1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/hmac"
"crypto/internal/boring"
"crypto/rc4"
"crypto/sha1"
"crypto/sha256"
"fmt"
"hash"
"internal/cpu"
"runtime"
"golang.org/x/crypto/chacha20poly1305"
)
// CipherSuite is a TLS cipher suite. Note that most functions in this package
// accept and expose cipher suite IDs instead of this type.
type CipherSuite struct {
ID uint16
Name string
// Supported versions is the list of TLS protocol versions that can
// negotiate this cipher suite.
SupportedVersions []uint16
// Insecure is true if the cipher suite has known security issues
// due to its primitives, design, or implementation.
Insecure bool
}
var (
supportedUpToTLS12 = []uint16{VersionTLS10, VersionTLS11, VersionTLS12}
supportedOnlyTLS12 = []uint16{VersionTLS12}
supportedOnlyTLS13 = []uint16{VersionTLS13}
)
// CipherSuites returns a list of cipher suites currently implemented by this
// package, excluding those with security issues, which are returned by
// InsecureCipherSuites.
//
// The list is sorted by ID. Note that the default cipher suites selected by
// this package might depend on logic that can't be captured by a static list,
// and might not match those returned by this function.
func CipherSuites() []*CipherSuite {
return []*CipherSuite{
{TLS_RSA_WITH_AES_128_CBC_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
{TLS_RSA_WITH_AES_256_CBC_SHA, "TLS_RSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
{TLS_RSA_WITH_AES_128_GCM_SHA256, "TLS_RSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
{TLS_RSA_WITH_AES_256_GCM_SHA384, "TLS_RSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
{TLS_AES_128_GCM_SHA256, "TLS_AES_128_GCM_SHA256", supportedOnlyTLS13, false},
{TLS_AES_256_GCM_SHA384, "TLS_AES_256_GCM_SHA384", supportedOnlyTLS13, false},
{TLS_CHACHA20_POLY1305_SHA256, "TLS_CHACHA20_POLY1305_SHA256", supportedOnlyTLS13, false},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", supportedOnlyTLS12, false},
{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256", supportedOnlyTLS12, false},
}
}
// InsecureCipherSuites returns a list of cipher suites currently implemented by
// this package and which have security issues.
//
// Most applications should not use the cipher suites in this list, and should
// only use those returned by CipherSuites.
func InsecureCipherSuites() []*CipherSuite {
// This list includes RC4, CBC_SHA256, and 3DES cipher suites. See
// cipherSuitesPreferenceOrder for details.
return []*CipherSuite{
{TLS_RSA_WITH_RC4_128_SHA, "TLS_RSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
{TLS_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA", supportedUpToTLS12, true},
{TLS_RSA_WITH_AES_128_CBC_SHA256, "TLS_RSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
{TLS_ECDHE_RSA_WITH_RC4_128_SHA, "TLS_ECDHE_RSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA", supportedUpToTLS12, true},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
}
}
// CipherSuiteName returns the standard name for the passed cipher suite ID
// (e.g. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256"), or a fallback representation
// of the ID value if the cipher suite is not implemented by this package.
func CipherSuiteName(id uint16) string {
for _, c := range CipherSuites() {
if c.ID == id {
return c.Name
}
}
for _, c := range InsecureCipherSuites() {
if c.ID == id {
return c.Name
}
}
return fmt.Sprintf("0x%04X", id)
}
const (
// suiteECDHE indicates that the cipher suite involves elliptic curve
// Diffie-Hellman. This means that it should only be selected when the
// client indicates that it supports ECC with a curve and point format
// that we're happy with.
suiteECDHE = 1 << iota
// suiteECSign indicates that the cipher suite involves an ECDSA or
// EdDSA signature and therefore may only be selected when the server's
// certificate is ECDSA or EdDSA. If this is not set then the cipher suite
// is RSA based.
suiteECSign
// suiteTLS12 indicates that the cipher suite should only be advertised
// and accepted when using TLS 1.2.
suiteTLS12
// suiteSHA384 indicates that the cipher suite uses SHA384 as the
// handshake hash.
suiteSHA384
)
// A cipherSuite is a TLS 1.0–1.2 cipher suite, and defines the key exchange
// mechanism, as well as the cipher+MAC pair or the AEAD.
type cipherSuite struct {
id uint16
// the lengths, in bytes, of the key material needed for each component.
keyLen int
macLen int
ivLen int
ka func(version uint16) keyAgreement
// flags is a bitmask of the suite* values, above.
flags int
cipher func(key, iv []byte, isRead bool) any
mac func(key []byte) hash.Hash
aead func(key, fixedNonce []byte) aead
}
var cipherSuites = []*cipherSuite{ // TODO: replace with a map, since the order doesn't matter.
{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, nil, nil, aeadAESGCM},
{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, cipherAES, macSHA256, nil},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherAES, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherAES, macSHA1, nil},
{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
{TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, 0, cipherRC4, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE, cipherRC4, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherRC4, macSHA1, nil},
}
// selectCipherSuite returns the first TLS 1.0–1.2 cipher suite from ids which
// is also in supportedIDs and passes the ok filter.
func selectCipherSuite(ids, supportedIDs []uint16, ok func(*cipherSuite) bool) *cipherSuite {
for _, id := range ids {
candidate := cipherSuiteByID(id)
if candidate == nil || !ok(candidate) {
continue
}
for _, suppID := range supportedIDs {
if id == suppID {
return candidate
}
}
}
return nil
}
// A cipherSuiteTLS13 defines only the pair of the AEAD algorithm and hash
// algorithm to be used with HKDF. See RFC 8446, Appendix B.4.
type cipherSuiteTLS13 struct {
id uint16
keyLen int
aead func(key, fixedNonce []byte) aead
hash crypto.Hash
}
var cipherSuitesTLS13 = []*cipherSuiteTLS13{ // TODO: replace with a map.
{TLS_AES_128_GCM_SHA256, 16, aeadAESGCMTLS13, crypto.SHA256},
{TLS_CHACHA20_POLY1305_SHA256, 32, aeadChaCha20Poly1305, crypto.SHA256},
{TLS_AES_256_GCM_SHA384, 32, aeadAESGCMTLS13, crypto.SHA384},
}
// cipherSuitesPreferenceOrder is the order in which we'll select (on the
// server) or advertise (on the client) TLS 1.0–1.2 cipher suites.
//
// Cipher suites are filtered but not reordered based on the application and
// peer's preferences, meaning we'll never select a suite lower in this list if
// any higher one is available. This makes it more defensible to keep weaker
// cipher suites enabled, especially on the server side where we get the last
// word, since there are no known downgrade attacks on cipher suites selection.
//
// The list is sorted by applying the following priority rules, stopping at the
// first (most important) applicable one:
//
// - Anything else comes before RC4
//
// RC4 has practically exploitable biases. See https://www.rc4nomore.com.
//
// - Anything else comes before CBC_SHA256
//
// SHA-256 variants of the CBC ciphersuites don't implement any Lucky13
// countermeasures. See http://www.isg.rhul.ac.uk/tls/Lucky13.html and
// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
//
// - Anything else comes before 3DES
//
// 3DES has 64-bit blocks, which makes it fundamentally susceptible to
// birthday attacks. See https://sweet32.info.
//
// - ECDHE comes before anything else
//
// Once we got the broken stuff out of the way, the most important
// property a cipher suite can have is forward secrecy. We don't
// implement FFDHE, so that means ECDHE.
//
// - AEADs come before CBC ciphers
//
// Even with Lucky13 countermeasures, MAC-then-Encrypt CBC cipher suites
// are fundamentally fragile, and suffered from an endless sequence of
// padding oracle attacks. See https://eprint.iacr.org/2015/1129,
// https://www.imperialviolet.org/2014/12/08/poodleagain.html, and
// https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites/.
//
// - AES comes before ChaCha20
//
// When AES hardware is available, AES-128-GCM and AES-256-GCM are faster
// than ChaCha20Poly1305.
//
// When AES hardware is not available, AES-128-GCM is one or more of: much
// slower, way more complex, and less safe (because not constant time)
// than ChaCha20Poly1305.
//
// We use this list if we think both peers have AES hardware, and
// cipherSuitesPreferenceOrderNoAES otherwise.
//
// - AES-128 comes before AES-256
//
// The only potential advantages of AES-256 are better multi-target
// margins, and hypothetical post-quantum properties. Neither apply to
// TLS, and AES-256 is slower due to its four extra rounds (which don't
// contribute to the advantages above).
//
// - ECDSA comes before RSA
//
// The relative order of ECDSA and RSA cipher suites doesn't matter,
// as they depend on the certificate. Pick one to get a stable order.
var cipherSuitesPreferenceOrder = []uint16{
// AEADs w/ ECDHE
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
// CBC w/ ECDHE
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
// AEADs w/o ECDHE
TLS_RSA_WITH_AES_128_GCM_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384,
// CBC w/o ECDHE
TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA,
// 3DES
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_3DES_EDE_CBC_SHA,
// CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
// RC4
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_RC4_128_SHA,
}
var cipherSuitesPreferenceOrderNoAES = []uint16{
// ChaCha20Poly1305
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
// AES-GCM w/ ECDHE
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
// The rest of cipherSuitesPreferenceOrder.
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_128_GCM_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_RC4_128_SHA,
}
// disabledCipherSuites are not used unless explicitly listed in
// Config.CipherSuites. They MUST be at the end of cipherSuitesPreferenceOrder.
var disabledCipherSuites = []uint16{
// CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
// RC4
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_RC4_128_SHA,
}
var (
defaultCipherSuitesLen = len(cipherSuitesPreferenceOrder) - len(disabledCipherSuites)
defaultCipherSuites = cipherSuitesPreferenceOrder[:defaultCipherSuitesLen]
)
// defaultCipherSuitesTLS13 is also the preference order, since there are no
// disabled by default TLS 1.3 cipher suites. The same AES vs ChaCha20 logic as
// cipherSuitesPreferenceOrder applies.
var defaultCipherSuitesTLS13 = []uint16{
TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256,
}
var defaultCipherSuitesTLS13NoAES = []uint16{
TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,
}
var (
hasGCMAsmAMD64 = cpu.X86.HasAES && cpu.X86.HasPCLMULQDQ
hasGCMAsmARM64 = cpu.ARM64.HasAES && cpu.ARM64.HasPMULL
// Keep in sync with crypto/aes/cipher_s390x.go.
hasGCMAsmS390X = cpu.S390X.HasAES && cpu.S390X.HasAESCBC && cpu.S390X.HasAESCTR &&
(cpu.S390X.HasGHASH || cpu.S390X.HasAESGCM)
hasAESGCMHardwareSupport = runtime.GOARCH == "amd64" && hasGCMAsmAMD64 ||
runtime.GOARCH == "arm64" && hasGCMAsmARM64 ||
runtime.GOARCH == "s390x" && hasGCMAsmS390X
)
var aesgcmCiphers = map[uint16]bool{
// TLS 1.2
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: true,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: true,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: true,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: true,
// TLS 1.3
TLS_AES_128_GCM_SHA256: true,
TLS_AES_256_GCM_SHA384: true,
}
var nonAESGCMAEADCiphers = map[uint16]bool{
// TLS 1.2
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305: true,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305: true,
// TLS 1.3
TLS_CHACHA20_POLY1305_SHA256: true,
}
// aesgcmPreferred returns whether the first known cipher in the preference list
// is an AES-GCM cipher, implying the peer has hardware support for it.
func aesgcmPreferred(ciphers []uint16) bool {
for _, cID := range ciphers {
if c := cipherSuiteByID(cID); c != nil {
return aesgcmCiphers[cID]
}
if c := cipherSuiteTLS13ByID(cID); c != nil {
return aesgcmCiphers[cID]
}
}
return false
}
func cipherRC4(key, iv []byte, isRead bool) any {
cipher, _ := rc4.NewCipher(key)
return cipher
}
func cipher3DES(key, iv []byte, isRead bool) any {
block, _ := des.NewTripleDESCipher(key)
if isRead {
return cipher.NewCBCDecrypter(block, iv)
}
return cipher.NewCBCEncrypter(block, iv)
}
func cipherAES(key, iv []byte, isRead bool) any {
block, _ := aes.NewCipher(key)
if isRead {
return cipher.NewCBCDecrypter(block, iv)
}
return cipher.NewCBCEncrypter(block, iv)
}
// macSHA1 returns a SHA-1 based constant time MAC.
func macSHA1(key []byte) hash.Hash {
h := sha1.New
// The BoringCrypto SHA1 does not have a constant-time
// checksum function, so don't try to use it.
if !boring.Enabled {
h = newConstantTimeHash(h)
}
return hmac.New(h, key)
}
// macSHA256 returns a SHA-256 based MAC. This is only supported in TLS 1.2 and
// is currently only used in disabled-by-default cipher suites.
func macSHA256(key []byte) hash.Hash {
return hmac.New(sha256.New, key)
}
type aead interface {
cipher.AEAD
// explicitNonceLen returns the number of bytes of explicit nonce
// included in each record. This is eight for older AEADs and
// zero for modern ones.
explicitNonceLen() int
}
const (
aeadNonceLength = 12
noncePrefixLength = 4
)
// prefixNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
// each call.
type prefixNonceAEAD struct {
// nonce contains the fixed part of the nonce in the first four bytes.
nonce [aeadNonceLength]byte
aead cipher.AEAD
}
func (f *prefixNonceAEAD) NonceSize() int { return aeadNonceLength - noncePrefixLength }
func (f *prefixNonceAEAD) Overhead() int { return f.aead.Overhead() }
func (f *prefixNonceAEAD) explicitNonceLen() int { return f.NonceSize() }
func (f *prefixNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
copy(f.nonce[4:], nonce)
return f.aead.Seal(out, f.nonce[:], plaintext, additionalData)
}
func (f *prefixNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
copy(f.nonce[4:], nonce)
return f.aead.Open(out, f.nonce[:], ciphertext, additionalData)
}
// xorNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
// before each call.
type xorNonceAEAD struct {
nonceMask [aeadNonceLength]byte
aead cipher.AEAD
}
func (f *xorNonceAEAD) NonceSize() int { return 8 } // 64-bit sequence number
func (f *xorNonceAEAD) Overhead() int { return f.aead.Overhead() }
func (f *xorNonceAEAD) explicitNonceLen() int { return 0 }
func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData)
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
return result
}
func (f *xorNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
result, err := f.aead.Open(out, f.nonceMask[:], ciphertext, additionalData)
for i, b := range nonce {
f.nonceMask[4+i] ^= b
}
return result, err
}
func aeadAESGCM(key, noncePrefix []byte) aead {
if len(noncePrefix) != noncePrefixLength {
panic("tls: internal error: wrong nonce length")
}
aes, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
var aead cipher.AEAD
if boring.Enabled {
aead, err = boring.NewGCMTLS(aes)
} else {
boring.Unreachable()
aead, err = cipher.NewGCM(aes)
}
if err != nil {
panic(err)
}
ret := &prefixNonceAEAD{aead: aead}
copy(ret.nonce[:], noncePrefix)
return ret
}
func aeadAESGCMTLS13(key, nonceMask []byte) aead {
if len(nonceMask) != aeadNonceLength {
panic("tls: internal error: wrong nonce length")
}
aes, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
aead, err := cipher.NewGCM(aes)
if err != nil {
panic(err)
}
ret := &xorNonceAEAD{aead: aead}
copy(ret.nonceMask[:], nonceMask)
return ret
}
func aeadChaCha20Poly1305(key, nonceMask []byte) aead {
if len(nonceMask) != aeadNonceLength {
panic("tls: internal error: wrong nonce length")
}
aead, err := chacha20poly1305.New(key)
if err != nil {
panic(err)
}
ret := &xorNonceAEAD{aead: aead}
copy(ret.nonceMask[:], nonceMask)
return ret
}
type constantTimeHash interface {
hash.Hash
ConstantTimeSum(b []byte) []byte
}
// cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces
// with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC.
type cthWrapper struct {
h constantTimeHash
}
func (c *cthWrapper) Size() int { return c.h.Size() }
func (c *cthWrapper) BlockSize() int { return c.h.BlockSize() }
func (c *cthWrapper) Reset() { c.h.Reset() }
func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) }
func (c *cthWrapper) Sum(b []byte) []byte { return c.h.ConstantTimeSum(b) }
func newConstantTimeHash(h func() hash.Hash) func() hash.Hash {
boring.Unreachable()
return func() hash.Hash {
return &cthWrapper{h().(constantTimeHash)}
}
}
// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, Section 6.2.3.
func tls10MAC(h hash.Hash, out, seq, header, data, extra []byte) []byte {
h.Reset()
h.Write(seq)
h.Write(header)
h.Write(data)
res := h.Sum(out)
if extra != nil {
h.Write(extra)
}
return res
}
func rsaKA(version uint16) keyAgreement {
return rsaKeyAgreement{}
}
func ecdheECDSAKA(version uint16) keyAgreement {
return &ecdheKeyAgreement{
isRSA: false,
version: version,
}
}
func ecdheRSAKA(version uint16) keyAgreement {
return &ecdheKeyAgreement{
isRSA: true,
version: version,
}
}
// mutualCipherSuite returns a cipherSuite given a list of supported
// ciphersuites and the id requested by the peer.
func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
for _, id := range have {
if id == want {
return cipherSuiteByID(id)
}
}
return nil
}
func cipherSuiteByID(id uint16) *cipherSuite {
for _, cipherSuite := range cipherSuites {
if cipherSuite.id == id {
return cipherSuite
}
}
return nil
}
func mutualCipherSuiteTLS13(have []uint16, want uint16) *cipherSuiteTLS13 {
for _, id := range have {
if id == want {
return cipherSuiteTLS13ByID(id)
}
}
return nil
}
func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13 {
for _, cipherSuite := range cipherSuitesTLS13 {
if cipherSuite.id == id {
return cipherSuite
}
}
return nil
}
// A list of cipher suite IDs that are, or have been, implemented by this
// package.
//
// See https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
const (
// TLS 1.0 - 1.2 cipher suites.
TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c
TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c
TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a
TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca8
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9
// TLS 1.3 cipher suites.
TLS_AES_128_GCM_SHA256 uint16 = 0x1301
TLS_AES_256_GCM_SHA384 uint16 = 0x1302
TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303
// TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
// that the client is doing version fallback. See RFC 7507.
TLS_FALLBACK_SCSV uint16 = 0x5600
// Legacy names for the corresponding cipher suites with the correct _SHA256
// suffix, retained for backward compatibility.
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305 = TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 = TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
)
|