1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"fmt"
"math/rand"
"os"
"reflect"
"runtime"
"runtime/debug"
"sort"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"unsafe"
)
func TestGcSys(t *testing.T) {
t.Skip("skipping known-flaky test; golang.org/issue/37331")
if os.Getenv("GOGC") == "off" {
t.Skip("skipping test; GOGC=off in environment")
}
got := runTestProg(t, "testprog", "GCSys")
want := "OK\n"
if got != want {
t.Fatalf("expected %q, but got %q", want, got)
}
}
func TestGcDeepNesting(t *testing.T) {
type T [2][2][2][2][2][2][2][2][2][2]*int
a := new(T)
// Prevent the compiler from applying escape analysis.
// This makes sure new(T) is allocated on heap, not on the stack.
t.Logf("%p", a)
a[0][0][0][0][0][0][0][0][0][0] = new(int)
*a[0][0][0][0][0][0][0][0][0][0] = 13
runtime.GC()
if *a[0][0][0][0][0][0][0][0][0][0] != 13 {
t.Fail()
}
}
func TestGcMapIndirection(t *testing.T) {
defer debug.SetGCPercent(debug.SetGCPercent(1))
runtime.GC()
type T struct {
a [256]int
}
m := make(map[T]T)
for i := 0; i < 2000; i++ {
var a T
a.a[0] = i
m[a] = T{}
}
}
func TestGcArraySlice(t *testing.T) {
type X struct {
buf [1]byte
nextbuf []byte
next *X
}
var head *X
for i := 0; i < 10; i++ {
p := &X{}
p.buf[0] = 42
p.next = head
if head != nil {
p.nextbuf = head.buf[:]
}
head = p
runtime.GC()
}
for p := head; p != nil; p = p.next {
if p.buf[0] != 42 {
t.Fatal("corrupted heap")
}
}
}
func TestGcRescan(t *testing.T) {
type X struct {
c chan error
nextx *X
}
type Y struct {
X
nexty *Y
p *int
}
var head *Y
for i := 0; i < 10; i++ {
p := &Y{}
p.c = make(chan error)
if head != nil {
p.nextx = &head.X
}
p.nexty = head
p.p = new(int)
*p.p = 42
head = p
runtime.GC()
}
for p := head; p != nil; p = p.nexty {
if *p.p != 42 {
t.Fatal("corrupted heap")
}
}
}
func TestGcLastTime(t *testing.T) {
ms := new(runtime.MemStats)
t0 := time.Now().UnixNano()
runtime.GC()
t1 := time.Now().UnixNano()
runtime.ReadMemStats(ms)
last := int64(ms.LastGC)
if t0 > last || last > t1 {
t.Fatalf("bad last GC time: got %v, want [%v, %v]", last, t0, t1)
}
pause := ms.PauseNs[(ms.NumGC+255)%256]
// Due to timer granularity, pause can actually be 0 on windows
// or on virtualized environments.
if pause == 0 {
t.Logf("last GC pause was 0")
} else if pause > 10e9 {
t.Logf("bad last GC pause: got %v, want [0, 10e9]", pause)
}
}
var hugeSink any
func TestHugeGCInfo(t *testing.T) {
// The test ensures that compiler can chew these huge types even on weakest machines.
// The types are not allocated at runtime.
if hugeSink != nil {
// 400MB on 32 bots, 4TB on 64-bits.
const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40
hugeSink = new([n]*byte)
hugeSink = new([n]uintptr)
hugeSink = new(struct {
x float64
y [n]*byte
z []string
})
hugeSink = new(struct {
x float64
y [n]uintptr
z []string
})
}
}
func TestPeriodicGC(t *testing.T) {
if runtime.GOARCH == "wasm" {
t.Skip("no sysmon on wasm yet")
}
// Make sure we're not in the middle of a GC.
runtime.GC()
var ms1, ms2 runtime.MemStats
runtime.ReadMemStats(&ms1)
// Make periodic GC run continuously.
orig := *runtime.ForceGCPeriod
*runtime.ForceGCPeriod = 0
// Let some periodic GCs happen. In a heavily loaded system,
// it's possible these will be delayed, so this is designed to
// succeed quickly if things are working, but to give it some
// slack if things are slow.
var numGCs uint32
const want = 2
for i := 0; i < 200 && numGCs < want; i++ {
time.Sleep(5 * time.Millisecond)
// Test that periodic GC actually happened.
runtime.ReadMemStats(&ms2)
numGCs = ms2.NumGC - ms1.NumGC
}
*runtime.ForceGCPeriod = orig
if numGCs < want {
t.Fatalf("no periodic GC: got %v GCs, want >= 2", numGCs)
}
}
func TestGcZombieReporting(t *testing.T) {
// This test is somewhat sensitive to how the allocator works.
// Pointers in zombies slice may cross-span, thus we
// add invalidptr=0 for avoiding the badPointer check.
// See issue https://golang.org/issues/49613/
got := runTestProg(t, "testprog", "GCZombie", "GODEBUG=invalidptr=0")
want := "found pointer to free object"
if !strings.Contains(got, want) {
t.Fatalf("expected %q in output, but got %q", want, got)
}
}
func TestGCTestMoveStackOnNextCall(t *testing.T) {
t.Parallel()
var onStack int
// GCTestMoveStackOnNextCall can fail in rare cases if there's
// a preemption. This won't happen many times in quick
// succession, so just retry a few times.
for retry := 0; retry < 5; retry++ {
runtime.GCTestMoveStackOnNextCall()
if moveStackCheck(t, &onStack, uintptr(unsafe.Pointer(&onStack))) {
// Passed.
return
}
}
t.Fatal("stack did not move")
}
// This must not be inlined because the point is to force a stack
// growth check and move the stack.
//
//go:noinline
func moveStackCheck(t *testing.T, new *int, old uintptr) bool {
// new should have been updated by the stack move;
// old should not have.
// Capture new's value before doing anything that could
// further move the stack.
new2 := uintptr(unsafe.Pointer(new))
t.Logf("old stack pointer %x, new stack pointer %x", old, new2)
if new2 == old {
// Check that we didn't screw up the test's escape analysis.
if cls := runtime.GCTestPointerClass(unsafe.Pointer(new)); cls != "stack" {
t.Fatalf("test bug: new (%#x) should be a stack pointer, not %s", new2, cls)
}
// This was a real failure.
return false
}
return true
}
func TestGCTestMoveStackRepeatedly(t *testing.T) {
// Move the stack repeatedly to make sure we're not doubling
// it each time.
for i := 0; i < 100; i++ {
runtime.GCTestMoveStackOnNextCall()
moveStack1(false)
}
}
//go:noinline
func moveStack1(x bool) {
// Make sure this function doesn't get auto-nosplit.
if x {
println("x")
}
}
func TestGCTestIsReachable(t *testing.T) {
var all, half []unsafe.Pointer
var want uint64
for i := 0; i < 16; i++ {
// The tiny allocator muddies things, so we use a
// scannable type.
p := unsafe.Pointer(new(*int))
all = append(all, p)
if i%2 == 0 {
half = append(half, p)
want |= 1 << i
}
}
got := runtime.GCTestIsReachable(all...)
if want != got {
t.Fatalf("did not get expected reachable set; want %b, got %b", want, got)
}
runtime.KeepAlive(half)
}
var pointerClassBSS *int
var pointerClassData = 42
func TestGCTestPointerClass(t *testing.T) {
t.Parallel()
check := func(p unsafe.Pointer, want string) {
t.Helper()
got := runtime.GCTestPointerClass(p)
if got != want {
// Convert the pointer to a uintptr to avoid
// escaping it.
t.Errorf("for %#x, want class %s, got %s", uintptr(p), want, got)
}
}
var onStack int
var notOnStack int
check(unsafe.Pointer(&onStack), "stack")
check(unsafe.Pointer(runtime.Escape(¬OnStack)), "heap")
check(unsafe.Pointer(&pointerClassBSS), "bss")
check(unsafe.Pointer(&pointerClassData), "data")
check(nil, "other")
}
func BenchmarkSetTypePtr(b *testing.B) {
benchSetType(b, new(*byte))
}
func BenchmarkSetTypePtr8(b *testing.B) {
benchSetType(b, new([8]*byte))
}
func BenchmarkSetTypePtr16(b *testing.B) {
benchSetType(b, new([16]*byte))
}
func BenchmarkSetTypePtr32(b *testing.B) {
benchSetType(b, new([32]*byte))
}
func BenchmarkSetTypePtr64(b *testing.B) {
benchSetType(b, new([64]*byte))
}
func BenchmarkSetTypePtr126(b *testing.B) {
benchSetType(b, new([126]*byte))
}
func BenchmarkSetTypePtr128(b *testing.B) {
benchSetType(b, new([128]*byte))
}
func BenchmarkSetTypePtrSlice(b *testing.B) {
benchSetType(b, make([]*byte, 1<<10))
}
type Node1 struct {
Value [1]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode1(b *testing.B) {
benchSetType(b, new(Node1))
}
func BenchmarkSetTypeNode1Slice(b *testing.B) {
benchSetType(b, make([]Node1, 32))
}
type Node8 struct {
Value [8]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode8(b *testing.B) {
benchSetType(b, new(Node8))
}
func BenchmarkSetTypeNode8Slice(b *testing.B) {
benchSetType(b, make([]Node8, 32))
}
type Node64 struct {
Value [64]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode64(b *testing.B) {
benchSetType(b, new(Node64))
}
func BenchmarkSetTypeNode64Slice(b *testing.B) {
benchSetType(b, make([]Node64, 32))
}
type Node64Dead struct {
Left, Right *byte
Value [64]uintptr
}
func BenchmarkSetTypeNode64Dead(b *testing.B) {
benchSetType(b, new(Node64Dead))
}
func BenchmarkSetTypeNode64DeadSlice(b *testing.B) {
benchSetType(b, make([]Node64Dead, 32))
}
type Node124 struct {
Value [124]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode124(b *testing.B) {
benchSetType(b, new(Node124))
}
func BenchmarkSetTypeNode124Slice(b *testing.B) {
benchSetType(b, make([]Node124, 32))
}
type Node126 struct {
Value [126]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode126(b *testing.B) {
benchSetType(b, new(Node126))
}
func BenchmarkSetTypeNode126Slice(b *testing.B) {
benchSetType(b, make([]Node126, 32))
}
type Node128 struct {
Value [128]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode128(b *testing.B) {
benchSetType(b, new(Node128))
}
func BenchmarkSetTypeNode128Slice(b *testing.B) {
benchSetType(b, make([]Node128, 32))
}
type Node130 struct {
Value [130]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode130(b *testing.B) {
benchSetType(b, new(Node130))
}
func BenchmarkSetTypeNode130Slice(b *testing.B) {
benchSetType(b, make([]Node130, 32))
}
type Node1024 struct {
Value [1024]uintptr
Left, Right *byte
}
func BenchmarkSetTypeNode1024(b *testing.B) {
benchSetType(b, new(Node1024))
}
func BenchmarkSetTypeNode1024Slice(b *testing.B) {
benchSetType(b, make([]Node1024, 32))
}
func benchSetType(b *testing.B, x any) {
v := reflect.ValueOf(x)
t := v.Type()
switch t.Kind() {
case reflect.Pointer:
b.SetBytes(int64(t.Elem().Size()))
case reflect.Slice:
b.SetBytes(int64(t.Elem().Size()) * int64(v.Len()))
}
b.ResetTimer()
runtime.BenchSetType(b.N, x)
}
func BenchmarkAllocation(b *testing.B) {
type T struct {
x, y *byte
}
ngo := runtime.GOMAXPROCS(0)
work := make(chan bool, b.N+ngo)
result := make(chan *T)
for i := 0; i < b.N; i++ {
work <- true
}
for i := 0; i < ngo; i++ {
work <- false
}
for i := 0; i < ngo; i++ {
go func() {
var x *T
for <-work {
for i := 0; i < 1000; i++ {
x = &T{}
}
}
result <- x
}()
}
for i := 0; i < ngo; i++ {
<-result
}
}
func TestPrintGC(t *testing.T) {
if testing.Short() {
t.Skip("Skipping in short mode")
}
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2))
done := make(chan bool)
go func() {
for {
select {
case <-done:
return
default:
runtime.GC()
}
}
}()
for i := 0; i < 1e4; i++ {
func() {
defer print("")
}()
}
close(done)
}
func testTypeSwitch(x any) error {
switch y := x.(type) {
case nil:
// ok
case error:
return y
}
return nil
}
func testAssert(x any) error {
if y, ok := x.(error); ok {
return y
}
return nil
}
func testAssertVar(x any) error {
var y, ok = x.(error)
if ok {
return y
}
return nil
}
var a bool
//go:noinline
func testIfaceEqual(x any) {
if x == "abc" {
a = true
}
}
func TestPageAccounting(t *testing.T) {
// Grow the heap in small increments. This used to drop the
// pages-in-use count below zero because of a rounding
// mismatch (golang.org/issue/15022).
const blockSize = 64 << 10
blocks := make([]*[blockSize]byte, (64<<20)/blockSize)
for i := range blocks {
blocks[i] = new([blockSize]byte)
}
// Check that the running page count matches reality.
pagesInUse, counted := runtime.CountPagesInUse()
if pagesInUse != counted {
t.Fatalf("mheap_.pagesInUse is %d, but direct count is %d", pagesInUse, counted)
}
}
func init() {
// Enable ReadMemStats' double-check mode.
*runtime.DoubleCheckReadMemStats = true
}
func TestReadMemStats(t *testing.T) {
base, slow := runtime.ReadMemStatsSlow()
if base != slow {
logDiff(t, "MemStats", reflect.ValueOf(base), reflect.ValueOf(slow))
t.Fatal("memstats mismatch")
}
}
func logDiff(t *testing.T, prefix string, got, want reflect.Value) {
typ := got.Type()
switch typ.Kind() {
case reflect.Array, reflect.Slice:
if got.Len() != want.Len() {
t.Logf("len(%s): got %v, want %v", prefix, got, want)
return
}
for i := 0; i < got.Len(); i++ {
logDiff(t, fmt.Sprintf("%s[%d]", prefix, i), got.Index(i), want.Index(i))
}
case reflect.Struct:
for i := 0; i < typ.NumField(); i++ {
gf, wf := got.Field(i), want.Field(i)
logDiff(t, prefix+"."+typ.Field(i).Name, gf, wf)
}
case reflect.Map:
t.Fatal("not implemented: logDiff for map")
default:
if got.Interface() != want.Interface() {
t.Logf("%s: got %v, want %v", prefix, got, want)
}
}
}
func BenchmarkReadMemStats(b *testing.B) {
var ms runtime.MemStats
const heapSize = 100 << 20
x := make([]*[1024]byte, heapSize/1024)
for i := range x {
x[i] = new([1024]byte)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
runtime.ReadMemStats(&ms)
}
runtime.KeepAlive(x)
}
func applyGCLoad(b *testing.B) func() {
// We’ll apply load to the runtime with maxProcs-1 goroutines
// and use one more to actually benchmark. It doesn't make sense
// to try to run this test with only 1 P (that's what
// BenchmarkReadMemStats is for).
maxProcs := runtime.GOMAXPROCS(-1)
if maxProcs == 1 {
b.Skip("This benchmark can only be run with GOMAXPROCS > 1")
}
// Code to build a big tree with lots of pointers.
type node struct {
children [16]*node
}
var buildTree func(depth int) *node
buildTree = func(depth int) *node {
tree := new(node)
if depth != 0 {
for i := range tree.children {
tree.children[i] = buildTree(depth - 1)
}
}
return tree
}
// Keep the GC busy by continuously generating large trees.
done := make(chan struct{})
var wg sync.WaitGroup
for i := 0; i < maxProcs-1; i++ {
wg.Add(1)
go func() {
defer wg.Done()
var hold *node
loop:
for {
hold = buildTree(5)
select {
case <-done:
break loop
default:
}
}
runtime.KeepAlive(hold)
}()
}
return func() {
close(done)
wg.Wait()
}
}
func BenchmarkReadMemStatsLatency(b *testing.B) {
stop := applyGCLoad(b)
// Spend this much time measuring latencies.
latencies := make([]time.Duration, 0, 1024)
// Run for timeToBench hitting ReadMemStats continuously
// and measuring the latency.
b.ResetTimer()
var ms runtime.MemStats
for i := 0; i < b.N; i++ {
// Sleep for a bit, otherwise we're just going to keep
// stopping the world and no one will get to do anything.
time.Sleep(100 * time.Millisecond)
start := time.Now()
runtime.ReadMemStats(&ms)
latencies = append(latencies, time.Since(start))
}
// Make sure to stop the timer before we wait! The load created above
// is very heavy-weight and not easy to stop, so we could end up
// confusing the benchmarking framework for small b.N.
b.StopTimer()
stop()
// Disable the default */op metrics.
// ns/op doesn't mean anything because it's an average, but we
// have a sleep in our b.N loop above which skews this significantly.
b.ReportMetric(0, "ns/op")
b.ReportMetric(0, "B/op")
b.ReportMetric(0, "allocs/op")
// Sort latencies then report percentiles.
sort.Slice(latencies, func(i, j int) bool {
return latencies[i] < latencies[j]
})
b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns")
b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns")
b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns")
}
func TestUserForcedGC(t *testing.T) {
// Test that runtime.GC() triggers a GC even if GOGC=off.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
var ms1, ms2 runtime.MemStats
runtime.ReadMemStats(&ms1)
runtime.GC()
runtime.ReadMemStats(&ms2)
if ms1.NumGC == ms2.NumGC {
t.Fatalf("runtime.GC() did not trigger GC")
}
if ms1.NumForcedGC == ms2.NumForcedGC {
t.Fatalf("runtime.GC() was not accounted in NumForcedGC")
}
}
func writeBarrierBenchmark(b *testing.B, f func()) {
runtime.GC()
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
//b.Logf("heap size: %d MB", ms.HeapAlloc>>20)
// Keep GC running continuously during the benchmark, which in
// turn keeps the write barrier on continuously.
var stop uint32
done := make(chan bool)
go func() {
for atomic.LoadUint32(&stop) == 0 {
runtime.GC()
}
close(done)
}()
defer func() {
atomic.StoreUint32(&stop, 1)
<-done
}()
b.ResetTimer()
f()
b.StopTimer()
}
func BenchmarkWriteBarrier(b *testing.B) {
if runtime.GOMAXPROCS(-1) < 2 {
// We don't want GC to take our time.
b.Skip("need GOMAXPROCS >= 2")
}
// Construct a large tree both so the GC runs for a while and
// so we have a data structure to manipulate the pointers of.
type node struct {
l, r *node
}
var wbRoots []*node
var mkTree func(level int) *node
mkTree = func(level int) *node {
if level == 0 {
return nil
}
n := &node{mkTree(level - 1), mkTree(level - 1)}
if level == 10 {
// Seed GC with enough early pointers so it
// doesn't start termination barriers when it
// only has the top of the tree.
wbRoots = append(wbRoots, n)
}
return n
}
const depth = 22 // 64 MB
root := mkTree(22)
writeBarrierBenchmark(b, func() {
var stack [depth]*node
tos := -1
// There are two write barriers per iteration, so i+=2.
for i := 0; i < b.N; i += 2 {
if tos == -1 {
stack[0] = root
tos = 0
}
// Perform one step of reversing the tree.
n := stack[tos]
if n.l == nil {
tos--
} else {
n.l, n.r = n.r, n.l
stack[tos] = n.l
stack[tos+1] = n.r
tos++
}
if i%(1<<12) == 0 {
// Avoid non-preemptible loops (see issue #10958).
runtime.Gosched()
}
}
})
runtime.KeepAlive(wbRoots)
}
func BenchmarkBulkWriteBarrier(b *testing.B) {
if runtime.GOMAXPROCS(-1) < 2 {
// We don't want GC to take our time.
b.Skip("need GOMAXPROCS >= 2")
}
// Construct a large set of objects we can copy around.
const heapSize = 64 << 20
type obj [16]*byte
ptrs := make([]*obj, heapSize/unsafe.Sizeof(obj{}))
for i := range ptrs {
ptrs[i] = new(obj)
}
writeBarrierBenchmark(b, func() {
const blockSize = 1024
var pos int
for i := 0; i < b.N; i += blockSize {
// Rotate block.
block := ptrs[pos : pos+blockSize]
first := block[0]
copy(block, block[1:])
block[blockSize-1] = first
pos += blockSize
if pos+blockSize > len(ptrs) {
pos = 0
}
runtime.Gosched()
}
})
runtime.KeepAlive(ptrs)
}
func BenchmarkScanStackNoLocals(b *testing.B) {
var ready sync.WaitGroup
teardown := make(chan bool)
for j := 0; j < 10; j++ {
ready.Add(1)
go func() {
x := 100000
countpwg(&x, &ready, teardown)
}()
}
ready.Wait()
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StartTimer()
runtime.GC()
runtime.GC()
b.StopTimer()
}
close(teardown)
}
func BenchmarkMSpanCountAlloc(b *testing.B) {
// Allocate one dummy mspan for the whole benchmark.
s := runtime.AllocMSpan()
defer runtime.FreeMSpan(s)
// n is the number of bytes to benchmark against.
// n must always be a multiple of 8, since gcBits is
// always rounded up 8 bytes.
for _, n := range []int{8, 16, 32, 64, 128} {
b.Run(fmt.Sprintf("bits=%d", n*8), func(b *testing.B) {
// Initialize a new byte slice with pseduo-random data.
bits := make([]byte, n)
rand.Read(bits)
b.ResetTimer()
for i := 0; i < b.N; i++ {
runtime.MSpanCountAlloc(s, bits)
}
})
}
}
func countpwg(n *int, ready *sync.WaitGroup, teardown chan bool) {
if *n == 0 {
ready.Done()
<-teardown
return
}
*n--
countpwg(n, ready, teardown)
}
func TestMemoryLimit(t *testing.T) {
if testing.Short() {
t.Skip("stress test that takes time to run")
}
if runtime.NumCPU() < 4 {
t.Skip("want at least 4 CPUs for this test")
}
got := runTestProg(t, "testprog", "GCMemoryLimit")
want := "OK\n"
if got != want {
t.Fatalf("expected %q, but got %q", want, got)
}
}
func TestMemoryLimitNoGCPercent(t *testing.T) {
if testing.Short() {
t.Skip("stress test that takes time to run")
}
if runtime.NumCPU() < 4 {
t.Skip("want at least 4 CPUs for this test")
}
got := runTestProg(t, "testprog", "GCMemoryLimitNoGCPercent")
want := "OK\n"
if got != want {
t.Fatalf("expected %q, but got %q", want, got)
}
}
|