1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
const pageCachePages = 8 * unsafe.Sizeof(pageCache{}.cache)
// pageCache represents a per-p cache of pages the allocator can
// allocate from without a lock. More specifically, it represents
// a pageCachePages*pageSize chunk of memory with 0 or more free
// pages in it.
type pageCache struct {
base uintptr // base address of the chunk
cache uint64 // 64-bit bitmap representing free pages (1 means free)
scav uint64 // 64-bit bitmap representing scavenged pages (1 means scavenged)
}
// empty reports whether the page cache has no free pages.
func (c *pageCache) empty() bool {
return c.cache == 0
}
// alloc allocates npages from the page cache and is the main entry
// point for allocation.
//
// Returns a base address and the amount of scavenged memory in the
// allocated region in bytes.
//
// Returns a base address of zero on failure, in which case the
// amount of scavenged memory should be ignored.
func (c *pageCache) alloc(npages uintptr) (uintptr, uintptr) {
if c.cache == 0 {
return 0, 0
}
if npages == 1 {
i := uintptr(sys.TrailingZeros64(c.cache))
scav := (c.scav >> i) & 1
c.cache &^= 1 << i // set bit to mark in-use
c.scav &^= 1 << i // clear bit to mark unscavenged
return c.base + i*pageSize, uintptr(scav) * pageSize
}
return c.allocN(npages)
}
// allocN is a helper which attempts to allocate npages worth of pages
// from the cache. It represents the general case for allocating from
// the page cache.
//
// Returns a base address and the amount of scavenged memory in the
// allocated region in bytes.
func (c *pageCache) allocN(npages uintptr) (uintptr, uintptr) {
i := findBitRange64(c.cache, uint(npages))
if i >= 64 {
return 0, 0
}
mask := ((uint64(1) << npages) - 1) << i
scav := sys.OnesCount64(c.scav & mask)
c.cache &^= mask // mark in-use bits
c.scav &^= mask // clear scavenged bits
return c.base + uintptr(i*pageSize), uintptr(scav) * pageSize
}
// flush empties out unallocated free pages in the given cache
// into s. Then, it clears the cache, such that empty returns
// true.
//
// p.mheapLock must be held.
//
// Must run on the system stack because p.mheapLock must be held.
//
//go:systemstack
func (c *pageCache) flush(p *pageAlloc) {
assertLockHeld(p.mheapLock)
if c.empty() {
return
}
ci := chunkIndex(c.base)
pi := chunkPageIndex(c.base)
// This method is called very infrequently, so just do the
// slower, safer thing by iterating over each bit individually.
for i := uint(0); i < 64; i++ {
if c.cache&(1<<i) != 0 {
p.chunkOf(ci).free1(pi + i)
}
if c.scav&(1<<i) != 0 {
p.chunkOf(ci).scavenged.setRange(pi+i, 1)
}
}
// Since this is a lot like a free, we need to make sure
// we update the searchAddr just like free does.
if b := (offAddr{c.base}); b.lessThan(p.searchAddr) {
p.searchAddr = b
}
p.update(c.base, pageCachePages, false, false)
*c = pageCache{}
}
// allocToCache acquires a pageCachePages-aligned chunk of free pages which
// may not be contiguous, and returns a pageCache structure which owns the
// chunk.
//
// p.mheapLock must be held.
//
// Must run on the system stack because p.mheapLock must be held.
//
//go:systemstack
func (p *pageAlloc) allocToCache() pageCache {
assertLockHeld(p.mheapLock)
// If the searchAddr refers to a region which has a higher address than
// any known chunk, then we know we're out of memory.
if chunkIndex(p.searchAddr.addr()) >= p.end {
return pageCache{}
}
c := pageCache{}
ci := chunkIndex(p.searchAddr.addr()) // chunk index
var chunk *pallocData
if p.summary[len(p.summary)-1][ci] != 0 {
// Fast path: there's free pages at or near the searchAddr address.
chunk = p.chunkOf(ci)
j, _ := chunk.find(1, chunkPageIndex(p.searchAddr.addr()))
if j == ^uint(0) {
throw("bad summary data")
}
c = pageCache{
base: chunkBase(ci) + alignDown(uintptr(j), 64)*pageSize,
cache: ^chunk.pages64(j),
scav: chunk.scavenged.block64(j),
}
} else {
// Slow path: the searchAddr address had nothing there, so go find
// the first free page the slow way.
addr, _ := p.find(1)
if addr == 0 {
// We failed to find adequate free space, so mark the searchAddr as OoM
// and return an empty pageCache.
p.searchAddr = maxSearchAddr()
return pageCache{}
}
ci := chunkIndex(addr)
chunk = p.chunkOf(ci)
c = pageCache{
base: alignDown(addr, 64*pageSize),
cache: ^chunk.pages64(chunkPageIndex(addr)),
scav: chunk.scavenged.block64(chunkPageIndex(addr)),
}
}
// Set the page bits as allocated and clear the scavenged bits, but
// be careful to only set and clear the relevant bits.
cpi := chunkPageIndex(c.base)
chunk.allocPages64(cpi, c.cache)
chunk.scavenged.clearBlock64(cpi, c.cache&c.scav /* free and scavenged */)
// Update as an allocation, but note that it's not contiguous.
p.update(c.base, pageCachePages, false, true)
// Set the search address to the last page represented by the cache.
// Since all of the pages in this block are going to the cache, and we
// searched for the first free page, we can confidently start at the
// next page.
//
// However, p.searchAddr is not allowed to point into unmapped heap memory
// unless it is maxSearchAddr, so make it the last page as opposed to
// the page after.
p.searchAddr = offAddr{c.base + pageSize*(pageCachePages-1)}
return c
}
|