summaryrefslogtreecommitdiffstats
path: root/src/runtime/mgcmark.go
blob: cfda7064cdf4bb6d99033f9082fe7080f34e2ed2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: marking and scanning

package runtime

import (
	"internal/goarch"
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

const (
	fixedRootFinalizers = iota
	fixedRootFreeGStacks
	fixedRootCount

	// rootBlockBytes is the number of bytes to scan per data or
	// BSS root.
	rootBlockBytes = 256 << 10

	// maxObletBytes is the maximum bytes of an object to scan at
	// once. Larger objects will be split up into "oblets" of at
	// most this size. Since we can scan 1–2 MB/ms, 128 KB bounds
	// scan preemption at ~100 µs.
	//
	// This must be > _MaxSmallSize so that the object base is the
	// span base.
	maxObletBytes = 128 << 10

	// drainCheckThreshold specifies how many units of work to do
	// between self-preemption checks in gcDrain. Assuming a scan
	// rate of 1 MB/ms, this is ~100 µs. Lower values have higher
	// overhead in the scan loop (the scheduler check may perform
	// a syscall, so its overhead is nontrivial). Higher values
	// make the system less responsive to incoming work.
	drainCheckThreshold = 100000

	// pagesPerSpanRoot indicates how many pages to scan from a span root
	// at a time. Used by special root marking.
	//
	// Higher values improve throughput by increasing locality, but
	// increase the minimum latency of a marking operation.
	//
	// Must be a multiple of the pageInUse bitmap element size and
	// must also evenly divide pagesPerArena.
	pagesPerSpanRoot = 512
)

// gcMarkRootPrepare queues root scanning jobs (stacks, globals, and
// some miscellany) and initializes scanning-related state.
//
// The world must be stopped.
func gcMarkRootPrepare() {
	assertWorldStopped()

	// Compute how many data and BSS root blocks there are.
	nBlocks := func(bytes uintptr) int {
		return int(divRoundUp(bytes, rootBlockBytes))
	}

	work.nDataRoots = 0
	work.nBSSRoots = 0

	// Scan globals.
	for _, datap := range activeModules() {
		nDataRoots := nBlocks(datap.edata - datap.data)
		if nDataRoots > work.nDataRoots {
			work.nDataRoots = nDataRoots
		}
	}

	for _, datap := range activeModules() {
		nBSSRoots := nBlocks(datap.ebss - datap.bss)
		if nBSSRoots > work.nBSSRoots {
			work.nBSSRoots = nBSSRoots
		}
	}

	// Scan span roots for finalizer specials.
	//
	// We depend on addfinalizer to mark objects that get
	// finalizers after root marking.
	//
	// We're going to scan the whole heap (that was available at the time the
	// mark phase started, i.e. markArenas) for in-use spans which have specials.
	//
	// Break up the work into arenas, and further into chunks.
	//
	// Snapshot allArenas as markArenas. This snapshot is safe because allArenas
	// is append-only.
	mheap_.markArenas = mheap_.allArenas[:len(mheap_.allArenas):len(mheap_.allArenas)]
	work.nSpanRoots = len(mheap_.markArenas) * (pagesPerArena / pagesPerSpanRoot)

	// Scan stacks.
	//
	// Gs may be created after this point, but it's okay that we
	// ignore them because they begin life without any roots, so
	// there's nothing to scan, and any roots they create during
	// the concurrent phase will be caught by the write barrier.
	work.stackRoots = allGsSnapshot()
	work.nStackRoots = len(work.stackRoots)

	work.markrootNext = 0
	work.markrootJobs = uint32(fixedRootCount + work.nDataRoots + work.nBSSRoots + work.nSpanRoots + work.nStackRoots)

	// Calculate base indexes of each root type
	work.baseData = uint32(fixedRootCount)
	work.baseBSS = work.baseData + uint32(work.nDataRoots)
	work.baseSpans = work.baseBSS + uint32(work.nBSSRoots)
	work.baseStacks = work.baseSpans + uint32(work.nSpanRoots)
	work.baseEnd = work.baseStacks + uint32(work.nStackRoots)
}

// gcMarkRootCheck checks that all roots have been scanned. It is
// purely for debugging.
func gcMarkRootCheck() {
	if work.markrootNext < work.markrootJobs {
		print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n")
		throw("left over markroot jobs")
	}

	// Check that stacks have been scanned.
	//
	// We only check the first nStackRoots Gs that we should have scanned.
	// Since we don't care about newer Gs (see comment in
	// gcMarkRootPrepare), no locking is required.
	i := 0
	forEachGRace(func(gp *g) {
		if i >= work.nStackRoots {
			return
		}

		if !gp.gcscandone {
			println("gp", gp, "goid", gp.goid,
				"status", readgstatus(gp),
				"gcscandone", gp.gcscandone)
			throw("scan missed a g")
		}

		i++
	})
}

// ptrmask for an allocation containing a single pointer.
var oneptrmask = [...]uint8{1}

// markroot scans the i'th root.
//
// Preemption must be disabled (because this uses a gcWork).
//
// Returns the amount of GC work credit produced by the operation.
// If flushBgCredit is true, then that credit is also flushed
// to the background credit pool.
//
// nowritebarrier is only advisory here.
//
//go:nowritebarrier
func markroot(gcw *gcWork, i uint32, flushBgCredit bool) int64 {
	// Note: if you add a case here, please also update heapdump.go:dumproots.
	var workDone int64
	var workCounter *atomic.Int64
	switch {
	case work.baseData <= i && i < work.baseBSS:
		workCounter = &gcController.globalsScanWork
		for _, datap := range activeModules() {
			workDone += markrootBlock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, gcw, int(i-work.baseData))
		}

	case work.baseBSS <= i && i < work.baseSpans:
		workCounter = &gcController.globalsScanWork
		for _, datap := range activeModules() {
			workDone += markrootBlock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, gcw, int(i-work.baseBSS))
		}

	case i == fixedRootFinalizers:
		for fb := allfin; fb != nil; fb = fb.alllink {
			cnt := uintptr(atomic.Load(&fb.cnt))
			scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), cnt*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], gcw, nil)
		}

	case i == fixedRootFreeGStacks:
		// Switch to the system stack so we can call
		// stackfree.
		systemstack(markrootFreeGStacks)

	case work.baseSpans <= i && i < work.baseStacks:
		// mark mspan.specials
		markrootSpans(gcw, int(i-work.baseSpans))

	default:
		// the rest is scanning goroutine stacks
		workCounter = &gcController.stackScanWork
		if i < work.baseStacks || work.baseEnd <= i {
			printlock()
			print("runtime: markroot index ", i, " not in stack roots range [", work.baseStacks, ", ", work.baseEnd, ")\n")
			throw("markroot: bad index")
		}
		gp := work.stackRoots[i-work.baseStacks]

		// remember when we've first observed the G blocked
		// needed only to output in traceback
		status := readgstatus(gp) // We are not in a scan state
		if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 {
			gp.waitsince = work.tstart
		}

		// scanstack must be done on the system stack in case
		// we're trying to scan our own stack.
		systemstack(func() {
			// If this is a self-scan, put the user G in
			// _Gwaiting to prevent self-deadlock. It may
			// already be in _Gwaiting if this is a mark
			// worker or we're in mark termination.
			userG := getg().m.curg
			selfScan := gp == userG && readgstatus(userG) == _Grunning
			if selfScan {
				casGToWaiting(userG, _Grunning, waitReasonGarbageCollectionScan)
			}

			// TODO: suspendG blocks (and spins) until gp
			// stops, which may take a while for
			// running goroutines. Consider doing this in
			// two phases where the first is non-blocking:
			// we scan the stacks we can and ask running
			// goroutines to scan themselves; and the
			// second blocks.
			stopped := suspendG(gp)
			if stopped.dead {
				gp.gcscandone = true
				return
			}
			if gp.gcscandone {
				throw("g already scanned")
			}
			workDone += scanstack(gp, gcw)
			gp.gcscandone = true
			resumeG(stopped)

			if selfScan {
				casgstatus(userG, _Gwaiting, _Grunning)
			}
		})
	}
	if workCounter != nil && workDone != 0 {
		workCounter.Add(workDone)
		if flushBgCredit {
			gcFlushBgCredit(workDone)
		}
	}
	return workDone
}

// markrootBlock scans the shard'th shard of the block of memory [b0,
// b0+n0), with the given pointer mask.
//
// Returns the amount of work done.
//
//go:nowritebarrier
func markrootBlock(b0, n0 uintptr, ptrmask0 *uint8, gcw *gcWork, shard int) int64 {
	if rootBlockBytes%(8*goarch.PtrSize) != 0 {
		// This is necessary to pick byte offsets in ptrmask0.
		throw("rootBlockBytes must be a multiple of 8*ptrSize")
	}

	// Note that if b0 is toward the end of the address space,
	// then b0 + rootBlockBytes might wrap around.
	// These tests are written to avoid any possible overflow.
	off := uintptr(shard) * rootBlockBytes
	if off >= n0 {
		return 0
	}
	b := b0 + off
	ptrmask := (*uint8)(add(unsafe.Pointer(ptrmask0), uintptr(shard)*(rootBlockBytes/(8*goarch.PtrSize))))
	n := uintptr(rootBlockBytes)
	if off+n > n0 {
		n = n0 - off
	}

	// Scan this shard.
	scanblock(b, n, ptrmask, gcw, nil)
	return int64(n)
}

// markrootFreeGStacks frees stacks of dead Gs.
//
// This does not free stacks of dead Gs cached on Ps, but having a few
// cached stacks around isn't a problem.
func markrootFreeGStacks() {
	// Take list of dead Gs with stacks.
	lock(&sched.gFree.lock)
	list := sched.gFree.stack
	sched.gFree.stack = gList{}
	unlock(&sched.gFree.lock)
	if list.empty() {
		return
	}

	// Free stacks.
	q := gQueue{list.head, list.head}
	for gp := list.head.ptr(); gp != nil; gp = gp.schedlink.ptr() {
		stackfree(gp.stack)
		gp.stack.lo = 0
		gp.stack.hi = 0
		// Manipulate the queue directly since the Gs are
		// already all linked the right way.
		q.tail.set(gp)
	}

	// Put Gs back on the free list.
	lock(&sched.gFree.lock)
	sched.gFree.noStack.pushAll(q)
	unlock(&sched.gFree.lock)
}

// markrootSpans marks roots for one shard of markArenas.
//
//go:nowritebarrier
func markrootSpans(gcw *gcWork, shard int) {
	// Objects with finalizers have two GC-related invariants:
	//
	// 1) Everything reachable from the object must be marked.
	// This ensures that when we pass the object to its finalizer,
	// everything the finalizer can reach will be retained.
	//
	// 2) Finalizer specials (which are not in the garbage
	// collected heap) are roots. In practice, this means the fn
	// field must be scanned.
	sg := mheap_.sweepgen

	// Find the arena and page index into that arena for this shard.
	ai := mheap_.markArenas[shard/(pagesPerArena/pagesPerSpanRoot)]
	ha := mheap_.arenas[ai.l1()][ai.l2()]
	arenaPage := uint(uintptr(shard) * pagesPerSpanRoot % pagesPerArena)

	// Construct slice of bitmap which we'll iterate over.
	specialsbits := ha.pageSpecials[arenaPage/8:]
	specialsbits = specialsbits[:pagesPerSpanRoot/8]
	for i := range specialsbits {
		// Find set bits, which correspond to spans with specials.
		specials := atomic.Load8(&specialsbits[i])
		if specials == 0 {
			continue
		}
		for j := uint(0); j < 8; j++ {
			if specials&(1<<j) == 0 {
				continue
			}
			// Find the span for this bit.
			//
			// This value is guaranteed to be non-nil because having
			// specials implies that the span is in-use, and since we're
			// currently marking we can be sure that we don't have to worry
			// about the span being freed and re-used.
			s := ha.spans[arenaPage+uint(i)*8+j]

			// The state must be mSpanInUse if the specials bit is set, so
			// sanity check that.
			if state := s.state.get(); state != mSpanInUse {
				print("s.state = ", state, "\n")
				throw("non in-use span found with specials bit set")
			}
			// Check that this span was swept (it may be cached or uncached).
			if !useCheckmark && !(s.sweepgen == sg || s.sweepgen == sg+3) {
				// sweepgen was updated (+2) during non-checkmark GC pass
				print("sweep ", s.sweepgen, " ", sg, "\n")
				throw("gc: unswept span")
			}

			// Lock the specials to prevent a special from being
			// removed from the list while we're traversing it.
			lock(&s.speciallock)
			for sp := s.specials; sp != nil; sp = sp.next {
				if sp.kind != _KindSpecialFinalizer {
					continue
				}
				// don't mark finalized object, but scan it so we
				// retain everything it points to.
				spf := (*specialfinalizer)(unsafe.Pointer(sp))
				// A finalizer can be set for an inner byte of an object, find object beginning.
				p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize

				// Mark everything that can be reached from
				// the object (but *not* the object itself or
				// we'll never collect it).
				if !s.spanclass.noscan() {
					scanobject(p, gcw)
				}

				// The special itself is a root.
				scanblock(uintptr(unsafe.Pointer(&spf.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil)
			}
			unlock(&s.speciallock)
		}
	}
}

// gcAssistAlloc performs GC work to make gp's assist debt positive.
// gp must be the calling user goroutine.
//
// This must be called with preemption enabled.
func gcAssistAlloc(gp *g) {
	// Don't assist in non-preemptible contexts. These are
	// generally fragile and won't allow the assist to block.
	if getg() == gp.m.g0 {
		return
	}
	if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" {
		return
	}

	traced := false
retry:
	if go119MemoryLimitSupport && gcCPULimiter.limiting() {
		// If the CPU limiter is enabled, intentionally don't
		// assist to reduce the amount of CPU time spent in the GC.
		if traced {
			traceGCMarkAssistDone()
		}
		return
	}
	// Compute the amount of scan work we need to do to make the
	// balance positive. When the required amount of work is low,
	// we over-assist to build up credit for future allocations
	// and amortize the cost of assisting.
	assistWorkPerByte := gcController.assistWorkPerByte.Load()
	assistBytesPerWork := gcController.assistBytesPerWork.Load()
	debtBytes := -gp.gcAssistBytes
	scanWork := int64(assistWorkPerByte * float64(debtBytes))
	if scanWork < gcOverAssistWork {
		scanWork = gcOverAssistWork
		debtBytes = int64(assistBytesPerWork * float64(scanWork))
	}

	// Steal as much credit as we can from the background GC's
	// scan credit. This is racy and may drop the background
	// credit below 0 if two mutators steal at the same time. This
	// will just cause steals to fail until credit is accumulated
	// again, so in the long run it doesn't really matter, but we
	// do have to handle the negative credit case.
	bgScanCredit := gcController.bgScanCredit.Load()
	stolen := int64(0)
	if bgScanCredit > 0 {
		if bgScanCredit < scanWork {
			stolen = bgScanCredit
			gp.gcAssistBytes += 1 + int64(assistBytesPerWork*float64(stolen))
		} else {
			stolen = scanWork
			gp.gcAssistBytes += debtBytes
		}
		gcController.bgScanCredit.Add(-stolen)

		scanWork -= stolen

		if scanWork == 0 {
			// We were able to steal all of the credit we
			// needed.
			if traced {
				traceGCMarkAssistDone()
			}
			return
		}
	}

	if trace.enabled && !traced {
		traced = true
		traceGCMarkAssistStart()
	}

	// Perform assist work
	systemstack(func() {
		gcAssistAlloc1(gp, scanWork)
		// The user stack may have moved, so this can't touch
		// anything on it until it returns from systemstack.
	})

	completed := gp.param != nil
	gp.param = nil
	if completed {
		gcMarkDone()
	}

	if gp.gcAssistBytes < 0 {
		// We were unable steal enough credit or perform
		// enough work to pay off the assist debt. We need to
		// do one of these before letting the mutator allocate
		// more to prevent over-allocation.
		//
		// If this is because we were preempted, reschedule
		// and try some more.
		if gp.preempt {
			Gosched()
			goto retry
		}

		// Add this G to an assist queue and park. When the GC
		// has more background credit, it will satisfy queued
		// assists before flushing to the global credit pool.
		//
		// Note that this does *not* get woken up when more
		// work is added to the work list. The theory is that
		// there wasn't enough work to do anyway, so we might
		// as well let background marking take care of the
		// work that is available.
		if !gcParkAssist() {
			goto retry
		}

		// At this point either background GC has satisfied
		// this G's assist debt, or the GC cycle is over.
	}
	if traced {
		traceGCMarkAssistDone()
	}
}

// gcAssistAlloc1 is the part of gcAssistAlloc that runs on the system
// stack. This is a separate function to make it easier to see that
// we're not capturing anything from the user stack, since the user
// stack may move while we're in this function.
//
// gcAssistAlloc1 indicates whether this assist completed the mark
// phase by setting gp.param to non-nil. This can't be communicated on
// the stack since it may move.
//
//go:systemstack
func gcAssistAlloc1(gp *g, scanWork int64) {
	// Clear the flag indicating that this assist completed the
	// mark phase.
	gp.param = nil

	if atomic.Load(&gcBlackenEnabled) == 0 {
		// The gcBlackenEnabled check in malloc races with the
		// store that clears it but an atomic check in every malloc
		// would be a performance hit.
		// Instead we recheck it here on the non-preemptable system
		// stack to determine if we should perform an assist.

		// GC is done, so ignore any remaining debt.
		gp.gcAssistBytes = 0
		return
	}
	// Track time spent in this assist. Since we're on the
	// system stack, this is non-preemptible, so we can
	// just measure start and end time.
	//
	// Limiter event tracking might be disabled if we end up here
	// while on a mark worker.
	startTime := nanotime()
	trackLimiterEvent := gp.m.p.ptr().limiterEvent.start(limiterEventMarkAssist, startTime)

	decnwait := atomic.Xadd(&work.nwait, -1)
	if decnwait == work.nproc {
		println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc)
		throw("nwait > work.nprocs")
	}

	// gcDrainN requires the caller to be preemptible.
	casGToWaiting(gp, _Grunning, waitReasonGCAssistMarking)

	// drain own cached work first in the hopes that it
	// will be more cache friendly.
	gcw := &getg().m.p.ptr().gcw
	workDone := gcDrainN(gcw, scanWork)

	casgstatus(gp, _Gwaiting, _Grunning)

	// Record that we did this much scan work.
	//
	// Back out the number of bytes of assist credit that
	// this scan work counts for. The "1+" is a poor man's
	// round-up, to ensure this adds credit even if
	// assistBytesPerWork is very low.
	assistBytesPerWork := gcController.assistBytesPerWork.Load()
	gp.gcAssistBytes += 1 + int64(assistBytesPerWork*float64(workDone))

	// If this is the last worker and we ran out of work,
	// signal a completion point.
	incnwait := atomic.Xadd(&work.nwait, +1)
	if incnwait > work.nproc {
		println("runtime: work.nwait=", incnwait,
			"work.nproc=", work.nproc)
		throw("work.nwait > work.nproc")
	}

	if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
		// This has reached a background completion point. Set
		// gp.param to a non-nil value to indicate this. It
		// doesn't matter what we set it to (it just has to be
		// a valid pointer).
		gp.param = unsafe.Pointer(gp)
	}
	now := nanotime()
	duration := now - startTime
	pp := gp.m.p.ptr()
	pp.gcAssistTime += duration
	if trackLimiterEvent {
		pp.limiterEvent.stop(limiterEventMarkAssist, now)
	}
	if pp.gcAssistTime > gcAssistTimeSlack {
		gcController.assistTime.Add(pp.gcAssistTime)
		gcCPULimiter.update(now)
		pp.gcAssistTime = 0
	}
}

// gcWakeAllAssists wakes all currently blocked assists. This is used
// at the end of a GC cycle. gcBlackenEnabled must be false to prevent
// new assists from going to sleep after this point.
func gcWakeAllAssists() {
	lock(&work.assistQueue.lock)
	list := work.assistQueue.q.popList()
	injectglist(&list)
	unlock(&work.assistQueue.lock)
}

// gcParkAssist puts the current goroutine on the assist queue and parks.
//
// gcParkAssist reports whether the assist is now satisfied. If it
// returns false, the caller must retry the assist.
func gcParkAssist() bool {
	lock(&work.assistQueue.lock)
	// If the GC cycle finished while we were getting the lock,
	// exit the assist. The cycle can't finish while we hold the
	// lock.
	if atomic.Load(&gcBlackenEnabled) == 0 {
		unlock(&work.assistQueue.lock)
		return true
	}

	gp := getg()
	oldList := work.assistQueue.q
	work.assistQueue.q.pushBack(gp)

	// Recheck for background credit now that this G is in
	// the queue, but can still back out. This avoids a
	// race in case background marking has flushed more
	// credit since we checked above.
	if gcController.bgScanCredit.Load() > 0 {
		work.assistQueue.q = oldList
		if oldList.tail != 0 {
			oldList.tail.ptr().schedlink.set(nil)
		}
		unlock(&work.assistQueue.lock)
		return false
	}
	// Park.
	goparkunlock(&work.assistQueue.lock, waitReasonGCAssistWait, traceEvGoBlockGC, 2)
	return true
}

// gcFlushBgCredit flushes scanWork units of background scan work
// credit. This first satisfies blocked assists on the
// work.assistQueue and then flushes any remaining credit to
// gcController.bgScanCredit.
//
// Write barriers are disallowed because this is used by gcDrain after
// it has ensured that all work is drained and this must preserve that
// condition.
//
//go:nowritebarrierrec
func gcFlushBgCredit(scanWork int64) {
	if work.assistQueue.q.empty() {
		// Fast path; there are no blocked assists. There's a
		// small window here where an assist may add itself to
		// the blocked queue and park. If that happens, we'll
		// just get it on the next flush.
		gcController.bgScanCredit.Add(scanWork)
		return
	}

	assistBytesPerWork := gcController.assistBytesPerWork.Load()
	scanBytes := int64(float64(scanWork) * assistBytesPerWork)

	lock(&work.assistQueue.lock)
	for !work.assistQueue.q.empty() && scanBytes > 0 {
		gp := work.assistQueue.q.pop()
		// Note that gp.gcAssistBytes is negative because gp
		// is in debt. Think carefully about the signs below.
		if scanBytes+gp.gcAssistBytes >= 0 {
			// Satisfy this entire assist debt.
			scanBytes += gp.gcAssistBytes
			gp.gcAssistBytes = 0
			// It's important that we *not* put gp in
			// runnext. Otherwise, it's possible for user
			// code to exploit the GC worker's high
			// scheduler priority to get itself always run
			// before other goroutines and always in the
			// fresh quantum started by GC.
			ready(gp, 0, false)
		} else {
			// Partially satisfy this assist.
			gp.gcAssistBytes += scanBytes
			scanBytes = 0
			// As a heuristic, we move this assist to the
			// back of the queue so that large assists
			// can't clog up the assist queue and
			// substantially delay small assists.
			work.assistQueue.q.pushBack(gp)
			break
		}
	}

	if scanBytes > 0 {
		// Convert from scan bytes back to work.
		assistWorkPerByte := gcController.assistWorkPerByte.Load()
		scanWork = int64(float64(scanBytes) * assistWorkPerByte)
		gcController.bgScanCredit.Add(scanWork)
	}
	unlock(&work.assistQueue.lock)
}

// scanstack scans gp's stack, greying all pointers found on the stack.
//
// Returns the amount of scan work performed, but doesn't update
// gcController.stackScanWork or flush any credit. Any background credit produced
// by this function should be flushed by its caller. scanstack itself can't
// safely flush because it may result in trying to wake up a goroutine that
// was just scanned, resulting in a self-deadlock.
//
// scanstack will also shrink the stack if it is safe to do so. If it
// is not, it schedules a stack shrink for the next synchronous safe
// point.
//
// scanstack is marked go:systemstack because it must not be preempted
// while using a workbuf.
//
//go:nowritebarrier
//go:systemstack
func scanstack(gp *g, gcw *gcWork) int64 {
	if readgstatus(gp)&_Gscan == 0 {
		print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n")
		throw("scanstack - bad status")
	}

	switch readgstatus(gp) &^ _Gscan {
	default:
		print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
		throw("mark - bad status")
	case _Gdead:
		return 0
	case _Grunning:
		print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
		throw("scanstack: goroutine not stopped")
	case _Grunnable, _Gsyscall, _Gwaiting:
		// ok
	}

	if gp == getg() {
		throw("can't scan our own stack")
	}

	// scannedSize is the amount of work we'll be reporting.
	//
	// It is less than the allocated size (which is hi-lo).
	var sp uintptr
	if gp.syscallsp != 0 {
		sp = gp.syscallsp // If in a system call this is the stack pointer (gp.sched.sp can be 0 in this case on Windows).
	} else {
		sp = gp.sched.sp
	}
	scannedSize := gp.stack.hi - sp

	// Keep statistics for initial stack size calculation.
	// Note that this accumulates the scanned size, not the allocated size.
	p := getg().m.p.ptr()
	p.scannedStackSize += uint64(scannedSize)
	p.scannedStacks++

	if isShrinkStackSafe(gp) {
		// Shrink the stack if not much of it is being used.
		shrinkstack(gp)
	} else {
		// Otherwise, shrink the stack at the next sync safe point.
		gp.preemptShrink = true
	}

	var state stackScanState
	state.stack = gp.stack

	if stackTraceDebug {
		println("stack trace goroutine", gp.goid)
	}

	if debugScanConservative && gp.asyncSafePoint {
		print("scanning async preempted goroutine ", gp.goid, " stack [", hex(gp.stack.lo), ",", hex(gp.stack.hi), ")\n")
	}

	// Scan the saved context register. This is effectively a live
	// register that gets moved back and forth between the
	// register and sched.ctxt without a write barrier.
	if gp.sched.ctxt != nil {
		scanblock(uintptr(unsafe.Pointer(&gp.sched.ctxt)), goarch.PtrSize, &oneptrmask[0], gcw, &state)
	}

	// Scan the stack. Accumulate a list of stack objects.
	scanframe := func(frame *stkframe, unused unsafe.Pointer) bool {
		scanframeworker(frame, &state, gcw)
		return true
	}
	gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0)

	// Find additional pointers that point into the stack from the heap.
	// Currently this includes defers and panics. See also function copystack.

	// Find and trace other pointers in defer records.
	for d := gp._defer; d != nil; d = d.link {
		if d.fn != nil {
			// Scan the func value, which could be a stack allocated closure.
			// See issue 30453.
			scanblock(uintptr(unsafe.Pointer(&d.fn)), goarch.PtrSize, &oneptrmask[0], gcw, &state)
		}
		if d.link != nil {
			// The link field of a stack-allocated defer record might point
			// to a heap-allocated defer record. Keep that heap record live.
			scanblock(uintptr(unsafe.Pointer(&d.link)), goarch.PtrSize, &oneptrmask[0], gcw, &state)
		}
		// Retain defers records themselves.
		// Defer records might not be reachable from the G through regular heap
		// tracing because the defer linked list might weave between the stack and the heap.
		if d.heap {
			scanblock(uintptr(unsafe.Pointer(&d)), goarch.PtrSize, &oneptrmask[0], gcw, &state)
		}
	}
	if gp._panic != nil {
		// Panics are always stack allocated.
		state.putPtr(uintptr(unsafe.Pointer(gp._panic)), false)
	}

	// Find and scan all reachable stack objects.
	//
	// The state's pointer queue prioritizes precise pointers over
	// conservative pointers so that we'll prefer scanning stack
	// objects precisely.
	state.buildIndex()
	for {
		p, conservative := state.getPtr()
		if p == 0 {
			break
		}
		obj := state.findObject(p)
		if obj == nil {
			continue
		}
		r := obj.r
		if r == nil {
			// We've already scanned this object.
			continue
		}
		obj.setRecord(nil) // Don't scan it again.
		if stackTraceDebug {
			printlock()
			print("  live stkobj at", hex(state.stack.lo+uintptr(obj.off)), "of size", obj.size)
			if conservative {
				print(" (conservative)")
			}
			println()
			printunlock()
		}
		gcdata := r.gcdata()
		var s *mspan
		if r.useGCProg() {
			// This path is pretty unlikely, an object large enough
			// to have a GC program allocated on the stack.
			// We need some space to unpack the program into a straight
			// bitmask, which we allocate/free here.
			// TODO: it would be nice if there were a way to run a GC
			// program without having to store all its bits. We'd have
			// to change from a Lempel-Ziv style program to something else.
			// Or we can forbid putting objects on stacks if they require
			// a gc program (see issue 27447).
			s = materializeGCProg(r.ptrdata(), gcdata)
			gcdata = (*byte)(unsafe.Pointer(s.startAddr))
		}

		b := state.stack.lo + uintptr(obj.off)
		if conservative {
			scanConservative(b, r.ptrdata(), gcdata, gcw, &state)
		} else {
			scanblock(b, r.ptrdata(), gcdata, gcw, &state)
		}

		if s != nil {
			dematerializeGCProg(s)
		}
	}

	// Deallocate object buffers.
	// (Pointer buffers were all deallocated in the loop above.)
	for state.head != nil {
		x := state.head
		state.head = x.next
		if stackTraceDebug {
			for i := 0; i < x.nobj; i++ {
				obj := &x.obj[i]
				if obj.r == nil { // reachable
					continue
				}
				println("  dead stkobj at", hex(gp.stack.lo+uintptr(obj.off)), "of size", obj.r.size)
				// Note: not necessarily really dead - only reachable-from-ptr dead.
			}
		}
		x.nobj = 0
		putempty((*workbuf)(unsafe.Pointer(x)))
	}
	if state.buf != nil || state.cbuf != nil || state.freeBuf != nil {
		throw("remaining pointer buffers")
	}
	return int64(scannedSize)
}

// Scan a stack frame: local variables and function arguments/results.
//
//go:nowritebarrier
func scanframeworker(frame *stkframe, state *stackScanState, gcw *gcWork) {
	if _DebugGC > 1 && frame.continpc != 0 {
		print("scanframe ", funcname(frame.fn), "\n")
	}

	isAsyncPreempt := frame.fn.valid() && frame.fn.funcID == funcID_asyncPreempt
	isDebugCall := frame.fn.valid() && frame.fn.funcID == funcID_debugCallV2
	if state.conservative || isAsyncPreempt || isDebugCall {
		if debugScanConservative {
			println("conservatively scanning function", funcname(frame.fn), "at PC", hex(frame.continpc))
		}

		// Conservatively scan the frame. Unlike the precise
		// case, this includes the outgoing argument space
		// since we may have stopped while this function was
		// setting up a call.
		//
		// TODO: We could narrow this down if the compiler
		// produced a single map per function of stack slots
		// and registers that ever contain a pointer.
		if frame.varp != 0 {
			size := frame.varp - frame.sp
			if size > 0 {
				scanConservative(frame.sp, size, nil, gcw, state)
			}
		}

		// Scan arguments to this frame.
		if n := frame.argBytes(); n != 0 {
			// TODO: We could pass the entry argument map
			// to narrow this down further.
			scanConservative(frame.argp, n, nil, gcw, state)
		}

		if isAsyncPreempt || isDebugCall {
			// This function's frame contained the
			// registers for the asynchronously stopped
			// parent frame. Scan the parent
			// conservatively.
			state.conservative = true
		} else {
			// We only wanted to scan those two frames
			// conservatively. Clear the flag for future
			// frames.
			state.conservative = false
		}
		return
	}

	locals, args, objs := frame.getStackMap(&state.cache, false)

	// Scan local variables if stack frame has been allocated.
	if locals.n > 0 {
		size := uintptr(locals.n) * goarch.PtrSize
		scanblock(frame.varp-size, size, locals.bytedata, gcw, state)
	}

	// Scan arguments.
	if args.n > 0 {
		scanblock(frame.argp, uintptr(args.n)*goarch.PtrSize, args.bytedata, gcw, state)
	}

	// Add all stack objects to the stack object list.
	if frame.varp != 0 {
		// varp is 0 for defers, where there are no locals.
		// In that case, there can't be a pointer to its args, either.
		// (And all args would be scanned above anyway.)
		for i := range objs {
			obj := &objs[i]
			off := obj.off
			base := frame.varp // locals base pointer
			if off >= 0 {
				base = frame.argp // arguments and return values base pointer
			}
			ptr := base + uintptr(off)
			if ptr < frame.sp {
				// object hasn't been allocated in the frame yet.
				continue
			}
			if stackTraceDebug {
				println("stkobj at", hex(ptr), "of size", obj.size)
			}
			state.addObject(ptr, obj)
		}
	}
}

type gcDrainFlags int

const (
	gcDrainUntilPreempt gcDrainFlags = 1 << iota
	gcDrainFlushBgCredit
	gcDrainIdle
	gcDrainFractional
)

// gcDrain scans roots and objects in work buffers, blackening grey
// objects until it is unable to get more work. It may return before
// GC is done; it's the caller's responsibility to balance work from
// other Ps.
//
// If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt
// is set.
//
// If flags&gcDrainIdle != 0, gcDrain returns when there is other work
// to do.
//
// If flags&gcDrainFractional != 0, gcDrain self-preempts when
// pollFractionalWorkerExit() returns true. This implies
// gcDrainNoBlock.
//
// If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work
// credit to gcController.bgScanCredit every gcCreditSlack units of
// scan work.
//
// gcDrain will always return if there is a pending STW.
//
//go:nowritebarrier
func gcDrain(gcw *gcWork, flags gcDrainFlags) {
	if !writeBarrier.needed {
		throw("gcDrain phase incorrect")
	}

	gp := getg().m.curg
	preemptible := flags&gcDrainUntilPreempt != 0
	flushBgCredit := flags&gcDrainFlushBgCredit != 0
	idle := flags&gcDrainIdle != 0

	initScanWork := gcw.heapScanWork

	// checkWork is the scan work before performing the next
	// self-preempt check.
	checkWork := int64(1<<63 - 1)
	var check func() bool
	if flags&(gcDrainIdle|gcDrainFractional) != 0 {
		checkWork = initScanWork + drainCheckThreshold
		if idle {
			check = pollWork
		} else if flags&gcDrainFractional != 0 {
			check = pollFractionalWorkerExit
		}
	}

	// Drain root marking jobs.
	if work.markrootNext < work.markrootJobs {
		// Stop if we're preemptible or if someone wants to STW.
		for !(gp.preempt && (preemptible || sched.gcwaiting.Load())) {
			job := atomic.Xadd(&work.markrootNext, +1) - 1
			if job >= work.markrootJobs {
				break
			}
			markroot(gcw, job, flushBgCredit)
			if check != nil && check() {
				goto done
			}
		}
	}

	// Drain heap marking jobs.
	// Stop if we're preemptible or if someone wants to STW.
	for !(gp.preempt && (preemptible || sched.gcwaiting.Load())) {
		// Try to keep work available on the global queue. We used to
		// check if there were waiting workers, but it's better to
		// just keep work available than to make workers wait. In the
		// worst case, we'll do O(log(_WorkbufSize)) unnecessary
		// balances.
		if work.full == 0 {
			gcw.balance()
		}

		b := gcw.tryGetFast()
		if b == 0 {
			b = gcw.tryGet()
			if b == 0 {
				// Flush the write barrier
				// buffer; this may create
				// more work.
				wbBufFlush(nil, 0)
				b = gcw.tryGet()
			}
		}
		if b == 0 {
			// Unable to get work.
			break
		}
		scanobject(b, gcw)

		// Flush background scan work credit to the global
		// account if we've accumulated enough locally so
		// mutator assists can draw on it.
		if gcw.heapScanWork >= gcCreditSlack {
			gcController.heapScanWork.Add(gcw.heapScanWork)
			if flushBgCredit {
				gcFlushBgCredit(gcw.heapScanWork - initScanWork)
				initScanWork = 0
			}
			checkWork -= gcw.heapScanWork
			gcw.heapScanWork = 0

			if checkWork <= 0 {
				checkWork += drainCheckThreshold
				if check != nil && check() {
					break
				}
			}
		}
	}

done:
	// Flush remaining scan work credit.
	if gcw.heapScanWork > 0 {
		gcController.heapScanWork.Add(gcw.heapScanWork)
		if flushBgCredit {
			gcFlushBgCredit(gcw.heapScanWork - initScanWork)
		}
		gcw.heapScanWork = 0
	}
}

// gcDrainN blackens grey objects until it has performed roughly
// scanWork units of scan work or the G is preempted. This is
// best-effort, so it may perform less work if it fails to get a work
// buffer. Otherwise, it will perform at least n units of work, but
// may perform more because scanning is always done in whole object
// increments. It returns the amount of scan work performed.
//
// The caller goroutine must be in a preemptible state (e.g.,
// _Gwaiting) to prevent deadlocks during stack scanning. As a
// consequence, this must be called on the system stack.
//
//go:nowritebarrier
//go:systemstack
func gcDrainN(gcw *gcWork, scanWork int64) int64 {
	if !writeBarrier.needed {
		throw("gcDrainN phase incorrect")
	}

	// There may already be scan work on the gcw, which we don't
	// want to claim was done by this call.
	workFlushed := -gcw.heapScanWork

	// In addition to backing out because of a preemption, back out
	// if the GC CPU limiter is enabled.
	gp := getg().m.curg
	for !gp.preempt && !gcCPULimiter.limiting() && workFlushed+gcw.heapScanWork < scanWork {
		// See gcDrain comment.
		if work.full == 0 {
			gcw.balance()
		}

		b := gcw.tryGetFast()
		if b == 0 {
			b = gcw.tryGet()
			if b == 0 {
				// Flush the write barrier buffer;
				// this may create more work.
				wbBufFlush(nil, 0)
				b = gcw.tryGet()
			}
		}

		if b == 0 {
			// Try to do a root job.
			if work.markrootNext < work.markrootJobs {
				job := atomic.Xadd(&work.markrootNext, +1) - 1
				if job < work.markrootJobs {
					workFlushed += markroot(gcw, job, false)
					continue
				}
			}
			// No heap or root jobs.
			break
		}

		scanobject(b, gcw)

		// Flush background scan work credit.
		if gcw.heapScanWork >= gcCreditSlack {
			gcController.heapScanWork.Add(gcw.heapScanWork)
			workFlushed += gcw.heapScanWork
			gcw.heapScanWork = 0
		}
	}

	// Unlike gcDrain, there's no need to flush remaining work
	// here because this never flushes to bgScanCredit and
	// gcw.dispose will flush any remaining work to scanWork.

	return workFlushed + gcw.heapScanWork
}

// scanblock scans b as scanobject would, but using an explicit
// pointer bitmap instead of the heap bitmap.
//
// This is used to scan non-heap roots, so it does not update
// gcw.bytesMarked or gcw.heapScanWork.
//
// If stk != nil, possible stack pointers are also reported to stk.putPtr.
//
//go:nowritebarrier
func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork, stk *stackScanState) {
	// Use local copies of original parameters, so that a stack trace
	// due to one of the throws below shows the original block
	// base and extent.
	b := b0
	n := n0

	for i := uintptr(0); i < n; {
		// Find bits for the next word.
		bits := uint32(*addb(ptrmask, i/(goarch.PtrSize*8)))
		if bits == 0 {
			i += goarch.PtrSize * 8
			continue
		}
		for j := 0; j < 8 && i < n; j++ {
			if bits&1 != 0 {
				// Same work as in scanobject; see comments there.
				p := *(*uintptr)(unsafe.Pointer(b + i))
				if p != 0 {
					if obj, span, objIndex := findObject(p, b, i); obj != 0 {
						greyobject(obj, b, i, span, gcw, objIndex)
					} else if stk != nil && p >= stk.stack.lo && p < stk.stack.hi {
						stk.putPtr(p, false)
					}
				}
			}
			bits >>= 1
			i += goarch.PtrSize
		}
	}
}

// scanobject scans the object starting at b, adding pointers to gcw.
// b must point to the beginning of a heap object or an oblet.
// scanobject consults the GC bitmap for the pointer mask and the
// spans for the size of the object.
//
//go:nowritebarrier
func scanobject(b uintptr, gcw *gcWork) {
	// Prefetch object before we scan it.
	//
	// This will overlap fetching the beginning of the object with initial
	// setup before we start scanning the object.
	sys.Prefetch(b)

	// Find the bits for b and the size of the object at b.
	//
	// b is either the beginning of an object, in which case this
	// is the size of the object to scan, or it points to an
	// oblet, in which case we compute the size to scan below.
	s := spanOfUnchecked(b)
	n := s.elemsize
	if n == 0 {
		throw("scanobject n == 0")
	}
	if s.spanclass.noscan() {
		// Correctness-wise this is ok, but it's inefficient
		// if noscan objects reach here.
		throw("scanobject of a noscan object")
	}

	if n > maxObletBytes {
		// Large object. Break into oblets for better
		// parallelism and lower latency.
		if b == s.base() {
			// Enqueue the other oblets to scan later.
			// Some oblets may be in b's scalar tail, but
			// these will be marked as "no more pointers",
			// so we'll drop out immediately when we go to
			// scan those.
			for oblet := b + maxObletBytes; oblet < s.base()+s.elemsize; oblet += maxObletBytes {
				if !gcw.putFast(oblet) {
					gcw.put(oblet)
				}
			}
		}

		// Compute the size of the oblet. Since this object
		// must be a large object, s.base() is the beginning
		// of the object.
		n = s.base() + s.elemsize - b
		if n > maxObletBytes {
			n = maxObletBytes
		}
	}

	hbits := heapBitsForAddr(b, n)
	var scanSize uintptr
	for {
		var addr uintptr
		if hbits, addr = hbits.nextFast(); addr == 0 {
			if hbits, addr = hbits.next(); addr == 0 {
				break
			}
		}

		// Keep track of farthest pointer we found, so we can
		// update heapScanWork. TODO: is there a better metric,
		// now that we can skip scalar portions pretty efficiently?
		scanSize = addr - b + goarch.PtrSize

		// Work here is duplicated in scanblock and above.
		// If you make changes here, make changes there too.
		obj := *(*uintptr)(unsafe.Pointer(addr))

		// At this point we have extracted the next potential pointer.
		// Quickly filter out nil and pointers back to the current object.
		if obj != 0 && obj-b >= n {
			// Test if obj points into the Go heap and, if so,
			// mark the object.
			//
			// Note that it's possible for findObject to
			// fail if obj points to a just-allocated heap
			// object because of a race with growing the
			// heap. In this case, we know the object was
			// just allocated and hence will be marked by
			// allocation itself.
			if obj, span, objIndex := findObject(obj, b, addr-b); obj != 0 {
				greyobject(obj, b, addr-b, span, gcw, objIndex)
			}
		}
	}
	gcw.bytesMarked += uint64(n)
	gcw.heapScanWork += int64(scanSize)
}

// scanConservative scans block [b, b+n) conservatively, treating any
// pointer-like value in the block as a pointer.
//
// If ptrmask != nil, only words that are marked in ptrmask are
// considered as potential pointers.
//
// If state != nil, it's assumed that [b, b+n) is a block in the stack
// and may contain pointers to stack objects.
func scanConservative(b, n uintptr, ptrmask *uint8, gcw *gcWork, state *stackScanState) {
	if debugScanConservative {
		printlock()
		print("conservatively scanning [", hex(b), ",", hex(b+n), ")\n")
		hexdumpWords(b, b+n, func(p uintptr) byte {
			if ptrmask != nil {
				word := (p - b) / goarch.PtrSize
				bits := *addb(ptrmask, word/8)
				if (bits>>(word%8))&1 == 0 {
					return '$'
				}
			}

			val := *(*uintptr)(unsafe.Pointer(p))
			if state != nil && state.stack.lo <= val && val < state.stack.hi {
				return '@'
			}

			span := spanOfHeap(val)
			if span == nil {
				return ' '
			}
			idx := span.objIndex(val)
			if span.isFree(idx) {
				return ' '
			}
			return '*'
		})
		printunlock()
	}

	for i := uintptr(0); i < n; i += goarch.PtrSize {
		if ptrmask != nil {
			word := i / goarch.PtrSize
			bits := *addb(ptrmask, word/8)
			if bits == 0 {
				// Skip 8 words (the loop increment will do the 8th)
				//
				// This must be the first time we've
				// seen this word of ptrmask, so i
				// must be 8-word-aligned, but check
				// our reasoning just in case.
				if i%(goarch.PtrSize*8) != 0 {
					throw("misaligned mask")
				}
				i += goarch.PtrSize*8 - goarch.PtrSize
				continue
			}
			if (bits>>(word%8))&1 == 0 {
				continue
			}
		}

		val := *(*uintptr)(unsafe.Pointer(b + i))

		// Check if val points into the stack.
		if state != nil && state.stack.lo <= val && val < state.stack.hi {
			// val may point to a stack object. This
			// object may be dead from last cycle and
			// hence may contain pointers to unallocated
			// objects, but unlike heap objects we can't
			// tell if it's already dead. Hence, if all
			// pointers to this object are from
			// conservative scanning, we have to scan it
			// defensively, too.
			state.putPtr(val, true)
			continue
		}

		// Check if val points to a heap span.
		span := spanOfHeap(val)
		if span == nil {
			continue
		}

		// Check if val points to an allocated object.
		idx := span.objIndex(val)
		if span.isFree(idx) {
			continue
		}

		// val points to an allocated object. Mark it.
		obj := span.base() + idx*span.elemsize
		greyobject(obj, b, i, span, gcw, idx)
	}
}

// Shade the object if it isn't already.
// The object is not nil and known to be in the heap.
// Preemption must be disabled.
//
//go:nowritebarrier
func shade(b uintptr) {
	if obj, span, objIndex := findObject(b, 0, 0); obj != 0 {
		gcw := &getg().m.p.ptr().gcw
		greyobject(obj, 0, 0, span, gcw, objIndex)
	}
}

// obj is the start of an object with mark mbits.
// If it isn't already marked, mark it and enqueue into gcw.
// base and off are for debugging only and could be removed.
//
// See also wbBufFlush1, which partially duplicates this logic.
//
//go:nowritebarrierrec
func greyobject(obj, base, off uintptr, span *mspan, gcw *gcWork, objIndex uintptr) {
	// obj should be start of allocation, and so must be at least pointer-aligned.
	if obj&(goarch.PtrSize-1) != 0 {
		throw("greyobject: obj not pointer-aligned")
	}
	mbits := span.markBitsForIndex(objIndex)

	if useCheckmark {
		if setCheckmark(obj, base, off, mbits) {
			// Already marked.
			return
		}
	} else {
		if debug.gccheckmark > 0 && span.isFree(objIndex) {
			print("runtime: marking free object ", hex(obj), " found at *(", hex(base), "+", hex(off), ")\n")
			gcDumpObject("base", base, off)
			gcDumpObject("obj", obj, ^uintptr(0))
			getg().m.traceback = 2
			throw("marking free object")
		}

		// If marked we have nothing to do.
		if mbits.isMarked() {
			return
		}
		mbits.setMarked()

		// Mark span.
		arena, pageIdx, pageMask := pageIndexOf(span.base())
		if arena.pageMarks[pageIdx]&pageMask == 0 {
			atomic.Or8(&arena.pageMarks[pageIdx], pageMask)
		}

		// If this is a noscan object, fast-track it to black
		// instead of greying it.
		if span.spanclass.noscan() {
			gcw.bytesMarked += uint64(span.elemsize)
			return
		}
	}

	// We're adding obj to P's local workbuf, so it's likely
	// this object will be processed soon by the same P.
	// Even if the workbuf gets flushed, there will likely still be
	// some benefit on platforms with inclusive shared caches.
	sys.Prefetch(obj)
	// Queue the obj for scanning.
	if !gcw.putFast(obj) {
		gcw.put(obj)
	}
}

// gcDumpObject dumps the contents of obj for debugging and marks the
// field at byte offset off in obj.
func gcDumpObject(label string, obj, off uintptr) {
	s := spanOf(obj)
	print(label, "=", hex(obj))
	if s == nil {
		print(" s=nil\n")
		return
	}
	print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.spanclass=", s.spanclass, " s.elemsize=", s.elemsize, " s.state=")
	if state := s.state.get(); 0 <= state && int(state) < len(mSpanStateNames) {
		print(mSpanStateNames[state], "\n")
	} else {
		print("unknown(", state, ")\n")
	}

	skipped := false
	size := s.elemsize
	if s.state.get() == mSpanManual && size == 0 {
		// We're printing something from a stack frame. We
		// don't know how big it is, so just show up to an
		// including off.
		size = off + goarch.PtrSize
	}
	for i := uintptr(0); i < size; i += goarch.PtrSize {
		// For big objects, just print the beginning (because
		// that usually hints at the object's type) and the
		// fields around off.
		if !(i < 128*goarch.PtrSize || off-16*goarch.PtrSize < i && i < off+16*goarch.PtrSize) {
			skipped = true
			continue
		}
		if skipped {
			print(" ...\n")
			skipped = false
		}
		print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + i))))
		if i == off {
			print(" <==")
		}
		print("\n")
	}
	if skipped {
		print(" ...\n")
	}
}

// gcmarknewobject marks a newly allocated object black. obj must
// not contain any non-nil pointers.
//
// This is nosplit so it can manipulate a gcWork without preemption.
//
//go:nowritebarrier
//go:nosplit
func gcmarknewobject(span *mspan, obj, size uintptr) {
	if useCheckmark { // The world should be stopped so this should not happen.
		throw("gcmarknewobject called while doing checkmark")
	}

	// Mark object.
	objIndex := span.objIndex(obj)
	span.markBitsForIndex(objIndex).setMarked()

	// Mark span.
	arena, pageIdx, pageMask := pageIndexOf(span.base())
	if arena.pageMarks[pageIdx]&pageMask == 0 {
		atomic.Or8(&arena.pageMarks[pageIdx], pageMask)
	}

	gcw := &getg().m.p.ptr().gcw
	gcw.bytesMarked += uint64(size)
}

// gcMarkTinyAllocs greys all active tiny alloc blocks.
//
// The world must be stopped.
func gcMarkTinyAllocs() {
	assertWorldStopped()

	for _, p := range allp {
		c := p.mcache
		if c == nil || c.tiny == 0 {
			continue
		}
		_, span, objIndex := findObject(c.tiny, 0, 0)
		gcw := &p.gcw
		greyobject(c.tiny, 0, 0, span, gcw, objIndex)
	}
}