summaryrefslogtreecommitdiffstats
path: root/src/encoding/json/encode.go
blob: 9d59b0ff2b957f4ea79f3ba96eb822cb59425c0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package json implements encoding and decoding of JSON as defined in
// RFC 7159. The mapping between JSON and Go values is described
// in the documentation for the Marshal and Unmarshal functions.
//
// See "JSON and Go" for an introduction to this package:
// https://golang.org/doc/articles/json_and_go.html
package json

import (
	"bytes"
	"encoding"
	"encoding/base64"
	"fmt"
	"math"
	"reflect"
	"sort"
	"strconv"
	"strings"
	"sync"
	"unicode"
	"unicode/utf8"
)

// Marshal returns the JSON encoding of v.
//
// Marshal traverses the value v recursively.
// If an encountered value implements the Marshaler interface
// and is not a nil pointer, Marshal calls its MarshalJSON method
// to produce JSON. If no MarshalJSON method is present but the
// value implements encoding.TextMarshaler instead, Marshal calls
// its MarshalText method and encodes the result as a JSON string.
// The nil pointer exception is not strictly necessary
// but mimics a similar, necessary exception in the behavior of
// UnmarshalJSON.
//
// Otherwise, Marshal uses the following type-dependent default encodings:
//
// Boolean values encode as JSON booleans.
//
// Floating point, integer, and Number values encode as JSON numbers.
//
// String values encode as JSON strings coerced to valid UTF-8,
// replacing invalid bytes with the Unicode replacement rune.
// So that the JSON will be safe to embed inside HTML <script> tags,
// the string is encoded using HTMLEscape,
// which replaces "<", ">", "&", U+2028, and U+2029 are escaped
// to "\u003c","\u003e", "\u0026", "\u2028", and "\u2029".
// This replacement can be disabled when using an Encoder,
// by calling SetEscapeHTML(false).
//
// Array and slice values encode as JSON arrays, except that
// []byte encodes as a base64-encoded string, and a nil slice
// encodes as the null JSON value.
//
// Struct values encode as JSON objects.
// Each exported struct field becomes a member of the object, using the
// field name as the object key, unless the field is omitted for one of the
// reasons given below.
//
// The encoding of each struct field can be customized by the format string
// stored under the "json" key in the struct field's tag.
// The format string gives the name of the field, possibly followed by a
// comma-separated list of options. The name may be empty in order to
// specify options without overriding the default field name.
//
// The "omitempty" option specifies that the field should be omitted
// from the encoding if the field has an empty value, defined as
// false, 0, a nil pointer, a nil interface value, and any empty array,
// slice, map, or string.
//
// As a special case, if the field tag is "-", the field is always omitted.
// Note that a field with name "-" can still be generated using the tag "-,".
//
// Examples of struct field tags and their meanings:
//
//	// Field appears in JSON as key "myName".
//	Field int `json:"myName"`
//
//	// Field appears in JSON as key "myName" and
//	// the field is omitted from the object if its value is empty,
//	// as defined above.
//	Field int `json:"myName,omitempty"`
//
//	// Field appears in JSON as key "Field" (the default), but
//	// the field is skipped if empty.
//	// Note the leading comma.
//	Field int `json:",omitempty"`
//
//	// Field is ignored by this package.
//	Field int `json:"-"`
//
//	// Field appears in JSON as key "-".
//	Field int `json:"-,"`
//
// The "string" option signals that a field is stored as JSON inside a
// JSON-encoded string. It applies only to fields of string, floating point,
// integer, or boolean types. This extra level of encoding is sometimes used
// when communicating with JavaScript programs:
//
//	Int64String int64 `json:",string"`
//
// The key name will be used if it's a non-empty string consisting of
// only Unicode letters, digits, and ASCII punctuation except quotation
// marks, backslash, and comma.
//
// Anonymous struct fields are usually marshaled as if their inner exported fields
// were fields in the outer struct, subject to the usual Go visibility rules amended
// as described in the next paragraph.
// An anonymous struct field with a name given in its JSON tag is treated as
// having that name, rather than being anonymous.
// An anonymous struct field of interface type is treated the same as having
// that type as its name, rather than being anonymous.
//
// The Go visibility rules for struct fields are amended for JSON when
// deciding which field to marshal or unmarshal. If there are
// multiple fields at the same level, and that level is the least
// nested (and would therefore be the nesting level selected by the
// usual Go rules), the following extra rules apply:
//
// 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
// even if there are multiple untagged fields that would otherwise conflict.
//
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
//
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
//
// Handling of anonymous struct fields is new in Go 1.1.
// Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
// an anonymous struct field in both current and earlier versions, give the field
// a JSON tag of "-".
//
// Map values encode as JSON objects. The map's key type must either be a
// string, an integer type, or implement encoding.TextMarshaler. The map keys
// are sorted and used as JSON object keys by applying the following rules,
// subject to the UTF-8 coercion described for string values above:
//   - keys of any string type are used directly
//   - encoding.TextMarshalers are marshaled
//   - integer keys are converted to strings
//
// Pointer values encode as the value pointed to.
// A nil pointer encodes as the null JSON value.
//
// Interface values encode as the value contained in the interface.
// A nil interface value encodes as the null JSON value.
//
// Channel, complex, and function values cannot be encoded in JSON.
// Attempting to encode such a value causes Marshal to return
// an UnsupportedTypeError.
//
// JSON cannot represent cyclic data structures and Marshal does not
// handle them. Passing cyclic structures to Marshal will result in
// an error.
func Marshal(v any) ([]byte, error) {
	e := newEncodeState()
	defer encodeStatePool.Put(e)

	err := e.marshal(v, encOpts{escapeHTML: true})
	if err != nil {
		return nil, err
	}
	buf := append([]byte(nil), e.Bytes()...)

	return buf, nil
}

// MarshalIndent is like Marshal but applies Indent to format the output.
// Each JSON element in the output will begin on a new line beginning with prefix
// followed by one or more copies of indent according to the indentation nesting.
func MarshalIndent(v any, prefix, indent string) ([]byte, error) {
	b, err := Marshal(v)
	if err != nil {
		return nil, err
	}
	var buf bytes.Buffer
	err = Indent(&buf, b, prefix, indent)
	if err != nil {
		return nil, err
	}
	return buf.Bytes(), nil
}

// HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
// characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
// so that the JSON will be safe to embed inside HTML <script> tags.
// For historical reasons, web browsers don't honor standard HTML
// escaping within <script> tags, so an alternative JSON encoding must
// be used.
func HTMLEscape(dst *bytes.Buffer, src []byte) {
	// The characters can only appear in string literals,
	// so just scan the string one byte at a time.
	start := 0
	for i, c := range src {
		if c == '<' || c == '>' || c == '&' {
			if start < i {
				dst.Write(src[start:i])
			}
			dst.WriteString(`\u00`)
			dst.WriteByte(hex[c>>4])
			dst.WriteByte(hex[c&0xF])
			start = i + 1
		}
		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
			if start < i {
				dst.Write(src[start:i])
			}
			dst.WriteString(`\u202`)
			dst.WriteByte(hex[src[i+2]&0xF])
			start = i + 3
		}
	}
	if start < len(src) {
		dst.Write(src[start:])
	}
}

// Marshaler is the interface implemented by types that
// can marshal themselves into valid JSON.
type Marshaler interface {
	MarshalJSON() ([]byte, error)
}

// An UnsupportedTypeError is returned by Marshal when attempting
// to encode an unsupported value type.
type UnsupportedTypeError struct {
	Type reflect.Type
}

func (e *UnsupportedTypeError) Error() string {
	return "json: unsupported type: " + e.Type.String()
}

// An UnsupportedValueError is returned by Marshal when attempting
// to encode an unsupported value.
type UnsupportedValueError struct {
	Value reflect.Value
	Str   string
}

func (e *UnsupportedValueError) Error() string {
	return "json: unsupported value: " + e.Str
}

// Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
// attempting to encode a string value with invalid UTF-8 sequences.
// As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
// replacing invalid bytes with the Unicode replacement rune U+FFFD.
//
// Deprecated: No longer used; kept for compatibility.
type InvalidUTF8Error struct {
	S string // the whole string value that caused the error
}

func (e *InvalidUTF8Error) Error() string {
	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
}

// A MarshalerError represents an error from calling a MarshalJSON or MarshalText method.
type MarshalerError struct {
	Type       reflect.Type
	Err        error
	sourceFunc string
}

func (e *MarshalerError) Error() string {
	srcFunc := e.sourceFunc
	if srcFunc == "" {
		srcFunc = "MarshalJSON"
	}
	return "json: error calling " + srcFunc +
		" for type " + e.Type.String() +
		": " + e.Err.Error()
}

// Unwrap returns the underlying error.
func (e *MarshalerError) Unwrap() error { return e.Err }

var hex = "0123456789abcdef"

// An encodeState encodes JSON into a bytes.Buffer.
type encodeState struct {
	bytes.Buffer // accumulated output
	scratch      [64]byte

	// Keep track of what pointers we've seen in the current recursive call
	// path, to avoid cycles that could lead to a stack overflow. Only do
	// the relatively expensive map operations if ptrLevel is larger than
	// startDetectingCyclesAfter, so that we skip the work if we're within a
	// reasonable amount of nested pointers deep.
	ptrLevel uint
	ptrSeen  map[any]struct{}
}

const startDetectingCyclesAfter = 1000

var encodeStatePool sync.Pool

func newEncodeState() *encodeState {
	if v := encodeStatePool.Get(); v != nil {
		e := v.(*encodeState)
		e.Reset()
		if len(e.ptrSeen) > 0 {
			panic("ptrEncoder.encode should have emptied ptrSeen via defers")
		}
		e.ptrLevel = 0
		return e
	}
	return &encodeState{ptrSeen: make(map[any]struct{})}
}

// jsonError is an error wrapper type for internal use only.
// Panics with errors are wrapped in jsonError so that the top-level recover
// can distinguish intentional panics from this package.
type jsonError struct{ error }

func (e *encodeState) marshal(v any, opts encOpts) (err error) {
	defer func() {
		if r := recover(); r != nil {
			if je, ok := r.(jsonError); ok {
				err = je.error
			} else {
				panic(r)
			}
		}
	}()
	e.reflectValue(reflect.ValueOf(v), opts)
	return nil
}

// error aborts the encoding by panicking with err wrapped in jsonError.
func (e *encodeState) error(err error) {
	panic(jsonError{err})
}

func isEmptyValue(v reflect.Value) bool {
	switch v.Kind() {
	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
		return v.Len() == 0
	case reflect.Bool:
		return !v.Bool()
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return v.Int() == 0
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		return v.Uint() == 0
	case reflect.Float32, reflect.Float64:
		return v.Float() == 0
	case reflect.Interface, reflect.Pointer:
		return v.IsNil()
	}
	return false
}

func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
	valueEncoder(v)(e, v, opts)
}

type encOpts struct {
	// quoted causes primitive fields to be encoded inside JSON strings.
	quoted bool
	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
	escapeHTML bool
}

type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)

var encoderCache sync.Map // map[reflect.Type]encoderFunc

func valueEncoder(v reflect.Value) encoderFunc {
	if !v.IsValid() {
		return invalidValueEncoder
	}
	return typeEncoder(v.Type())
}

func typeEncoder(t reflect.Type) encoderFunc {
	if fi, ok := encoderCache.Load(t); ok {
		return fi.(encoderFunc)
	}

	// To deal with recursive types, populate the map with an
	// indirect func before we build it. This type waits on the
	// real func (f) to be ready and then calls it. This indirect
	// func is only used for recursive types.
	var (
		wg sync.WaitGroup
		f  encoderFunc
	)
	wg.Add(1)
	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
		wg.Wait()
		f(e, v, opts)
	}))
	if loaded {
		return fi.(encoderFunc)
	}

	// Compute the real encoder and replace the indirect func with it.
	f = newTypeEncoder(t, true)
	wg.Done()
	encoderCache.Store(t, f)
	return f
}

var (
	marshalerType     = reflect.TypeOf((*Marshaler)(nil)).Elem()
	textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
)

// newTypeEncoder constructs an encoderFunc for a type.
// The returned encoder only checks CanAddr when allowAddr is true.
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
	// If we have a non-pointer value whose type implements
	// Marshaler with a value receiver, then we're better off taking
	// the address of the value - otherwise we end up with an
	// allocation as we cast the value to an interface.
	if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(marshalerType) {
		return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
	}
	if t.Implements(marshalerType) {
		return marshalerEncoder
	}
	if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(textMarshalerType) {
		return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
	}
	if t.Implements(textMarshalerType) {
		return textMarshalerEncoder
	}

	switch t.Kind() {
	case reflect.Bool:
		return boolEncoder
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return intEncoder
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		return uintEncoder
	case reflect.Float32:
		return float32Encoder
	case reflect.Float64:
		return float64Encoder
	case reflect.String:
		return stringEncoder
	case reflect.Interface:
		return interfaceEncoder
	case reflect.Struct:
		return newStructEncoder(t)
	case reflect.Map:
		return newMapEncoder(t)
	case reflect.Slice:
		return newSliceEncoder(t)
	case reflect.Array:
		return newArrayEncoder(t)
	case reflect.Pointer:
		return newPtrEncoder(t)
	default:
		return unsupportedTypeEncoder
	}
}

func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
	e.WriteString("null")
}

func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	if v.Kind() == reflect.Pointer && v.IsNil() {
		e.WriteString("null")
		return
	}
	m, ok := v.Interface().(Marshaler)
	if !ok {
		e.WriteString("null")
		return
	}
	b, err := m.MarshalJSON()
	if err == nil {
		// copy JSON into buffer, checking validity.
		err = compact(&e.Buffer, b, opts.escapeHTML)
	}
	if err != nil {
		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
	}
}

func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	va := v.Addr()
	if va.IsNil() {
		e.WriteString("null")
		return
	}
	m := va.Interface().(Marshaler)
	b, err := m.MarshalJSON()
	if err == nil {
		// copy JSON into buffer, checking validity.
		err = compact(&e.Buffer, b, opts.escapeHTML)
	}
	if err != nil {
		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
	}
}

func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	if v.Kind() == reflect.Pointer && v.IsNil() {
		e.WriteString("null")
		return
	}
	m, ok := v.Interface().(encoding.TextMarshaler)
	if !ok {
		e.WriteString("null")
		return
	}
	b, err := m.MarshalText()
	if err != nil {
		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
	}
	e.stringBytes(b, opts.escapeHTML)
}

func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	va := v.Addr()
	if va.IsNil() {
		e.WriteString("null")
		return
	}
	m := va.Interface().(encoding.TextMarshaler)
	b, err := m.MarshalText()
	if err != nil {
		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
	}
	e.stringBytes(b, opts.escapeHTML)
}

func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	if opts.quoted {
		e.WriteByte('"')
	}
	if v.Bool() {
		e.WriteString("true")
	} else {
		e.WriteString("false")
	}
	if opts.quoted {
		e.WriteByte('"')
	}
}

func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
	if opts.quoted {
		e.WriteByte('"')
	}
	e.Write(b)
	if opts.quoted {
		e.WriteByte('"')
	}
}

func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
	if opts.quoted {
		e.WriteByte('"')
	}
	e.Write(b)
	if opts.quoted {
		e.WriteByte('"')
	}
}

type floatEncoder int // number of bits

func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
	f := v.Float()
	if math.IsInf(f, 0) || math.IsNaN(f) {
		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
	}

	// Convert as if by ES6 number to string conversion.
	// This matches most other JSON generators.
	// See golang.org/issue/6384 and golang.org/issue/14135.
	// Like fmt %g, but the exponent cutoffs are different
	// and exponents themselves are not padded to two digits.
	b := e.scratch[:0]
	abs := math.Abs(f)
	fmt := byte('f')
	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
	if abs != 0 {
		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
			fmt = 'e'
		}
	}
	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
	if fmt == 'e' {
		// clean up e-09 to e-9
		n := len(b)
		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
			b[n-2] = b[n-1]
			b = b[:n-1]
		}
	}

	if opts.quoted {
		e.WriteByte('"')
	}
	e.Write(b)
	if opts.quoted {
		e.WriteByte('"')
	}
}

var (
	float32Encoder = (floatEncoder(32)).encode
	float64Encoder = (floatEncoder(64)).encode
)

func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	if v.Type() == numberType {
		numStr := v.String()
		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
		// we keep compatibility so check validity after this.
		if numStr == "" {
			numStr = "0" // Number's zero-val
		}
		if !isValidNumber(numStr) {
			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
		}
		if opts.quoted {
			e.WriteByte('"')
		}
		e.WriteString(numStr)
		if opts.quoted {
			e.WriteByte('"')
		}
		return
	}
	if opts.quoted {
		e2 := newEncodeState()
		// Since we encode the string twice, we only need to escape HTML
		// the first time.
		e2.string(v.String(), opts.escapeHTML)
		e.stringBytes(e2.Bytes(), false)
		encodeStatePool.Put(e2)
	} else {
		e.string(v.String(), opts.escapeHTML)
	}
}

// isValidNumber reports whether s is a valid JSON number literal.
func isValidNumber(s string) bool {
	// This function implements the JSON numbers grammar.
	// See https://tools.ietf.org/html/rfc7159#section-6
	// and https://www.json.org/img/number.png

	if s == "" {
		return false
	}

	// Optional -
	if s[0] == '-' {
		s = s[1:]
		if s == "" {
			return false
		}
	}

	// Digits
	switch {
	default:
		return false

	case s[0] == '0':
		s = s[1:]

	case '1' <= s[0] && s[0] <= '9':
		s = s[1:]
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
			s = s[1:]
		}
	}

	// . followed by 1 or more digits.
	if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' {
		s = s[2:]
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
			s = s[1:]
		}
	}

	// e or E followed by an optional - or + and
	// 1 or more digits.
	if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
		s = s[1:]
		if s[0] == '+' || s[0] == '-' {
			s = s[1:]
			if s == "" {
				return false
			}
		}
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
			s = s[1:]
		}
	}

	// Make sure we are at the end.
	return s == ""
}

func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	e.reflectValue(v.Elem(), opts)
}

func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
	e.error(&UnsupportedTypeError{v.Type()})
}

type structEncoder struct {
	fields structFields
}

type structFields struct {
	list      []field
	nameIndex map[string]int
}

func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
	next := byte('{')
FieldLoop:
	for i := range se.fields.list {
		f := &se.fields.list[i]

		// Find the nested struct field by following f.index.
		fv := v
		for _, i := range f.index {
			if fv.Kind() == reflect.Pointer {
				if fv.IsNil() {
					continue FieldLoop
				}
				fv = fv.Elem()
			}
			fv = fv.Field(i)
		}

		if f.omitEmpty && isEmptyValue(fv) {
			continue
		}
		e.WriteByte(next)
		next = ','
		if opts.escapeHTML {
			e.WriteString(f.nameEscHTML)
		} else {
			e.WriteString(f.nameNonEsc)
		}
		opts.quoted = f.quoted
		f.encoder(e, fv, opts)
	}
	if next == '{' {
		e.WriteString("{}")
	} else {
		e.WriteByte('}')
	}
}

func newStructEncoder(t reflect.Type) encoderFunc {
	se := structEncoder{fields: cachedTypeFields(t)}
	return se.encode
}

type mapEncoder struct {
	elemEnc encoderFunc
}

func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
		// We're a large number of nested ptrEncoder.encode calls deep;
		// start checking if we've run into a pointer cycle.
		ptr := v.UnsafePointer()
		if _, ok := e.ptrSeen[ptr]; ok {
			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
		}
		e.ptrSeen[ptr] = struct{}{}
		defer delete(e.ptrSeen, ptr)
	}
	e.WriteByte('{')

	// Extract and sort the keys.
	sv := make([]reflectWithString, v.Len())
	mi := v.MapRange()
	for i := 0; mi.Next(); i++ {
		sv[i].k = mi.Key()
		sv[i].v = mi.Value()
		if err := sv[i].resolve(); err != nil {
			e.error(fmt.Errorf("json: encoding error for type %q: %q", v.Type().String(), err.Error()))
		}
	}
	sort.Slice(sv, func(i, j int) bool { return sv[i].ks < sv[j].ks })

	for i, kv := range sv {
		if i > 0 {
			e.WriteByte(',')
		}
		e.string(kv.ks, opts.escapeHTML)
		e.WriteByte(':')
		me.elemEnc(e, kv.v, opts)
	}
	e.WriteByte('}')
	e.ptrLevel--
}

func newMapEncoder(t reflect.Type) encoderFunc {
	switch t.Key().Kind() {
	case reflect.String,
		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
	default:
		if !t.Key().Implements(textMarshalerType) {
			return unsupportedTypeEncoder
		}
	}
	me := mapEncoder{typeEncoder(t.Elem())}
	return me.encode
}

func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	s := v.Bytes()
	e.WriteByte('"')
	encodedLen := base64.StdEncoding.EncodedLen(len(s))
	if encodedLen <= len(e.scratch) {
		// If the encoded bytes fit in e.scratch, avoid an extra
		// allocation and use the cheaper Encoding.Encode.
		dst := e.scratch[:encodedLen]
		base64.StdEncoding.Encode(dst, s)
		e.Write(dst)
	} else if encodedLen <= 1024 {
		// The encoded bytes are short enough to allocate for, and
		// Encoding.Encode is still cheaper.
		dst := make([]byte, encodedLen)
		base64.StdEncoding.Encode(dst, s)
		e.Write(dst)
	} else {
		// The encoded bytes are too long to cheaply allocate, and
		// Encoding.Encode is no longer noticeably cheaper.
		enc := base64.NewEncoder(base64.StdEncoding, e)
		enc.Write(s)
		enc.Close()
	}
	e.WriteByte('"')
}

// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
type sliceEncoder struct {
	arrayEnc encoderFunc
}

func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
		// We're a large number of nested ptrEncoder.encode calls deep;
		// start checking if we've run into a pointer cycle.
		// Here we use a struct to memorize the pointer to the first element of the slice
		// and its length.
		ptr := struct {
			ptr interface{} // always an unsafe.Pointer, but avoids a dependency on package unsafe
			len int
		}{v.UnsafePointer(), v.Len()}
		if _, ok := e.ptrSeen[ptr]; ok {
			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
		}
		e.ptrSeen[ptr] = struct{}{}
		defer delete(e.ptrSeen, ptr)
	}
	se.arrayEnc(e, v, opts)
	e.ptrLevel--
}

func newSliceEncoder(t reflect.Type) encoderFunc {
	// Byte slices get special treatment; arrays don't.
	if t.Elem().Kind() == reflect.Uint8 {
		p := reflect.PointerTo(t.Elem())
		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
			return encodeByteSlice
		}
	}
	enc := sliceEncoder{newArrayEncoder(t)}
	return enc.encode
}

type arrayEncoder struct {
	elemEnc encoderFunc
}

func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
	e.WriteByte('[')
	n := v.Len()
	for i := 0; i < n; i++ {
		if i > 0 {
			e.WriteByte(',')
		}
		ae.elemEnc(e, v.Index(i), opts)
	}
	e.WriteByte(']')
}

func newArrayEncoder(t reflect.Type) encoderFunc {
	enc := arrayEncoder{typeEncoder(t.Elem())}
	return enc.encode
}

type ptrEncoder struct {
	elemEnc encoderFunc
}

func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
	if v.IsNil() {
		e.WriteString("null")
		return
	}
	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
		// We're a large number of nested ptrEncoder.encode calls deep;
		// start checking if we've run into a pointer cycle.
		ptr := v.Interface()
		if _, ok := e.ptrSeen[ptr]; ok {
			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
		}
		e.ptrSeen[ptr] = struct{}{}
		defer delete(e.ptrSeen, ptr)
	}
	pe.elemEnc(e, v.Elem(), opts)
	e.ptrLevel--
}

func newPtrEncoder(t reflect.Type) encoderFunc {
	enc := ptrEncoder{typeEncoder(t.Elem())}
	return enc.encode
}

type condAddrEncoder struct {
	canAddrEnc, elseEnc encoderFunc
}

func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
	if v.CanAddr() {
		ce.canAddrEnc(e, v, opts)
	} else {
		ce.elseEnc(e, v, opts)
	}
}

// newCondAddrEncoder returns an encoder that checks whether its value
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
	enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
	return enc.encode
}

func isValidTag(s string) bool {
	if s == "" {
		return false
	}
	for _, c := range s {
		switch {
		case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
			// Backslash and quote chars are reserved, but
			// otherwise any punctuation chars are allowed
			// in a tag name.
		case !unicode.IsLetter(c) && !unicode.IsDigit(c):
			return false
		}
	}
	return true
}

func typeByIndex(t reflect.Type, index []int) reflect.Type {
	for _, i := range index {
		if t.Kind() == reflect.Pointer {
			t = t.Elem()
		}
		t = t.Field(i).Type
	}
	return t
}

type reflectWithString struct {
	k  reflect.Value
	v  reflect.Value
	ks string
}

func (w *reflectWithString) resolve() error {
	if w.k.Kind() == reflect.String {
		w.ks = w.k.String()
		return nil
	}
	if tm, ok := w.k.Interface().(encoding.TextMarshaler); ok {
		if w.k.Kind() == reflect.Pointer && w.k.IsNil() {
			return nil
		}
		buf, err := tm.MarshalText()
		w.ks = string(buf)
		return err
	}
	switch w.k.Kind() {
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		w.ks = strconv.FormatInt(w.k.Int(), 10)
		return nil
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		w.ks = strconv.FormatUint(w.k.Uint(), 10)
		return nil
	}
	panic("unexpected map key type")
}

// NOTE: keep in sync with stringBytes below.
func (e *encodeState) string(s string, escapeHTML bool) {
	e.WriteByte('"')
	start := 0
	for i := 0; i < len(s); {
		if b := s[i]; b < utf8.RuneSelf {
			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
				i++
				continue
			}
			if start < i {
				e.WriteString(s[start:i])
			}
			e.WriteByte('\\')
			switch b {
			case '\\', '"':
				e.WriteByte(b)
			case '\n':
				e.WriteByte('n')
			case '\r':
				e.WriteByte('r')
			case '\t':
				e.WriteByte('t')
			default:
				// This encodes bytes < 0x20 except for \t, \n and \r.
				// If escapeHTML is set, it also escapes <, >, and &
				// because they can lead to security holes when
				// user-controlled strings are rendered into JSON
				// and served to some browsers.
				e.WriteString(`u00`)
				e.WriteByte(hex[b>>4])
				e.WriteByte(hex[b&0xF])
			}
			i++
			start = i
			continue
		}
		c, size := utf8.DecodeRuneInString(s[i:])
		if c == utf8.RuneError && size == 1 {
			if start < i {
				e.WriteString(s[start:i])
			}
			e.WriteString(`\ufffd`)
			i += size
			start = i
			continue
		}
		// U+2028 is LINE SEPARATOR.
		// U+2029 is PARAGRAPH SEPARATOR.
		// They are both technically valid characters in JSON strings,
		// but don't work in JSONP, which has to be evaluated as JavaScript,
		// and can lead to security holes there. It is valid JSON to
		// escape them, so we do so unconditionally.
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
		if c == '\u2028' || c == '\u2029' {
			if start < i {
				e.WriteString(s[start:i])
			}
			e.WriteString(`\u202`)
			e.WriteByte(hex[c&0xF])
			i += size
			start = i
			continue
		}
		i += size
	}
	if start < len(s) {
		e.WriteString(s[start:])
	}
	e.WriteByte('"')
}

// NOTE: keep in sync with string above.
func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
	e.WriteByte('"')
	start := 0
	for i := 0; i < len(s); {
		if b := s[i]; b < utf8.RuneSelf {
			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
				i++
				continue
			}
			if start < i {
				e.Write(s[start:i])
			}
			e.WriteByte('\\')
			switch b {
			case '\\', '"':
				e.WriteByte(b)
			case '\n':
				e.WriteByte('n')
			case '\r':
				e.WriteByte('r')
			case '\t':
				e.WriteByte('t')
			default:
				// This encodes bytes < 0x20 except for \t, \n and \r.
				// If escapeHTML is set, it also escapes <, >, and &
				// because they can lead to security holes when
				// user-controlled strings are rendered into JSON
				// and served to some browsers.
				e.WriteString(`u00`)
				e.WriteByte(hex[b>>4])
				e.WriteByte(hex[b&0xF])
			}
			i++
			start = i
			continue
		}
		c, size := utf8.DecodeRune(s[i:])
		if c == utf8.RuneError && size == 1 {
			if start < i {
				e.Write(s[start:i])
			}
			e.WriteString(`\ufffd`)
			i += size
			start = i
			continue
		}
		// U+2028 is LINE SEPARATOR.
		// U+2029 is PARAGRAPH SEPARATOR.
		// They are both technically valid characters in JSON strings,
		// but don't work in JSONP, which has to be evaluated as JavaScript,
		// and can lead to security holes there. It is valid JSON to
		// escape them, so we do so unconditionally.
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
		if c == '\u2028' || c == '\u2029' {
			if start < i {
				e.Write(s[start:i])
			}
			e.WriteString(`\u202`)
			e.WriteByte(hex[c&0xF])
			i += size
			start = i
			continue
		}
		i += size
	}
	if start < len(s) {
		e.Write(s[start:])
	}
	e.WriteByte('"')
}

// A field represents a single field found in a struct.
type field struct {
	name      string
	nameBytes []byte                 // []byte(name)
	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent

	nameNonEsc  string // `"` + name + `":`
	nameEscHTML string // `"` + HTMLEscape(name) + `":`

	tag       bool
	index     []int
	typ       reflect.Type
	omitEmpty bool
	quoted    bool

	encoder encoderFunc
}

// byIndex sorts field by index sequence.
type byIndex []field

func (x byIndex) Len() int { return len(x) }

func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }

func (x byIndex) Less(i, j int) bool {
	for k, xik := range x[i].index {
		if k >= len(x[j].index) {
			return false
		}
		if xik != x[j].index[k] {
			return xik < x[j].index[k]
		}
	}
	return len(x[i].index) < len(x[j].index)
}

// typeFields returns a list of fields that JSON should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) structFields {
	// Anonymous fields to explore at the current level and the next.
	current := []field{}
	next := []field{{typ: t}}

	// Count of queued names for current level and the next.
	var count, nextCount map[reflect.Type]int

	// Types already visited at an earlier level.
	visited := map[reflect.Type]bool{}

	// Fields found.
	var fields []field

	// Buffer to run HTMLEscape on field names.
	var nameEscBuf bytes.Buffer

	for len(next) > 0 {
		current, next = next, current[:0]
		count, nextCount = nextCount, map[reflect.Type]int{}

		for _, f := range current {
			if visited[f.typ] {
				continue
			}
			visited[f.typ] = true

			// Scan f.typ for fields to include.
			for i := 0; i < f.typ.NumField(); i++ {
				sf := f.typ.Field(i)
				if sf.Anonymous {
					t := sf.Type
					if t.Kind() == reflect.Pointer {
						t = t.Elem()
					}
					if !sf.IsExported() && t.Kind() != reflect.Struct {
						// Ignore embedded fields of unexported non-struct types.
						continue
					}
					// Do not ignore embedded fields of unexported struct types
					// since they may have exported fields.
				} else if !sf.IsExported() {
					// Ignore unexported non-embedded fields.
					continue
				}
				tag := sf.Tag.Get("json")
				if tag == "-" {
					continue
				}
				name, opts := parseTag(tag)
				if !isValidTag(name) {
					name = ""
				}
				index := make([]int, len(f.index)+1)
				copy(index, f.index)
				index[len(f.index)] = i

				ft := sf.Type
				if ft.Name() == "" && ft.Kind() == reflect.Pointer {
					// Follow pointer.
					ft = ft.Elem()
				}

				// Only strings, floats, integers, and booleans can be quoted.
				quoted := false
				if opts.Contains("string") {
					switch ft.Kind() {
					case reflect.Bool,
						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
						reflect.Float32, reflect.Float64,
						reflect.String:
						quoted = true
					}
				}

				// Record found field and index sequence.
				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
					tagged := name != ""
					if name == "" {
						name = sf.Name
					}
					field := field{
						name:      name,
						tag:       tagged,
						index:     index,
						typ:       ft,
						omitEmpty: opts.Contains("omitempty"),
						quoted:    quoted,
					}
					field.nameBytes = []byte(field.name)
					field.equalFold = foldFunc(field.nameBytes)

					// Build nameEscHTML and nameNonEsc ahead of time.
					nameEscBuf.Reset()
					nameEscBuf.WriteString(`"`)
					HTMLEscape(&nameEscBuf, field.nameBytes)
					nameEscBuf.WriteString(`":`)
					field.nameEscHTML = nameEscBuf.String()
					field.nameNonEsc = `"` + field.name + `":`

					fields = append(fields, field)
					if count[f.typ] > 1 {
						// If there were multiple instances, add a second,
						// so that the annihilation code will see a duplicate.
						// It only cares about the distinction between 1 or 2,
						// so don't bother generating any more copies.
						fields = append(fields, fields[len(fields)-1])
					}
					continue
				}

				// Record new anonymous struct to explore in next round.
				nextCount[ft]++
				if nextCount[ft] == 1 {
					next = append(next, field{name: ft.Name(), index: index, typ: ft})
				}
			}
		}
	}

	sort.Slice(fields, func(i, j int) bool {
		x := fields
		// sort field by name, breaking ties with depth, then
		// breaking ties with "name came from json tag", then
		// breaking ties with index sequence.
		if x[i].name != x[j].name {
			return x[i].name < x[j].name
		}
		if len(x[i].index) != len(x[j].index) {
			return len(x[i].index) < len(x[j].index)
		}
		if x[i].tag != x[j].tag {
			return x[i].tag
		}
		return byIndex(x).Less(i, j)
	})

	// Delete all fields that are hidden by the Go rules for embedded fields,
	// except that fields with JSON tags are promoted.

	// The fields are sorted in primary order of name, secondary order
	// of field index length. Loop over names; for each name, delete
	// hidden fields by choosing the one dominant field that survives.
	out := fields[:0]
	for advance, i := 0, 0; i < len(fields); i += advance {
		// One iteration per name.
		// Find the sequence of fields with the name of this first field.
		fi := fields[i]
		name := fi.name
		for advance = 1; i+advance < len(fields); advance++ {
			fj := fields[i+advance]
			if fj.name != name {
				break
			}
		}
		if advance == 1 { // Only one field with this name
			out = append(out, fi)
			continue
		}
		dominant, ok := dominantField(fields[i : i+advance])
		if ok {
			out = append(out, dominant)
		}
	}

	fields = out
	sort.Sort(byIndex(fields))

	for i := range fields {
		f := &fields[i]
		f.encoder = typeEncoder(typeByIndex(t, f.index))
	}
	nameIndex := make(map[string]int, len(fields))
	for i, field := range fields {
		nameIndex[field.name] = i
	}
	return structFields{fields, nameIndex}
}

// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// JSON tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
	// The fields are sorted in increasing index-length order, then by presence of tag.
	// That means that the first field is the dominant one. We need only check
	// for error cases: two fields at top level, either both tagged or neither tagged.
	if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
		return field{}, false
	}
	return fields[0], true
}

var fieldCache sync.Map // map[reflect.Type]structFields

// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) structFields {
	if f, ok := fieldCache.Load(t); ok {
		return f.(structFields)
	}
	f, _ := fieldCache.LoadOrStore(t, typeFields(t))
	return f.(structFields)
}