summaryrefslogtreecommitdiffstats
path: root/src/crypto/tls/key_agreement.go
blob: 2c8c5b8d77135906a04c550ce2545c70530079c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tls

import (
	"crypto"
	"crypto/ecdh"
	"crypto/md5"
	"crypto/rsa"
	"crypto/sha1"
	"crypto/x509"
	"errors"
	"fmt"
	"io"
)

// a keyAgreement implements the client and server side of a TLS key agreement
// protocol by generating and processing key exchange messages.
type keyAgreement interface {
	// On the server side, the first two methods are called in order.

	// In the case that the key agreement protocol doesn't use a
	// ServerKeyExchange message, generateServerKeyExchange can return nil,
	// nil.
	generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
	processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)

	// On the client side, the next two methods are called in order.

	// This method may not be called if the server doesn't send a
	// ServerKeyExchange message.
	processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
	generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
}

var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")

// rsaKeyAgreement implements the standard TLS key agreement where the client
// encrypts the pre-master secret to the server's public key.
type rsaKeyAgreement struct{}

func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
	return nil, nil
}

func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
	if len(ckx.ciphertext) < 2 {
		return nil, errClientKeyExchange
	}
	ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
	if ciphertextLen != len(ckx.ciphertext)-2 {
		return nil, errClientKeyExchange
	}
	ciphertext := ckx.ciphertext[2:]

	priv, ok := cert.PrivateKey.(crypto.Decrypter)
	if !ok {
		return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter")
	}
	// Perform constant time RSA PKCS #1 v1.5 decryption
	preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48})
	if err != nil {
		return nil, err
	}
	// We don't check the version number in the premaster secret. For one,
	// by checking it, we would leak information about the validity of the
	// encrypted pre-master secret. Secondly, it provides only a small
	// benefit against a downgrade attack and some implementations send the
	// wrong version anyway. See the discussion at the end of section
	// 7.4.7.1 of RFC 4346.
	return preMasterSecret, nil
}

func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
	return errors.New("tls: unexpected ServerKeyExchange")
}

func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
	preMasterSecret := make([]byte, 48)
	preMasterSecret[0] = byte(clientHello.vers >> 8)
	preMasterSecret[1] = byte(clientHello.vers)
	_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
	if err != nil {
		return nil, nil, err
	}

	rsaKey, ok := cert.PublicKey.(*rsa.PublicKey)
	if !ok {
		return nil, nil, errors.New("tls: server certificate contains incorrect key type for selected ciphersuite")
	}
	encrypted, err := rsa.EncryptPKCS1v15(config.rand(), rsaKey, preMasterSecret)
	if err != nil {
		return nil, nil, err
	}
	ckx := new(clientKeyExchangeMsg)
	ckx.ciphertext = make([]byte, len(encrypted)+2)
	ckx.ciphertext[0] = byte(len(encrypted) >> 8)
	ckx.ciphertext[1] = byte(len(encrypted))
	copy(ckx.ciphertext[2:], encrypted)
	return preMasterSecret, ckx, nil
}

// sha1Hash calculates a SHA1 hash over the given byte slices.
func sha1Hash(slices [][]byte) []byte {
	hsha1 := sha1.New()
	for _, slice := range slices {
		hsha1.Write(slice)
	}
	return hsha1.Sum(nil)
}

// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
// concatenation of an MD5 and SHA1 hash.
func md5SHA1Hash(slices [][]byte) []byte {
	md5sha1 := make([]byte, md5.Size+sha1.Size)
	hmd5 := md5.New()
	for _, slice := range slices {
		hmd5.Write(slice)
	}
	copy(md5sha1, hmd5.Sum(nil))
	copy(md5sha1[md5.Size:], sha1Hash(slices))
	return md5sha1
}

// hashForServerKeyExchange hashes the given slices and returns their digest
// using the given hash function (for >= TLS 1.2) or using a default based on
// the sigType (for earlier TLS versions). For Ed25519 signatures, which don't
// do pre-hashing, it returns the concatenation of the slices.
func hashForServerKeyExchange(sigType uint8, hashFunc crypto.Hash, version uint16, slices ...[]byte) []byte {
	if sigType == signatureEd25519 {
		var signed []byte
		for _, slice := range slices {
			signed = append(signed, slice...)
		}
		return signed
	}
	if version >= VersionTLS12 {
		h := hashFunc.New()
		for _, slice := range slices {
			h.Write(slice)
		}
		digest := h.Sum(nil)
		return digest
	}
	if sigType == signatureECDSA {
		return sha1Hash(slices)
	}
	return md5SHA1Hash(slices)
}

// ecdheKeyAgreement implements a TLS key agreement where the server
// generates an ephemeral EC public/private key pair and signs it. The
// pre-master secret is then calculated using ECDH. The signature may
// be ECDSA, Ed25519 or RSA.
type ecdheKeyAgreement struct {
	version uint16
	isRSA   bool
	key     *ecdh.PrivateKey

	// ckx and preMasterSecret are generated in processServerKeyExchange
	// and returned in generateClientKeyExchange.
	ckx             *clientKeyExchangeMsg
	preMasterSecret []byte
}

func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
	var curveID CurveID
	for _, c := range clientHello.supportedCurves {
		if config.supportsCurve(c) {
			curveID = c
			break
		}
	}

	if curveID == 0 {
		return nil, errors.New("tls: no supported elliptic curves offered")
	}
	if _, ok := curveForCurveID(curveID); !ok {
		return nil, errors.New("tls: CurvePreferences includes unsupported curve")
	}

	key, err := generateECDHEKey(config.rand(), curveID)
	if err != nil {
		return nil, err
	}
	ka.key = key

	// See RFC 4492, Section 5.4.
	ecdhePublic := key.PublicKey().Bytes()
	serverECDHEParams := make([]byte, 1+2+1+len(ecdhePublic))
	serverECDHEParams[0] = 3 // named curve
	serverECDHEParams[1] = byte(curveID >> 8)
	serverECDHEParams[2] = byte(curveID)
	serverECDHEParams[3] = byte(len(ecdhePublic))
	copy(serverECDHEParams[4:], ecdhePublic)

	priv, ok := cert.PrivateKey.(crypto.Signer)
	if !ok {
		return nil, fmt.Errorf("tls: certificate private key of type %T does not implement crypto.Signer", cert.PrivateKey)
	}

	var signatureAlgorithm SignatureScheme
	var sigType uint8
	var sigHash crypto.Hash
	if ka.version >= VersionTLS12 {
		signatureAlgorithm, err = selectSignatureScheme(ka.version, cert, clientHello.supportedSignatureAlgorithms)
		if err != nil {
			return nil, err
		}
		sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
		if err != nil {
			return nil, err
		}
	} else {
		sigType, sigHash, err = legacyTypeAndHashFromPublicKey(priv.Public())
		if err != nil {
			return nil, err
		}
	}
	if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
		return nil, errors.New("tls: certificate cannot be used with the selected cipher suite")
	}

	signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, hello.random, serverECDHEParams)

	signOpts := crypto.SignerOpts(sigHash)
	if sigType == signatureRSAPSS {
		signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
	}
	sig, err := priv.Sign(config.rand(), signed, signOpts)
	if err != nil {
		return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error())
	}

	skx := new(serverKeyExchangeMsg)
	sigAndHashLen := 0
	if ka.version >= VersionTLS12 {
		sigAndHashLen = 2
	}
	skx.key = make([]byte, len(serverECDHEParams)+sigAndHashLen+2+len(sig))
	copy(skx.key, serverECDHEParams)
	k := skx.key[len(serverECDHEParams):]
	if ka.version >= VersionTLS12 {
		k[0] = byte(signatureAlgorithm >> 8)
		k[1] = byte(signatureAlgorithm)
		k = k[2:]
	}
	k[0] = byte(len(sig) >> 8)
	k[1] = byte(len(sig))
	copy(k[2:], sig)

	return skx, nil
}

func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
	if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
		return nil, errClientKeyExchange
	}

	peerKey, err := ka.key.Curve().NewPublicKey(ckx.ciphertext[1:])
	if err != nil {
		return nil, errClientKeyExchange
	}
	preMasterSecret, err := ka.key.ECDH(peerKey)
	if err != nil {
		return nil, errClientKeyExchange
	}

	return preMasterSecret, nil
}

func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
	if len(skx.key) < 4 {
		return errServerKeyExchange
	}
	if skx.key[0] != 3 { // named curve
		return errors.New("tls: server selected unsupported curve")
	}
	curveID := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])

	publicLen := int(skx.key[3])
	if publicLen+4 > len(skx.key) {
		return errServerKeyExchange
	}
	serverECDHEParams := skx.key[:4+publicLen]
	publicKey := serverECDHEParams[4:]

	sig := skx.key[4+publicLen:]
	if len(sig) < 2 {
		return errServerKeyExchange
	}

	if _, ok := curveForCurveID(curveID); !ok {
		return errors.New("tls: server selected unsupported curve")
	}

	key, err := generateECDHEKey(config.rand(), curveID)
	if err != nil {
		return err
	}
	ka.key = key

	peerKey, err := key.Curve().NewPublicKey(publicKey)
	if err != nil {
		return errServerKeyExchange
	}
	ka.preMasterSecret, err = key.ECDH(peerKey)
	if err != nil {
		return errServerKeyExchange
	}

	ourPublicKey := key.PublicKey().Bytes()
	ka.ckx = new(clientKeyExchangeMsg)
	ka.ckx.ciphertext = make([]byte, 1+len(ourPublicKey))
	ka.ckx.ciphertext[0] = byte(len(ourPublicKey))
	copy(ka.ckx.ciphertext[1:], ourPublicKey)

	var sigType uint8
	var sigHash crypto.Hash
	if ka.version >= VersionTLS12 {
		signatureAlgorithm := SignatureScheme(sig[0])<<8 | SignatureScheme(sig[1])
		sig = sig[2:]
		if len(sig) < 2 {
			return errServerKeyExchange
		}

		if !isSupportedSignatureAlgorithm(signatureAlgorithm, clientHello.supportedSignatureAlgorithms) {
			return errors.New("tls: certificate used with invalid signature algorithm")
		}
		sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
		if err != nil {
			return err
		}
	} else {
		sigType, sigHash, err = legacyTypeAndHashFromPublicKey(cert.PublicKey)
		if err != nil {
			return err
		}
	}
	if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
		return errServerKeyExchange
	}

	sigLen := int(sig[0])<<8 | int(sig[1])
	if sigLen+2 != len(sig) {
		return errServerKeyExchange
	}
	sig = sig[2:]

	signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, serverHello.random, serverECDHEParams)
	if err := verifyHandshakeSignature(sigType, cert.PublicKey, sigHash, signed, sig); err != nil {
		return errors.New("tls: invalid signature by the server certificate: " + err.Error())
	}
	return nil
}

func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
	if ka.ckx == nil {
		return nil, nil, errors.New("tls: missing ServerKeyExchange message")
	}

	return ka.preMasterSecret, ka.ckx, nil
}