<>(SB)
// SUB(Y3<T-Y3) // Y3 = T1-Y3
p256SubInternal(Y3H,Y3L,T1,T0,Y3H,Y3L)
XXPERMDI Y3L, Y3L, $2, Y3L
XXPERMDI Y3H, Y3H, $2, Y3H
STXVD2X Y3L, (R17)(P3ptr)
STXVD2X Y3H, (R18)(P3ptr)
RET
#undef P3ptr
#undef P1ptr
#undef CPOOL
#undef X3L
#undef X3H
#undef Y3L
#undef Y3H
#undef T1L
#undef T1H
#undef T2L
#undef T2H
#undef T3L
#undef T3H
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef TT0
#undef TT1
#undef T2
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef PL
#undef PH
#undef Z3L
#undef Z3H
#undef ZER
#undef SEL1
#undef CAR1
#undef CAR2
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define CPOOL R7
#define TRUE R14
#define RES1 R9
#define RES2 R10
// Temporaries in REGs
#define T1L V16
#define T1H V17
#define T2L V18
#define T2H V19
#define U1L V20
#define U1H V21
#define S1L V22
#define S1H V23
#define HL V24
#define HH V25
#define RL V26
#define RH V27
// Temps for Sub and Add
#define ZER V6
#define SEL1 V7
#define CAR1 V8
#define CAR2 V9
#define TT0 V11
#define TT1 V12
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
#define PL V30
#define PH V31
/*
* https://choucroutage.com/Papers/SideChannelAttacks/ctrsa-2011-brown.pdf "Software Implementation of the NIST Elliptic Curves Over Prime Fields"
*
* A = X₁×Z₂²
* B = Y₁×Z₂³
* C = X₂×Z₁²-A
* D = Y₂×Z₁³-B
* X₃ = D² - 2A×C² - C³
* Y₃ = D×(A×C² - X₃) - B×C³
* Z₃ = Z₁×Z₂×C
*
* Three-operand formula (adopted): http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2
* Temp storage: T1,T2,U1,H,Z3=X3=Y3,S1,R
*
* T1 = Z1*Z1
* T2 = Z2*Z2
* U1 = X1*T2
* H = X2*T1
* H = H-U1
* Z3 = Z1*Z2
* Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array
*
* S1 = Z2*T2
* S1 = Y1*S1
* R = Z1*T1
* R = Y2*R
* R = R-S1
*
* T1 = H*H
* T2 = H*T1
* U1 = U1*T1
*
* X3 = R*R
* X3 = X3-T2
* T1 = 2*U1
* X3 = X3-T1 << store-out X3 result reg
*
* T2 = S1*T2
* Y3 = U1-X3
* Y3 = R*Y3
* Y3 = Y3-T2 << store-out Y3 result reg
// X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1
// X- ; Y=T ; MUL; R=T // R = Z1*T1
// X=X2; Y- ; MUL; H=T // H = X2*T1
// X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2
// X- ; Y=T ; MUL; S1=T // S1 = Z2*T2
// X=X1; Y- ; MUL; U1=T // U1 = X1*T2
// SUB(H<H-T) // H = H-U1
// X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2
// X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array
// X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1
// X=Y2; Y=R ; MUL; T- // R = Y2*R
// SUB(R<T-S1) // R = R-S1
// X=H ; Y=H ; MUL; T- // T1 = H*H
// X- ; Y=T ; MUL; T2=T // T2 = H*T1
// X=U1; Y- ; MUL; U1=T // U1 = U1*T1
// X=R ; Y=R ; MUL; T- // X3 = R*R
// SUB(T<T-T2) // X3 = X3-T2
// ADD(X<U1+U1) // T1 = 2*U1
// SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg
// SUB(Y<U1-T) // Y3 = U1-X3
// X=R ; Y- ; MUL; U1=T // Y3 = R*Y3
// X=S1; Y=T2; MUL; T- // T2 = S1*T2
// SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg
*/
// p256PointAddAsm(res, in1, in2 *p256Point)
TEXT ·p256PointAddAsm(SB), NOSPLIT, $16-32
MOVD res+0(FP), P3ptr
MOVD in1+8(FP), P1ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVD2X (R16)(CPOOL), PH
LXVD2X (R0)(CPOOL), PL
// X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1
LXVD2X (R19)(P1ptr), X0 // Z1L
LXVD2X (R20)(P1ptr), X1 // Z1H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; R=T // R = Z1*T1
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, RL // SAVE: RL
VOR T1, T1, RH // SAVE: RH
STXVD2X RH, (R1)(R17) // V27 has to be saved
// X=X2; Y- ; MUL; H=T // H = X2*T1
MOVD in2+16(FP), P2ptr
LXVD2X (R0)(P2ptr), X0 // X2L
LXVD2X (R16)(P2ptr), X1 // X2H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, HL // SAVE: HL
VOR T1, T1, HH // SAVE: HH
// X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2
MOVD in2+16(FP), P2ptr
LXVD2X (R19)(P2ptr), X0 // Z2L
LXVD2X (R20)(P2ptr), X1 // Z2H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; S1=T // S1 = Z2*T2
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, S1L // SAVE: S1L
VOR T1, T1, S1H // SAVE: S1H
// X=X1; Y- ; MUL; U1=T // U1 = X1*T2
MOVD in1+8(FP), P1ptr
LXVD2X (R0)(P1ptr), X0 // X1L
LXVD2X (R16)(P1ptr), X1 // X1H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L // SAVE: U1L
VOR T1, T1, U1H // SAVE: U1H
// SUB(H<H-T) // H = H-U1
p256SubInternal(HH,HL,HH,HL,T1,T0)
// if H == 0 or H^P == 0 then ret=1 else ret=0
// clobbers T1H and T1L
MOVD $1, TRUE
VSPLTISB $0, ZER
VOR HL, HH, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES1
VXOR HL, PL, T1L // SAVE: T1L
VXOR HH, PH, T1H // SAVE: T1H
VOR T1L, T1H, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES2
OR RES2, RES1, RES1
MOVD RES1, ret+24(FP)
// X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2
MOVD in1+8(FP), P1ptr
MOVD in2+16(FP), P2ptr
LXVD2X (R19)(P1ptr), X0 // Z1L
LXVD2X (R20)(P1ptr), X1 // Z1H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
LXVD2X (R19)(P2ptr), Y0 // Z2L
LXVD2X (R20)(P2ptr), Y1 // Z2H
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H
VOR T0, T0, X0
VOR T1, T1, X1
VOR HL, HL, Y0
VOR HH, HH, Y1
CALL p256MulInternal<>(SB)
MOVD res+0(FP), P3ptr
XXPERMDI T1, T1, $2, TT1
XXPERMDI T0, T0, $2, TT0
STXVD2X TT0, (R19)(P3ptr)
STXVD2X TT1, (R20)(P3ptr)
// X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1
MOVD in1+8(FP), P1ptr
LXVD2X (R17)(P1ptr), X0
LXVD2X (R18)(P1ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR S1L, S1L, Y0
VOR S1H, S1H, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, S1L
VOR T1, T1, S1H
// X=Y2; Y=R ; MUL; T- // R = Y2*R
MOVD in2+16(FP), P2ptr
LXVD2X (R17)(P2ptr), X0
LXVD2X (R18)(P2ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR RL, RL, Y0
// VOR RH, RH, Y1 RH was saved above in D2X format
LXVD2X (R1)(R17), Y1
CALL p256MulInternal<>(SB)
// SUB(R<T-S1) // R = T-S1
p256SubInternal(RH,RL,T1,T0,S1H,S1L)
STXVD2X RH, (R1)(R17) // Save RH
// if R == 0 or R^P == 0 then ret=ret else ret=0
// clobbers T1H and T1L
// Redo this using ISEL??
MOVD $1, TRUE
VSPLTISB $0, ZER
VOR RL, RH, T1H
VCMPEQUDCC ZER, T1H, T1H
// 24 = CR6 NE
ISEL $26, R0, TRUE, RES1
VXOR RL, PL, T1L
VXOR RH, PH, T1H // SAVE: T1L
VOR T1L, T1H, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES2
OR RES2, RES1, RES1
MOVD ret+24(FP), RES2
AND RES2, RES1, RES1
MOVD RES1, ret+24(FP)
// X=H ; Y=H ; MUL; T- // T1 = H*H
VOR HL, HL, X0
VOR HH, HH, X1
VOR HL, HL, Y0
VOR HH, HH, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; T2=T // T2 = H*T1
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T2L
VOR T1, T1, T2H
// X=U1; Y- ; MUL; U1=T // U1 = U1*T1
VOR U1L, U1L, X0
VOR U1H, U1H, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L
VOR T1, T1, U1H
// X=R ; Y=R ; MUL; T- // X3 = R*R
VOR RL, RL, X0
// VOR RH, RH, X1
VOR RL, RL, Y0
// RH was saved above using STXVD2X
LXVD2X (R1)(R17), X1
VOR X1, X1, Y1
// VOR RH, RH, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T-T2) // X3 = X3-T2
p256SubInternal(T1,T0,T1,T0,T2H,T2L)
// ADD(X<U1+U1) // T1 = 2*U1
p256AddInternal(X1,X0,U1H,U1L,U1H,U1L)
// SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg
p256SubInternal(T1,T0,T1,T0,X1,X0)
MOVD res+0(FP), P3ptr
XXPERMDI T1, T1, $2, TT1
XXPERMDI T0, T0, $2, TT0
STXVD2X TT0, (R0)(P3ptr)
STXVD2X TT1, (R16)(P3ptr)
// SUB(Y<U1-T) // Y3 = U1-X3
p256SubInternal(Y1,Y0,U1H,U1L,T1,T0)
// X=R ; Y- ; MUL; U1=T // Y3 = R*Y3
VOR RL, RL, X0
// VOR RH, RH, X1
LXVD2X (R1)(R17), X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L
VOR T1, T1, U1H
// X=S1; Y=T2; MUL; T- // T2 = S1*T2
VOR S1L, S1L, X0
VOR S1H, S1H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg
p256SubInternal(T1,T0,U1H,U1L,T1,T0)
MOVD res+0(FP), P3ptr
XXPERMDI T1, T1, $2, TT1
XXPERMDI T0, T0, $2, TT0
STXVD2X TT0, (R17)(P3ptr)
STXVD2X TT1, (R18)(P3ptr)
RET
|