1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Copyright 2021 The Go Authors. All rights reserved.
// (above line required for our license-header checker)
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package community_test
import (
"fmt"
"log"
"sort"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/graph/community"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/simple"
)
func ExampleProfile_simple() {
// Profile calls Modularize which implements the Louvain modularization algorithm.
// Since this is a randomized algorithm we use a defined random source to ensure
// consistency between test runs. In practice, results will not differ greatly
// between runs with different PRNG seeds.
src := rand.NewSource(1)
// Create dumbell graph:
//
// 0 4
// |\ /|
// | 2 - 3 |
// |/ \|
// 1 5
//
g := simple.NewUndirectedGraph()
for u, e := range smallDumbell {
for v := range e {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v)})
}
}
// Get the profile of internal node weight for resolutions
// between 0.1 and 10 using logarithmic bisection.
p, err := community.Profile(
community.ModularScore(g, community.Weight, 10, src),
true, 1e-3, 0.1, 10,
)
if err != nil {
log.Fatal(err)
}
// Print out each step with communities ordered.
for _, d := range p {
comm := d.Communities()
for _, c := range comm {
sort.Sort(ordered.ByID(c))
}
sort.Sort(ordered.BySliceIDs(comm))
fmt.Printf("Low:%.2v High:%.2v Score:%v Communities:%v Q=%.3v\n",
d.Low, d.High, d.Score, comm, community.Q(g, comm, d.Low))
}
// Output:
// Low:0.1 High:0.29 Score:14 Communities:[[0 1 2 3 4 5]] Q=0.9
// Low:0.29 High:2.3 Score:12 Communities:[[0 1 2] [3 4 5]] Q=0.714
// Low:2.3 High:3.5 Score:4 Communities:[[0 1] [2] [3] [4 5]] Q=-0.31
// Low:3.5 High:10 Score:0 Communities:[[0] [1] [2] [3] [4] [5]] Q=-0.607
}
// intset is an integer set.
type intset map[int]struct{}
func linksTo(i ...int) intset {
if len(i) == 0 {
return nil
}
s := make(intset)
for _, v := range i {
s[v] = struct{}{}
}
return s
}
var (
smallDumbell = []intset{
0: linksTo(1, 2),
1: linksTo(2),
2: linksTo(3),
3: linksTo(4, 5),
4: linksTo(5),
5: nil,
}
// http://www.slate.com/blogs/the_world_/2014/07/17/the_middle_east_friendship_chart.html
middleEast = struct{ friends, complicated, enemies []intset }{
// green cells
friends: []intset{
0: nil,
1: linksTo(5, 7, 9, 12),
2: linksTo(11),
3: linksTo(4, 5, 10),
4: linksTo(3, 5, 10),
5: linksTo(1, 3, 4, 8, 10, 12),
6: nil,
7: linksTo(1, 12),
8: linksTo(5, 9, 11),
9: linksTo(1, 8, 12),
10: linksTo(3, 4, 5),
11: linksTo(2, 8),
12: linksTo(1, 5, 7, 9),
},
// yellow cells
complicated: []intset{
0: linksTo(2, 4),
1: linksTo(4, 8),
2: linksTo(0, 3, 4, 5, 8, 9),
3: linksTo(2, 8, 11),
4: linksTo(0, 1, 2, 8),
5: linksTo(2),
6: nil,
7: linksTo(9, 11),
8: linksTo(1, 2, 3, 4, 10, 12),
9: linksTo(2, 7, 11),
10: linksTo(8),
11: linksTo(3, 7, 9, 12),
12: linksTo(8, 11),
},
// red cells
enemies: []intset{
0: linksTo(1, 3, 5, 6, 7, 8, 9, 10, 11, 12),
1: linksTo(0, 2, 3, 6, 10, 11),
2: linksTo(1, 6, 7, 10, 12),
3: linksTo(0, 1, 6, 7, 9, 12),
4: linksTo(6, 7, 9, 11, 12),
5: linksTo(0, 6, 7, 9, 11),
6: linksTo(0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12),
7: linksTo(0, 2, 3, 4, 5, 6, 8, 10),
8: linksTo(0, 6, 7),
9: linksTo(0, 3, 4, 5, 6, 10),
10: linksTo(0, 1, 2, 6, 7, 9, 11, 12),
11: linksTo(0, 1, 4, 5, 6, 10),
12: linksTo(0, 2, 3, 4, 6, 10),
},
}
)
var friends, enemies *simple.WeightedUndirectedGraph
func init() {
friends = simple.NewWeightedUndirectedGraph(0, 0)
for u, e := range middleEast.friends {
// Ensure unconnected nodes are included.
if friends.Node(int64(u)) == nil {
friends.AddNode(simple.Node(u))
}
for v := range e {
friends.SetWeightedEdge(simple.WeightedEdge{F: simple.Node(u), T: simple.Node(v), W: 1})
}
}
enemies = simple.NewWeightedUndirectedGraph(0, 0)
for u, e := range middleEast.enemies {
// Ensure unconnected nodes are included.
if enemies.Node(int64(u)) == nil {
enemies.AddNode(simple.Node(u))
}
for v := range e {
enemies.SetWeightedEdge(simple.WeightedEdge{F: simple.Node(u), T: simple.Node(v), W: -1})
}
}
}
func ExampleProfile_multiplex() {
// Profile calls ModularizeMultiplex which implements the Louvain modularization
// algorithm. Since this is a randomized algorithm we use a defined random source
// to ensure consistency between test runs. In practice, results will not differ
// greatly between runs with different PRNG seeds.
src := rand.NewSource(1)
// The undirected graphs, friends and enemies, are the political relationships
// in the Middle East as described in the Slate article:
// http://www.slate.com/blogs/the_world_/2014/07/17/the_middle_east_friendship_chart.html
g, err := community.NewUndirectedLayers(friends, enemies)
if err != nil {
log.Fatal(err)
}
weights := []float64{1, -1}
// Get the profile of internal node weight for resolutions
// between 0.1 and 10 using logarithmic bisection.
p, err := community.Profile(
community.ModularMultiplexScore(g, weights, true, community.WeightMultiplex, 10, src),
true, 1e-3, 0.1, 10,
)
if err != nil {
log.Fatal(err)
}
// Print out each step with communities ordered.
for _, d := range p {
comm := d.Communities()
for _, c := range comm {
sort.Sort(ordered.ByID(c))
}
sort.Sort(ordered.BySliceIDs(comm))
fmt.Printf("Low:%.2v High:%.2v Score:%v Communities:%v Q=%.3v\n",
d.Low, d.High, d.Score, comm, community.QMultiplex(g, comm, weights, []float64{d.Low}))
}
// Output:
// Low:0.1 High:0.72 Score:26 Communities:[[0] [1 7 9 12] [2 8 11] [3 4 5 10] [6]] Q=[24.7 1.97]
// Low:0.72 High:1.1 Score:24 Communities:[[0 6] [1 7 9 12] [2 8 11] [3 4 5 10]] Q=[16.9 14.1]
// Low:1.1 High:1.2 Score:18 Communities:[[0 2 6 11] [1 7 9 12] [3 4 5 8 10]] Q=[9.16 25.1]
// Low:1.2 High:1.6 Score:10 Communities:[[0 3 4 5 6 10] [1 7 9 12] [2 8 11]] Q=[10.5 26.7]
// Low:1.6 High:1.6 Score:8 Communities:[[0 1 6 7 9 12] [2 8 11] [3 4 5 10]] Q=[5.56 39.8]
// Low:1.6 High:1.8 Score:2 Communities:[[0 2 3 4 5 6 10] [1 7 8 9 11 12]] Q=[-1.82 48.6]
// Low:1.8 High:2.3 Score:-6 Communities:[[0 2 3 4 5 6 8 10 11] [1 7 9 12]] Q=[-5 57.5]
// Low:2.3 High:2.4 Score:-10 Communities:[[0 1 2 6 7 8 9 11 12] [3 4 5 10]] Q=[-11.2 79]
// Low:2.4 High:4.3 Score:-52 Communities:[[0 1 2 3 4 5 6 7 8 9 10 11 12]] Q=[-46.1 117]
// Low:4.3 High:10 Score:-54 Communities:[[0 1 2 3 4 6 7 8 9 10 11 12] [5]] Q=[-82 254]
}
|