1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package maphash provides hash functions on byte sequences.
// These hash functions are intended to be used to implement hash tables or
// other data structures that need to map arbitrary strings or byte
// sequences to a uniform distribution on unsigned 64-bit integers.
// Each different instance of a hash table or data structure should use its own Seed.
//
// The hash functions are not cryptographically secure.
// (See crypto/sha256 and crypto/sha512 for cryptographic use.)
package maphash
import (
"unsafe"
)
// A Seed is a random value that selects the specific hash function
// computed by a Hash. If two Hashes use the same Seeds, they
// will compute the same hash values for any given input.
// If two Hashes use different Seeds, they are very likely to compute
// distinct hash values for any given input.
//
// A Seed must be initialized by calling MakeSeed.
// The zero seed is uninitialized and not valid for use with Hash's SetSeed method.
//
// Each Seed value is local to a single process and cannot be serialized
// or otherwise recreated in a different process.
type Seed struct {
s uint64
}
// Bytes returns the hash of b with the given seed.
//
// Bytes is equivalent to, but more convenient and efficient than:
//
// var h Hash
// h.SetSeed(seed)
// h.Write(b)
// return h.Sum64()
func Bytes(seed Seed, b []byte) uint64 {
state := seed.s
if state == 0 {
panic("maphash: use of uninitialized Seed")
}
if len(b) == 0 {
return rthash(nil, 0, state) // avoid &b[0] index panic below
}
if len(b) > bufSize {
b = b[:len(b):len(b)] // merge len and cap calculations when reslicing
for len(b) > bufSize {
state = rthash(&b[0], bufSize, state)
b = b[bufSize:]
}
}
return rthash(&b[0], len(b), state)
}
// String returns the hash of s with the given seed.
//
// String is equivalent to, but more convenient and efficient than:
//
// var h Hash
// h.SetSeed(seed)
// h.WriteString(s)
// return h.Sum64()
func String(seed Seed, s string) uint64 {
state := seed.s
if state == 0 {
panic("maphash: use of uninitialized Seed")
}
for len(s) > bufSize {
p := (*byte)(unsafe.StringData(s))
state = rthash(p, bufSize, state)
s = s[bufSize:]
}
p := (*byte)(unsafe.StringData(s))
return rthash(p, len(s), state)
}
// A Hash computes a seeded hash of a byte sequence.
//
// The zero Hash is a valid Hash ready to use.
// A zero Hash chooses a random seed for itself during
// the first call to a Reset, Write, Seed, or Sum64 method.
// For control over the seed, use SetSeed.
//
// The computed hash values depend only on the initial seed and
// the sequence of bytes provided to the Hash object, not on the way
// in which the bytes are provided. For example, the three sequences
//
// h.Write([]byte{'f','o','o'})
// h.WriteByte('f'); h.WriteByte('o'); h.WriteByte('o')
// h.WriteString("foo")
//
// all have the same effect.
//
// Hashes are intended to be collision-resistant, even for situations
// where an adversary controls the byte sequences being hashed.
//
// A Hash is not safe for concurrent use by multiple goroutines, but a Seed is.
// If multiple goroutines must compute the same seeded hash,
// each can declare its own Hash and call SetSeed with a common Seed.
type Hash struct {
_ [0]func() // not comparable
seed Seed // initial seed used for this hash
state Seed // current hash of all flushed bytes
buf [bufSize]byte // unflushed byte buffer
n int // number of unflushed bytes
}
// bufSize is the size of the Hash write buffer.
// The buffer ensures that writes depend only on the sequence of bytes,
// not the sequence of WriteByte/Write/WriteString calls,
// by always calling rthash with a full buffer (except for the tail).
const bufSize = 128
// initSeed seeds the hash if necessary.
// initSeed is called lazily before any operation that actually uses h.seed/h.state.
// Note that this does not include Write/WriteByte/WriteString in the case
// where they only add to h.buf. (If they write too much, they call h.flush,
// which does call h.initSeed.)
func (h *Hash) initSeed() {
if h.seed.s == 0 {
seed := MakeSeed()
h.seed = seed
h.state = seed
}
}
// WriteByte adds b to the sequence of bytes hashed by h.
// It never fails; the error result is for implementing io.ByteWriter.
func (h *Hash) WriteByte(b byte) error {
if h.n == len(h.buf) {
h.flush()
}
h.buf[h.n] = b
h.n++
return nil
}
// Write adds b to the sequence of bytes hashed by h.
// It always writes all of b and never fails; the count and error result are for implementing io.Writer.
func (h *Hash) Write(b []byte) (int, error) {
size := len(b)
// Deal with bytes left over in h.buf.
// h.n <= bufSize is always true.
// Checking it is ~free and it lets the compiler eliminate a bounds check.
if h.n > 0 && h.n <= bufSize {
k := copy(h.buf[h.n:], b)
h.n += k
if h.n < bufSize {
// Copied the entirety of b to h.buf.
return size, nil
}
b = b[k:]
h.flush()
// No need to set h.n = 0 here; it happens just before exit.
}
// Process as many full buffers as possible, without copying, and calling initSeed only once.
if len(b) > bufSize {
h.initSeed()
for len(b) > bufSize {
h.state.s = rthash(&b[0], bufSize, h.state.s)
b = b[bufSize:]
}
}
// Copy the tail.
copy(h.buf[:], b)
h.n = len(b)
return size, nil
}
// WriteString adds the bytes of s to the sequence of bytes hashed by h.
// It always writes all of s and never fails; the count and error result are for implementing io.StringWriter.
func (h *Hash) WriteString(s string) (int, error) {
// WriteString mirrors Write. See Write for comments.
size := len(s)
if h.n > 0 && h.n <= bufSize {
k := copy(h.buf[h.n:], s)
h.n += k
if h.n < bufSize {
return size, nil
}
s = s[k:]
h.flush()
}
if len(s) > bufSize {
h.initSeed()
for len(s) > bufSize {
ptr := (*byte)(unsafe.StringData(s))
h.state.s = rthash(ptr, bufSize, h.state.s)
s = s[bufSize:]
}
}
copy(h.buf[:], s)
h.n = len(s)
return size, nil
}
// Seed returns h's seed value.
func (h *Hash) Seed() Seed {
h.initSeed()
return h.seed
}
// SetSeed sets h to use seed, which must have been returned by MakeSeed
// or by another Hash's Seed method.
// Two Hash objects with the same seed behave identically.
// Two Hash objects with different seeds will very likely behave differently.
// Any bytes added to h before this call will be discarded.
func (h *Hash) SetSeed(seed Seed) {
if seed.s == 0 {
panic("maphash: use of uninitialized Seed")
}
h.seed = seed
h.state = seed
h.n = 0
}
// Reset discards all bytes added to h.
// (The seed remains the same.)
func (h *Hash) Reset() {
h.initSeed()
h.state = h.seed
h.n = 0
}
// precondition: buffer is full.
func (h *Hash) flush() {
if h.n != len(h.buf) {
panic("maphash: flush of partially full buffer")
}
h.initSeed()
h.state.s = rthash(&h.buf[0], h.n, h.state.s)
h.n = 0
}
// Sum64 returns h's current 64-bit value, which depends on
// h's seed and the sequence of bytes added to h since the
// last call to Reset or SetSeed.
//
// All bits of the Sum64 result are close to uniformly and
// independently distributed, so it can be safely reduced
// by using bit masking, shifting, or modular arithmetic.
func (h *Hash) Sum64() uint64 {
h.initSeed()
return rthash(&h.buf[0], h.n, h.state.s)
}
// MakeSeed returns a new random seed.
func MakeSeed() Seed {
var s uint64
for {
s = runtime_fastrand64()
// We use seed 0 to indicate an uninitialized seed/hash,
// so keep trying until we get a non-zero seed.
if s != 0 {
break
}
}
return Seed{s: s}
}
//go:linkname runtime_fastrand64 runtime.fastrand64
func runtime_fastrand64() uint64
func rthash(ptr *byte, len int, seed uint64) uint64 {
if len == 0 {
return seed
}
// The runtime hasher only works on uintptr. For 64-bit
// architectures, we use the hasher directly. Otherwise,
// we use two parallel hashers on the lower and upper 32 bits.
if unsafe.Sizeof(uintptr(0)) == 8 {
return uint64(runtime_memhash(unsafe.Pointer(ptr), uintptr(seed), uintptr(len)))
}
lo := runtime_memhash(unsafe.Pointer(ptr), uintptr(seed), uintptr(len))
hi := runtime_memhash(unsafe.Pointer(ptr), uintptr(seed>>32), uintptr(len))
return uint64(hi)<<32 | uint64(lo)
}
//go:linkname runtime_memhash runtime.memhash
//go:noescape
func runtime_memhash(p unsafe.Pointer, seed, s uintptr) uintptr
// Sum appends the hash's current 64-bit value to b.
// It exists for implementing hash.Hash.
// For direct calls, it is more efficient to use Sum64.
func (h *Hash) Sum(b []byte) []byte {
x := h.Sum64()
return append(b,
byte(x>>0),
byte(x>>8),
byte(x>>16),
byte(x>>24),
byte(x>>32),
byte(x>>40),
byte(x>>48),
byte(x>>56))
}
// Size returns h's hash value size, 8 bytes.
func (h *Hash) Size() int { return 8 }
// BlockSize returns h's block size.
func (h *Hash) BlockSize() int { return len(h.buf) }
|