summaryrefslogtreecommitdiffstats
path: root/src/runtime/mfinal.go
blob: d4d4f1f302f25ccc03aa4d9d588b6d5c2dcd9996 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: finalizers and block profiling.

package runtime

import (
	"internal/abi"
	"internal/goarch"
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// finblock is an array of finalizers to be executed. finblocks are
// arranged in a linked list for the finalizer queue.
//
// finblock is allocated from non-GC'd memory, so any heap pointers
// must be specially handled. GC currently assumes that the finalizer
// queue does not grow during marking (but it can shrink).
type finblock struct {
	_       sys.NotInHeap
	alllink *finblock
	next    *finblock
	cnt     uint32
	_       int32
	fin     [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
}

var fingStatus atomic.Uint32

// finalizer goroutine status.
const (
	fingUninitialized uint32 = iota
	fingCreated       uint32 = 1 << (iota - 1)
	fingRunningFinalizer
	fingWait
	fingWake
)

var finlock mutex  // protects the following variables
var fing *g        // goroutine that runs finalizers
var finq *finblock // list of finalizers that are to be executed
var finc *finblock // cache of free blocks
var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte

var allfin *finblock // list of all blocks

// NOTE: Layout known to queuefinalizer.
type finalizer struct {
	fn   *funcval       // function to call (may be a heap pointer)
	arg  unsafe.Pointer // ptr to object (may be a heap pointer)
	nret uintptr        // bytes of return values from fn
	fint *_type         // type of first argument of fn
	ot   *ptrtype       // type of ptr to object (may be a heap pointer)
}

var finalizer1 = [...]byte{
	// Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here)
	// Each byte describes 8 words.
	// Need 8 Finalizers described by 5 bytes before pattern repeats:
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	//	ptr ptr INT ptr ptr
	// aka
	//
	//	ptr ptr INT ptr ptr ptr ptr INT
	//	ptr ptr ptr ptr INT ptr ptr ptr
	//	ptr INT ptr ptr ptr ptr INT ptr
	//	ptr ptr ptr INT ptr ptr ptr ptr
	//	INT ptr ptr ptr ptr INT ptr ptr
	//
	// Assumptions about Finalizer layout checked below.
	1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7,
	1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7,
	1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7,
	1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7,
	0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7,
}

// lockRankMayQueueFinalizer records the lock ranking effects of a
// function that may call queuefinalizer.
func lockRankMayQueueFinalizer() {
	lockWithRankMayAcquire(&finlock, getLockRank(&finlock))
}

func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
	if gcphase != _GCoff {
		// Currently we assume that the finalizer queue won't
		// grow during marking so we don't have to rescan it
		// during mark termination. If we ever need to lift
		// this assumption, we can do it by adding the
		// necessary barriers to queuefinalizer (which it may
		// have automatically).
		throw("queuefinalizer during GC")
	}

	lock(&finlock)
	if finq == nil || finq.cnt == uint32(len(finq.fin)) {
		if finc == nil {
			finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys))
			finc.alllink = allfin
			allfin = finc
			if finptrmask[0] == 0 {
				// Build pointer mask for Finalizer array in block.
				// Check assumptions made in finalizer1 array above.
				if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize ||
					unsafe.Offsetof(finalizer{}.fn) != 0 ||
					unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize ||
					unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize ||
					unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize ||
					unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) {
					throw("finalizer out of sync")
				}
				for i := range finptrmask {
					finptrmask[i] = finalizer1[i%len(finalizer1)]
				}
			}
		}
		block := finc
		finc = block.next
		block.next = finq
		finq = block
	}
	f := &finq.fin[finq.cnt]
	atomic.Xadd(&finq.cnt, +1) // Sync with markroots
	f.fn = fn
	f.nret = nret
	f.fint = fint
	f.ot = ot
	f.arg = p
	unlock(&finlock)
	fingStatus.Or(fingWake)
}

//go:nowritebarrier
func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
	for fb := allfin; fb != nil; fb = fb.alllink {
		for i := uint32(0); i < fb.cnt; i++ {
			f := &fb.fin[i]
			callback(f.fn, f.arg, f.nret, f.fint, f.ot)
		}
	}
}

func wakefing() *g {
	if ok := fingStatus.CompareAndSwap(fingCreated|fingWait|fingWake, fingCreated); ok {
		return fing
	}
	return nil
}

func createfing() {
	// start the finalizer goroutine exactly once
	if fingStatus.Load() == fingUninitialized && fingStatus.CompareAndSwap(fingUninitialized, fingCreated) {
		go runfinq()
	}
}

func finalizercommit(gp *g, lock unsafe.Pointer) bool {
	unlock((*mutex)(lock))
	// fingStatus should be modified after fing is put into a waiting state
	// to avoid waking fing in running state, even if it is about to be parked.
	fingStatus.Or(fingWait)
	return true
}

// This is the goroutine that runs all of the finalizers.
func runfinq() {
	var (
		frame    unsafe.Pointer
		framecap uintptr
		argRegs  int
	)

	gp := getg()
	lock(&finlock)
	fing = gp
	unlock(&finlock)

	for {
		lock(&finlock)
		fb := finq
		finq = nil
		if fb == nil {
			gopark(finalizercommit, unsafe.Pointer(&finlock), waitReasonFinalizerWait, traceEvGoBlock, 1)
			continue
		}
		argRegs = intArgRegs
		unlock(&finlock)
		if raceenabled {
			racefingo()
		}
		for fb != nil {
			for i := fb.cnt; i > 0; i-- {
				f := &fb.fin[i-1]

				var regs abi.RegArgs
				// The args may be passed in registers or on stack. Even for
				// the register case, we still need the spill slots.
				// TODO: revisit if we remove spill slots.
				//
				// Unfortunately because we can have an arbitrary
				// amount of returns and it would be complex to try and
				// figure out how many of those can get passed in registers,
				// just conservatively assume none of them do.
				framesz := unsafe.Sizeof((any)(nil)) + f.nret
				if framecap < framesz {
					// The frame does not contain pointers interesting for GC,
					// all not yet finalized objects are stored in finq.
					// If we do not mark it as FlagNoScan,
					// the last finalized object is not collected.
					frame = mallocgc(framesz, nil, true)
					framecap = framesz
				}

				if f.fint == nil {
					throw("missing type in runfinq")
				}
				r := frame
				if argRegs > 0 {
					r = unsafe.Pointer(&regs.Ints)
				} else {
					// frame is effectively uninitialized
					// memory. That means we have to clear
					// it before writing to it to avoid
					// confusing the write barrier.
					*(*[2]uintptr)(frame) = [2]uintptr{}
				}
				switch f.fint.kind & kindMask {
				case kindPtr:
					// direct use of pointer
					*(*unsafe.Pointer)(r) = f.arg
				case kindInterface:
					ityp := (*interfacetype)(unsafe.Pointer(f.fint))
					// set up with empty interface
					(*eface)(r)._type = &f.ot.typ
					(*eface)(r).data = f.arg
					if len(ityp.mhdr) != 0 {
						// convert to interface with methods
						// this conversion is guaranteed to succeed - we checked in SetFinalizer
						(*iface)(r).tab = assertE2I(ityp, (*eface)(r)._type)
					}
				default:
					throw("bad kind in runfinq")
				}
				fingStatus.Or(fingRunningFinalizer)
				reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz), uint32(framesz), &regs)
				fingStatus.And(^fingRunningFinalizer)

				// Drop finalizer queue heap references
				// before hiding them from markroot.
				// This also ensures these will be
				// clear if we reuse the finalizer.
				f.fn = nil
				f.arg = nil
				f.ot = nil
				atomic.Store(&fb.cnt, i-1)
			}
			next := fb.next
			lock(&finlock)
			fb.next = finc
			finc = fb
			unlock(&finlock)
			fb = next
		}
	}
}

// SetFinalizer sets the finalizer associated with obj to the provided
// finalizer function. When the garbage collector finds an unreachable block
// with an associated finalizer, it clears the association and runs
// finalizer(obj) in a separate goroutine. This makes obj reachable again,
// but now without an associated finalizer. Assuming that SetFinalizer
// is not called again, the next time the garbage collector sees
// that obj is unreachable, it will free obj.
//
// SetFinalizer(obj, nil) clears any finalizer associated with obj.
//
// The argument obj must be a pointer to an object allocated by calling
// new, by taking the address of a composite literal, or by taking the
// address of a local variable.
// The argument finalizer must be a function that takes a single argument
// to which obj's type can be assigned, and can have arbitrary ignored return
// values. If either of these is not true, SetFinalizer may abort the
// program.
//
// Finalizers are run in dependency order: if A points at B, both have
// finalizers, and they are otherwise unreachable, only the finalizer
// for A runs; once A is freed, the finalizer for B can run.
// If a cyclic structure includes a block with a finalizer, that
// cycle is not guaranteed to be garbage collected and the finalizer
// is not guaranteed to run, because there is no ordering that
// respects the dependencies.
//
// The finalizer is scheduled to run at some arbitrary time after the
// program can no longer reach the object to which obj points.
// There is no guarantee that finalizers will run before a program exits,
// so typically they are useful only for releasing non-memory resources
// associated with an object during a long-running program.
// For example, an os.File object could use a finalizer to close the
// associated operating system file descriptor when a program discards
// an os.File without calling Close, but it would be a mistake
// to depend on a finalizer to flush an in-memory I/O buffer such as a
// bufio.Writer, because the buffer would not be flushed at program exit.
//
// It is not guaranteed that a finalizer will run if the size of *obj is
// zero bytes, because it may share same address with other zero-size
// objects in memory. See https://go.dev/ref/spec#Size_and_alignment_guarantees.
//
// It is not guaranteed that a finalizer will run for objects allocated
// in initializers for package-level variables. Such objects may be
// linker-allocated, not heap-allocated.
//
// Note that because finalizers may execute arbitrarily far into the future
// after an object is no longer referenced, the runtime is allowed to perform
// a space-saving optimization that batches objects together in a single
// allocation slot. The finalizer for an unreferenced object in such an
// allocation may never run if it always exists in the same batch as a
// referenced object. Typically, this batching only happens for tiny
// (on the order of 16 bytes or less) and pointer-free objects.
//
// A finalizer may run as soon as an object becomes unreachable.
// In order to use finalizers correctly, the program must ensure that
// the object is reachable until it is no longer required.
// Objects stored in global variables, or that can be found by tracing
// pointers from a global variable, are reachable. For other objects,
// pass the object to a call of the KeepAlive function to mark the
// last point in the function where the object must be reachable.
//
// For example, if p points to a struct, such as os.File, that contains
// a file descriptor d, and p has a finalizer that closes that file
// descriptor, and if the last use of p in a function is a call to
// syscall.Write(p.d, buf, size), then p may be unreachable as soon as
// the program enters syscall.Write. The finalizer may run at that moment,
// closing p.d, causing syscall.Write to fail because it is writing to
// a closed file descriptor (or, worse, to an entirely different
// file descriptor opened by a different goroutine). To avoid this problem,
// call KeepAlive(p) after the call to syscall.Write.
//
// A single goroutine runs all finalizers for a program, sequentially.
// If a finalizer must run for a long time, it should do so by starting
// a new goroutine.
//
// In the terminology of the Go memory model, a call
// SetFinalizer(x, f) “synchronizes before” the finalization call f(x).
// However, there is no guarantee that KeepAlive(x) or any other use of x
// “synchronizes before” f(x), so in general a finalizer should use a mutex
// or other synchronization mechanism if it needs to access mutable state in x.
// For example, consider a finalizer that inspects a mutable field in x
// that is modified from time to time in the main program before x
// becomes unreachable and the finalizer is invoked.
// The modifications in the main program and the inspection in the finalizer
// need to use appropriate synchronization, such as mutexes or atomic updates,
// to avoid read-write races.
func SetFinalizer(obj any, finalizer any) {
	if debug.sbrk != 0 {
		// debug.sbrk never frees memory, so no finalizers run
		// (and we don't have the data structures to record them).
		return
	}
	e := efaceOf(&obj)
	etyp := e._type
	if etyp == nil {
		throw("runtime.SetFinalizer: first argument is nil")
	}
	if etyp.kind&kindMask != kindPtr {
		throw("runtime.SetFinalizer: first argument is " + etyp.string() + ", not pointer")
	}
	ot := (*ptrtype)(unsafe.Pointer(etyp))
	if ot.elem == nil {
		throw("nil elem type!")
	}

	if inUserArenaChunk(uintptr(e.data)) {
		// Arena-allocated objects are not eligible for finalizers.
		throw("runtime.SetFinalizer: first argument was allocated into an arena")
	}

	// find the containing object
	base, _, _ := findObject(uintptr(e.data), 0, 0)

	if base == 0 {
		// 0-length objects are okay.
		if e.data == unsafe.Pointer(&zerobase) {
			return
		}

		// Global initializers might be linker-allocated.
		//	var Foo = &Object{}
		//	func main() {
		//		runtime.SetFinalizer(Foo, nil)
		//	}
		// The relevant segments are: noptrdata, data, bss, noptrbss.
		// We cannot assume they are in any order or even contiguous,
		// due to external linking.
		for datap := &firstmoduledata; datap != nil; datap = datap.next {
			if datap.noptrdata <= uintptr(e.data) && uintptr(e.data) < datap.enoptrdata ||
				datap.data <= uintptr(e.data) && uintptr(e.data) < datap.edata ||
				datap.bss <= uintptr(e.data) && uintptr(e.data) < datap.ebss ||
				datap.noptrbss <= uintptr(e.data) && uintptr(e.data) < datap.enoptrbss {
				return
			}
		}
		throw("runtime.SetFinalizer: pointer not in allocated block")
	}

	if uintptr(e.data) != base {
		// As an implementation detail we allow to set finalizers for an inner byte
		// of an object if it could come from tiny alloc (see mallocgc for details).
		if ot.elem == nil || ot.elem.ptrdata != 0 || ot.elem.size >= maxTinySize {
			throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
		}
	}

	f := efaceOf(&finalizer)
	ftyp := f._type
	if ftyp == nil {
		// switch to system stack and remove finalizer
		systemstack(func() {
			removefinalizer(e.data)
		})
		return
	}

	if ftyp.kind&kindMask != kindFunc {
		throw("runtime.SetFinalizer: second argument is " + ftyp.string() + ", not a function")
	}
	ft := (*functype)(unsafe.Pointer(ftyp))
	if ft.dotdotdot() {
		throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string() + " because dotdotdot")
	}
	if ft.inCount != 1 {
		throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string())
	}
	fint := ft.in()[0]
	switch {
	case fint == etyp:
		// ok - same type
		goto okarg
	case fint.kind&kindMask == kindPtr:
		if (fint.uncommon() == nil || etyp.uncommon() == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem {
			// ok - not same type, but both pointers,
			// one or the other is unnamed, and same element type, so assignable.
			goto okarg
		}
	case fint.kind&kindMask == kindInterface:
		ityp := (*interfacetype)(unsafe.Pointer(fint))
		if len(ityp.mhdr) == 0 {
			// ok - satisfies empty interface
			goto okarg
		}
		if iface := assertE2I2(ityp, *efaceOf(&obj)); iface.tab != nil {
			goto okarg
		}
	}
	throw("runtime.SetFinalizer: cannot pass " + etyp.string() + " to finalizer " + ftyp.string())
okarg:
	// compute size needed for return parameters
	nret := uintptr(0)
	for _, t := range ft.out() {
		nret = alignUp(nret, uintptr(t.align)) + uintptr(t.size)
	}
	nret = alignUp(nret, goarch.PtrSize)

	// make sure we have a finalizer goroutine
	createfing()

	systemstack(func() {
		if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) {
			throw("runtime.SetFinalizer: finalizer already set")
		}
	})
}

// Mark KeepAlive as noinline so that it is easily detectable as an intrinsic.
//
//go:noinline

// KeepAlive marks its argument as currently reachable.
// This ensures that the object is not freed, and its finalizer is not run,
// before the point in the program where KeepAlive is called.
//
// A very simplified example showing where KeepAlive is required:
//
//	type File struct { d int }
//	d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
//	// ... do something if err != nil ...
//	p := &File{d}
//	runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
//	var buf [10]byte
//	n, err := syscall.Read(p.d, buf[:])
//	// Ensure p is not finalized until Read returns.
//	runtime.KeepAlive(p)
//	// No more uses of p after this point.
//
// Without the KeepAlive call, the finalizer could run at the start of
// syscall.Read, closing the file descriptor before syscall.Read makes
// the actual system call.
//
// Note: KeepAlive should only be used to prevent finalizers from
// running prematurely. In particular, when used with unsafe.Pointer,
// the rules for valid uses of unsafe.Pointer still apply.
func KeepAlive(x any) {
	// Introduce a use of x that the compiler can't eliminate.
	// This makes sure x is alive on entry. We need x to be alive
	// on entry for "defer runtime.KeepAlive(x)"; see issue 21402.
	if cgoAlwaysFalse {
		println(x)
	}
}