summaryrefslogtreecommitdiffstats
path: root/src/go/doc/testdata/examples/issue43658.golden
blob: 5200d14584f92c696236d41eab73b83261a25076 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
-- Profile_simple.Play --
package main

import (
	"fmt"
	"log"
	"sort"

	"golang.org/x/exp/rand"

	"gonum.org/v1/gonum/graph/community"
	"gonum.org/v1/gonum/graph/internal/ordered"
	"gonum.org/v1/gonum/graph/simple"
)

func main() {
	// Profile calls Modularize which implements the Louvain modularization algorithm.
	// Since this is a randomized algorithm we use a defined random source to ensure
	// consistency between test runs. In practice, results will not differ greatly
	// between runs with different PRNG seeds.
	src := rand.NewSource(1)

	// Create dumbell graph:
	//
	//  0       4
	//  |\     /|
	//  | 2 - 3 |
	//  |/     \|
	//  1       5
	//
	g := simple.NewUndirectedGraph()
	for u, e := range smallDumbell {
		for v := range e {
			g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v)})
		}
	}

	// Get the profile of internal node weight for resolutions
	// between 0.1 and 10 using logarithmic bisection.
	p, err := community.Profile(
		community.ModularScore(g, community.Weight, 10, src),
		true, 1e-3, 0.1, 10,
	)
	if err != nil {
		log.Fatal(err)
	}

	// Print out each step with communities ordered.
	for _, d := range p {
		comm := d.Communities()
		for _, c := range comm {
			sort.Sort(ordered.ByID(c))
		}
		sort.Sort(ordered.BySliceIDs(comm))
		fmt.Printf("Low:%.2v High:%.2v Score:%v Communities:%v Q=%.3v\n",
			d.Low, d.High, d.Score, comm, community.Q(g, comm, d.Low))
	}

}

// intset is an integer set.
type intset map[int]struct{}

func linksTo(i ...int) intset {
	if len(i) == 0 {
		return nil
	}
	s := make(intset)
	for _, v := range i {
		s[v] = struct{}{}
	}
	return s
}

var smallDumbell = []intset{
	0: linksTo(1, 2),
	1: linksTo(2),
	2: linksTo(3),
	3: linksTo(4, 5),
	4: linksTo(5),
	5: nil,
}

-- Profile_simple.Output --
Low:0.1 High:0.29 Score:14 Communities:[[0 1 2 3 4 5]] Q=0.9
Low:0.29 High:2.3 Score:12 Communities:[[0 1 2] [3 4 5]] Q=0.714
Low:2.3 High:3.5 Score:4 Communities:[[0 1] [2] [3] [4 5]] Q=-0.31
Low:3.5 High:10 Score:0 Communities:[[0] [1] [2] [3] [4] [5]] Q=-0.607

-- Profile_multiplex.Play --

package main

import (
	"fmt"
	"log"
	"sort"

	"golang.org/x/exp/rand"

	"gonum.org/v1/gonum/graph/community"
	"gonum.org/v1/gonum/graph/internal/ordered"
	"gonum.org/v1/gonum/graph/simple"
)

var friends, enemies *simple.WeightedUndirectedGraph

func main() {
	// Profile calls ModularizeMultiplex which implements the Louvain modularization
	// algorithm. Since this is a randomized algorithm we use a defined random source
	// to ensure consistency between test runs. In practice, results will not differ
	// greatly between runs with different PRNG seeds.
	src := rand.NewSource(1)

	// The undirected graphs, friends and enemies, are the political relationships
	// in the Middle East as described in the Slate article:
	// http://www.slate.com/blogs/the_world_/2014/07/17/the_middle_east_friendship_chart.html
	g, err := community.NewUndirectedLayers(friends, enemies)
	if err != nil {
		log.Fatal(err)
	}
	weights := []float64{1, -1}

	// Get the profile of internal node weight for resolutions
	// between 0.1 and 10 using logarithmic bisection.
	p, err := community.Profile(
		community.ModularMultiplexScore(g, weights, true, community.WeightMultiplex, 10, src),
		true, 1e-3, 0.1, 10,
	)
	if err != nil {
		log.Fatal(err)
	}

	// Print out each step with communities ordered.
	for _, d := range p {
		comm := d.Communities()
		for _, c := range comm {
			sort.Sort(ordered.ByID(c))
		}
		sort.Sort(ordered.BySliceIDs(comm))
		fmt.Printf("Low:%.2v High:%.2v Score:%v Communities:%v Q=%.3v\n",
			d.Low, d.High, d.Score, comm, community.QMultiplex(g, comm, weights, []float64{d.Low}))
	}

}
-- Profile_multiplex.Output --
Low:0.1 High:0.72 Score:26 Communities:[[0] [1 7 9 12] [2 8 11] [3 4 5 10] [6]] Q=[24.7 1.97]
Low:0.72 High:1.1 Score:24 Communities:[[0 6] [1 7 9 12] [2 8 11] [3 4 5 10]] Q=[16.9 14.1]
Low:1.1 High:1.2 Score:18 Communities:[[0 2 6 11] [1 7 9 12] [3 4 5 8 10]] Q=[9.16 25.1]
Low:1.2 High:1.6 Score:10 Communities:[[0 3 4 5 6 10] [1 7 9 12] [2 8 11]] Q=[10.5 26.7]
Low:1.6 High:1.6 Score:8 Communities:[[0 1 6 7 9 12] [2 8 11] [3 4 5 10]] Q=[5.56 39.8]
Low:1.6 High:1.8 Score:2 Communities:[[0 2 3 4 5 6 10] [1 7 8 9 11 12]] Q=[-1.82 48.6]
Low:1.8 High:2.3 Score:-6 Communities:[[0 2 3 4 5 6 8 10 11] [1 7 9 12]] Q=[-5 57.5]
Low:2.3 High:2.4 Score:-10 Communities:[[0 1 2 6 7 8 9 11 12] [3 4 5 10]] Q=[-11.2 79]
Low:2.4 High:4.3 Score:-52 Communities:[[0 1 2 3 4 5 6 7 8 9 10 11 12]] Q=[-46.1 117]
Low:4.3 High:10 Score:-54 Communities:[[0 1 2 3 4 6 7 8 9 10 11 12] [5]] Q=[-82 254]