summaryrefslogtreecommitdiffstats
path: root/src/strings/strings.go
blob: 646161fdda72ac302c7305518d918c26dc72690d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package strings implements simple functions to manipulate UTF-8 encoded strings.
//
// For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
package strings

import (
	"internal/bytealg"
	"unicode"
	"unicode/utf8"
)

// explode splits s into a slice of UTF-8 strings,
// one string per Unicode character up to a maximum of n (n < 0 means no limit).
// Invalid UTF-8 bytes are sliced individually.
func explode(s string, n int) []string {
	l := utf8.RuneCountInString(s)
	if n < 0 || n > l {
		n = l
	}
	a := make([]string, n)
	for i := 0; i < n-1; i++ {
		_, size := utf8.DecodeRuneInString(s)
		a[i] = s[:size]
		s = s[size:]
	}
	if n > 0 {
		a[n-1] = s
	}
	return a
}

// Count counts the number of non-overlapping instances of substr in s.
// If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
func Count(s, substr string) int {
	// special case
	if len(substr) == 0 {
		return utf8.RuneCountInString(s) + 1
	}
	if len(substr) == 1 {
		return bytealg.CountString(s, substr[0])
	}
	n := 0
	for {
		i := Index(s, substr)
		if i == -1 {
			return n
		}
		n++
		s = s[i+len(substr):]
	}
}

// Contains reports whether substr is within s.
func Contains(s, substr string) bool {
	return Index(s, substr) >= 0
}

// ContainsAny reports whether any Unicode code points in chars are within s.
func ContainsAny(s, chars string) bool {
	return IndexAny(s, chars) >= 0
}

// ContainsRune reports whether the Unicode code point r is within s.
func ContainsRune(s string, r rune) bool {
	return IndexRune(s, r) >= 0
}

// LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
func LastIndex(s, substr string) int {
	n := len(substr)
	switch {
	case n == 0:
		return len(s)
	case n == 1:
		return LastIndexByte(s, substr[0])
	case n == len(s):
		if substr == s {
			return 0
		}
		return -1
	case n > len(s):
		return -1
	}
	// Rabin-Karp search from the end of the string
	hashss, pow := bytealg.HashStrRev(substr)
	last := len(s) - n
	var h uint32
	for i := len(s) - 1; i >= last; i-- {
		h = h*bytealg.PrimeRK + uint32(s[i])
	}
	if h == hashss && s[last:] == substr {
		return last
	}
	for i := last - 1; i >= 0; i-- {
		h *= bytealg.PrimeRK
		h += uint32(s[i])
		h -= pow * uint32(s[i+n])
		if h == hashss && s[i:i+n] == substr {
			return i
		}
	}
	return -1
}

// IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
func IndexByte(s string, c byte) int {
	return bytealg.IndexByteString(s, c)
}

// IndexRune returns the index of the first instance of the Unicode code point
// r, or -1 if rune is not present in s.
// If r is utf8.RuneError, it returns the first instance of any
// invalid UTF-8 byte sequence.
func IndexRune(s string, r rune) int {
	switch {
	case 0 <= r && r < utf8.RuneSelf:
		return IndexByte(s, byte(r))
	case r == utf8.RuneError:
		for i, r := range s {
			if r == utf8.RuneError {
				return i
			}
		}
		return -1
	case !utf8.ValidRune(r):
		return -1
	default:
		return Index(s, string(r))
	}
}

// IndexAny returns the index of the first instance of any Unicode code point
// from chars in s, or -1 if no Unicode code point from chars is present in s.
func IndexAny(s, chars string) int {
	if chars == "" {
		// Avoid scanning all of s.
		return -1
	}
	if len(chars) == 1 {
		// Avoid scanning all of s.
		r := rune(chars[0])
		if r >= utf8.RuneSelf {
			r = utf8.RuneError
		}
		return IndexRune(s, r)
	}
	if len(s) > 8 {
		if as, isASCII := makeASCIISet(chars); isASCII {
			for i := 0; i < len(s); i++ {
				if as.contains(s[i]) {
					return i
				}
			}
			return -1
		}
	}
	for i, c := range s {
		if IndexRune(chars, c) >= 0 {
			return i
		}
	}
	return -1
}

// LastIndexAny returns the index of the last instance of any Unicode code
// point from chars in s, or -1 if no Unicode code point from chars is
// present in s.
func LastIndexAny(s, chars string) int {
	if chars == "" {
		// Avoid scanning all of s.
		return -1
	}
	if len(s) == 1 {
		rc := rune(s[0])
		if rc >= utf8.RuneSelf {
			rc = utf8.RuneError
		}
		if IndexRune(chars, rc) >= 0 {
			return 0
		}
		return -1
	}
	if len(s) > 8 {
		if as, isASCII := makeASCIISet(chars); isASCII {
			for i := len(s) - 1; i >= 0; i-- {
				if as.contains(s[i]) {
					return i
				}
			}
			return -1
		}
	}
	if len(chars) == 1 {
		rc := rune(chars[0])
		if rc >= utf8.RuneSelf {
			rc = utf8.RuneError
		}
		for i := len(s); i > 0; {
			r, size := utf8.DecodeLastRuneInString(s[:i])
			i -= size
			if rc == r {
				return i
			}
		}
		return -1
	}
	for i := len(s); i > 0; {
		r, size := utf8.DecodeLastRuneInString(s[:i])
		i -= size
		if IndexRune(chars, r) >= 0 {
			return i
		}
	}
	return -1
}

// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
func LastIndexByte(s string, c byte) int {
	for i := len(s) - 1; i >= 0; i-- {
		if s[i] == c {
			return i
		}
	}
	return -1
}

// Generic split: splits after each instance of sep,
// including sepSave bytes of sep in the subarrays.
func genSplit(s, sep string, sepSave, n int) []string {
	if n == 0 {
		return nil
	}
	if sep == "" {
		return explode(s, n)
	}
	if n < 0 {
		n = Count(s, sep) + 1
	}

	if n > len(s)+1 {
		n = len(s) + 1
	}
	a := make([]string, n)
	n--
	i := 0
	for i < n {
		m := Index(s, sep)
		if m < 0 {
			break
		}
		a[i] = s[:m+sepSave]
		s = s[m+len(sep):]
		i++
	}
	a[i] = s
	return a[:i+1]
}

// SplitN slices s into substrings separated by sep and returns a slice of
// the substrings between those separators.
//
// The count determines the number of substrings to return:
//
//	n > 0: at most n substrings; the last substring will be the unsplit remainder.
//	n == 0: the result is nil (zero substrings)
//	n < 0: all substrings
//
// Edge cases for s and sep (for example, empty strings) are handled
// as described in the documentation for Split.
//
// To split around the first instance of a separator, see Cut.
func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }

// SplitAfterN slices s into substrings after each instance of sep and
// returns a slice of those substrings.
//
// The count determines the number of substrings to return:
//
//	n > 0: at most n substrings; the last substring will be the unsplit remainder.
//	n == 0: the result is nil (zero substrings)
//	n < 0: all substrings
//
// Edge cases for s and sep (for example, empty strings) are handled
// as described in the documentation for SplitAfter.
func SplitAfterN(s, sep string, n int) []string {
	return genSplit(s, sep, len(sep), n)
}

// Split slices s into all substrings separated by sep and returns a slice of
// the substrings between those separators.
//
// If s does not contain sep and sep is not empty, Split returns a
// slice of length 1 whose only element is s.
//
// If sep is empty, Split splits after each UTF-8 sequence. If both s
// and sep are empty, Split returns an empty slice.
//
// It is equivalent to SplitN with a count of -1.
//
// To split around the first instance of a separator, see Cut.
func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }

// SplitAfter slices s into all substrings after each instance of sep and
// returns a slice of those substrings.
//
// If s does not contain sep and sep is not empty, SplitAfter returns
// a slice of length 1 whose only element is s.
//
// If sep is empty, SplitAfter splits after each UTF-8 sequence. If
// both s and sep are empty, SplitAfter returns an empty slice.
//
// It is equivalent to SplitAfterN with a count of -1.
func SplitAfter(s, sep string) []string {
	return genSplit(s, sep, len(sep), -1)
}

var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}

// Fields splits the string s around each instance of one or more consecutive white space
// characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
// empty slice if s contains only white space.
func Fields(s string) []string {
	// First count the fields.
	// This is an exact count if s is ASCII, otherwise it is an approximation.
	n := 0
	wasSpace := 1
	// setBits is used to track which bits are set in the bytes of s.
	setBits := uint8(0)
	for i := 0; i < len(s); i++ {
		r := s[i]
		setBits |= r
		isSpace := int(asciiSpace[r])
		n += wasSpace & ^isSpace
		wasSpace = isSpace
	}

	if setBits >= utf8.RuneSelf {
		// Some runes in the input string are not ASCII.
		return FieldsFunc(s, unicode.IsSpace)
	}
	// ASCII fast path
	a := make([]string, n)
	na := 0
	fieldStart := 0
	i := 0
	// Skip spaces in the front of the input.
	for i < len(s) && asciiSpace[s[i]] != 0 {
		i++
	}
	fieldStart = i
	for i < len(s) {
		if asciiSpace[s[i]] == 0 {
			i++
			continue
		}
		a[na] = s[fieldStart:i]
		na++
		i++
		// Skip spaces in between fields.
		for i < len(s) && asciiSpace[s[i]] != 0 {
			i++
		}
		fieldStart = i
	}
	if fieldStart < len(s) { // Last field might end at EOF.
		a[na] = s[fieldStart:]
	}
	return a
}

// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
// and returns an array of slices of s. If all code points in s satisfy f(c) or the
// string is empty, an empty slice is returned.
//
// FieldsFunc makes no guarantees about the order in which it calls f(c)
// and assumes that f always returns the same value for a given c.
func FieldsFunc(s string, f func(rune) bool) []string {
	// A span is used to record a slice of s of the form s[start:end].
	// The start index is inclusive and the end index is exclusive.
	type span struct {
		start int
		end   int
	}
	spans := make([]span, 0, 32)

	// Find the field start and end indices.
	// Doing this in a separate pass (rather than slicing the string s
	// and collecting the result substrings right away) is significantly
	// more efficient, possibly due to cache effects.
	start := -1 // valid span start if >= 0
	for end, rune := range s {
		if f(rune) {
			if start >= 0 {
				spans = append(spans, span{start, end})
				// Set start to a negative value.
				// Note: using -1 here consistently and reproducibly
				// slows down this code by a several percent on amd64.
				start = ^start
			}
		} else {
			if start < 0 {
				start = end
			}
		}
	}

	// Last field might end at EOF.
	if start >= 0 {
		spans = append(spans, span{start, len(s)})
	}

	// Create strings from recorded field indices.
	a := make([]string, len(spans))
	for i, span := range spans {
		a[i] = s[span.start:span.end]
	}

	return a
}

// Join concatenates the elements of its first argument to create a single string. The separator
// string sep is placed between elements in the resulting string.
func Join(elems []string, sep string) string {
	switch len(elems) {
	case 0:
		return ""
	case 1:
		return elems[0]
	}
	n := len(sep) * (len(elems) - 1)
	for i := 0; i < len(elems); i++ {
		n += len(elems[i])
	}

	var b Builder
	b.Grow(n)
	b.WriteString(elems[0])
	for _, s := range elems[1:] {
		b.WriteString(sep)
		b.WriteString(s)
	}
	return b.String()
}

// HasPrefix tests whether the string s begins with prefix.
func HasPrefix(s, prefix string) bool {
	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
}

// HasSuffix tests whether the string s ends with suffix.
func HasSuffix(s, suffix string) bool {
	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}

// Map returns a copy of the string s with all its characters modified
// according to the mapping function. If mapping returns a negative value, the character is
// dropped from the string with no replacement.
func Map(mapping func(rune) rune, s string) string {
	// In the worst case, the string can grow when mapped, making
	// things unpleasant. But it's so rare we barge in assuming it's
	// fine. It could also shrink but that falls out naturally.

	// The output buffer b is initialized on demand, the first
	// time a character differs.
	var b Builder

	for i, c := range s {
		r := mapping(c)
		if r == c && c != utf8.RuneError {
			continue
		}

		var width int
		if c == utf8.RuneError {
			c, width = utf8.DecodeRuneInString(s[i:])
			if width != 1 && r == c {
				continue
			}
		} else {
			width = utf8.RuneLen(c)
		}

		b.Grow(len(s) + utf8.UTFMax)
		b.WriteString(s[:i])
		if r >= 0 {
			b.WriteRune(r)
		}

		s = s[i+width:]
		break
	}

	// Fast path for unchanged input
	if b.Cap() == 0 { // didn't call b.Grow above
		return s
	}

	for _, c := range s {
		r := mapping(c)

		if r >= 0 {
			// common case
			// Due to inlining, it is more performant to determine if WriteByte should be
			// invoked rather than always call WriteRune
			if r < utf8.RuneSelf {
				b.WriteByte(byte(r))
			} else {
				// r is not a ASCII rune.
				b.WriteRune(r)
			}
		}
	}

	return b.String()
}

// Repeat returns a new string consisting of count copies of the string s.
//
// It panics if count is negative or if the result of (len(s) * count)
// overflows.
func Repeat(s string, count int) string {
	switch count {
	case 0:
		return ""
	case 1:
		return s
	}

	// Since we cannot return an error on overflow,
	// we should panic if the repeat will generate
	// an overflow.
	// See golang.org/issue/16237.
	if count < 0 {
		panic("strings: negative Repeat count")
	} else if len(s)*count/count != len(s) {
		panic("strings: Repeat count causes overflow")
	}

	if len(s) == 0 {
		return ""
	}

	n := len(s) * count

	// Past a certain chunk size it is counterproductive to use
	// larger chunks as the source of the write, as when the source
	// is too large we are basically just thrashing the CPU D-cache.
	// So if the result length is larger than an empirically-found
	// limit (8KB), we stop growing the source string once the limit
	// is reached and keep reusing the same source string - that
	// should therefore be always resident in the L1 cache - until we
	// have completed the construction of the result.
	// This yields significant speedups (up to +100%) in cases where
	// the result length is large (roughly, over L2 cache size).
	const chunkLimit = 8 * 1024
	chunkMax := n
	if n > chunkLimit {
		chunkMax = chunkLimit / len(s) * len(s)
		if chunkMax == 0 {
			chunkMax = len(s)
		}
	}

	var b Builder
	b.Grow(n)
	b.WriteString(s)
	for b.Len() < n {
		chunk := n - b.Len()
		if chunk > b.Len() {
			chunk = b.Len()
		}
		if chunk > chunkMax {
			chunk = chunkMax
		}
		b.WriteString(b.String()[:chunk])
	}
	return b.String()
}

// ToUpper returns s with all Unicode letters mapped to their upper case.
func ToUpper(s string) string {
	isASCII, hasLower := true, false
	for i := 0; i < len(s); i++ {
		c := s[i]
		if c >= utf8.RuneSelf {
			isASCII = false
			break
		}
		hasLower = hasLower || ('a' <= c && c <= 'z')
	}

	if isASCII { // optimize for ASCII-only strings.
		if !hasLower {
			return s
		}
		var (
			b   Builder
			pos int
		)
		b.Grow(len(s))
		for i := 0; i < len(s); i++ {
			c := s[i]
			if 'a' <= c && c <= 'z' {
				c -= 'a' - 'A'
				if pos < i {
					b.WriteString(s[pos:i])
				}
				b.WriteByte(c)
				pos = i + 1
			}
		}
		if pos < len(s) {
			b.WriteString(s[pos:])
		}
		return b.String()
	}
	return Map(unicode.ToUpper, s)
}

// ToLower returns s with all Unicode letters mapped to their lower case.
func ToLower(s string) string {
	isASCII, hasUpper := true, false
	for i := 0; i < len(s); i++ {
		c := s[i]
		if c >= utf8.RuneSelf {
			isASCII = false
			break
		}
		hasUpper = hasUpper || ('A' <= c && c <= 'Z')
	}

	if isASCII { // optimize for ASCII-only strings.
		if !hasUpper {
			return s
		}
		var (
			b   Builder
			pos int
		)
		b.Grow(len(s))
		for i := 0; i < len(s); i++ {
			c := s[i]
			if 'A' <= c && c <= 'Z' {
				c += 'a' - 'A'
				if pos < i {
					b.WriteString(s[pos:i])
				}
				b.WriteByte(c)
				pos = i + 1
			}
		}
		if pos < len(s) {
			b.WriteString(s[pos:])
		}
		return b.String()
	}
	return Map(unicode.ToLower, s)
}

// ToTitle returns a copy of the string s with all Unicode letters mapped to
// their Unicode title case.
func ToTitle(s string) string { return Map(unicode.ToTitle, s) }

// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
// upper case using the case mapping specified by c.
func ToUpperSpecial(c unicode.SpecialCase, s string) string {
	return Map(c.ToUpper, s)
}

// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
// lower case using the case mapping specified by c.
func ToLowerSpecial(c unicode.SpecialCase, s string) string {
	return Map(c.ToLower, s)
}

// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
// Unicode title case, giving priority to the special casing rules.
func ToTitleSpecial(c unicode.SpecialCase, s string) string {
	return Map(c.ToTitle, s)
}

// ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences
// replaced by the replacement string, which may be empty.
func ToValidUTF8(s, replacement string) string {
	var b Builder

	for i, c := range s {
		if c != utf8.RuneError {
			continue
		}

		_, wid := utf8.DecodeRuneInString(s[i:])
		if wid == 1 {
			b.Grow(len(s) + len(replacement))
			b.WriteString(s[:i])
			s = s[i:]
			break
		}
	}

	// Fast path for unchanged input
	if b.Cap() == 0 { // didn't call b.Grow above
		return s
	}

	invalid := false // previous byte was from an invalid UTF-8 sequence
	for i := 0; i < len(s); {
		c := s[i]
		if c < utf8.RuneSelf {
			i++
			invalid = false
			b.WriteByte(c)
			continue
		}
		_, wid := utf8.DecodeRuneInString(s[i:])
		if wid == 1 {
			i++
			if !invalid {
				invalid = true
				b.WriteString(replacement)
			}
			continue
		}
		invalid = false
		b.WriteString(s[i : i+wid])
		i += wid
	}

	return b.String()
}

// isSeparator reports whether the rune could mark a word boundary.
// TODO: update when package unicode captures more of the properties.
func isSeparator(r rune) bool {
	// ASCII alphanumerics and underscore are not separators
	if r <= 0x7F {
		switch {
		case '0' <= r && r <= '9':
			return false
		case 'a' <= r && r <= 'z':
			return false
		case 'A' <= r && r <= 'Z':
			return false
		case r == '_':
			return false
		}
		return true
	}
	// Letters and digits are not separators
	if unicode.IsLetter(r) || unicode.IsDigit(r) {
		return false
	}
	// Otherwise, all we can do for now is treat spaces as separators.
	return unicode.IsSpace(r)
}

// Title returns a copy of the string s with all Unicode letters that begin words
// mapped to their Unicode title case.
//
// Deprecated: The rule Title uses for word boundaries does not handle Unicode
// punctuation properly. Use golang.org/x/text/cases instead.
func Title(s string) string {
	// Use a closure here to remember state.
	// Hackish but effective. Depends on Map scanning in order and calling
	// the closure once per rune.
	prev := ' '
	return Map(
		func(r rune) rune {
			if isSeparator(prev) {
				prev = r
				return unicode.ToTitle(r)
			}
			prev = r
			return r
		},
		s)
}

// TrimLeftFunc returns a slice of the string s with all leading
// Unicode code points c satisfying f(c) removed.
func TrimLeftFunc(s string, f func(rune) bool) string {
	i := indexFunc(s, f, false)
	if i == -1 {
		return ""
	}
	return s[i:]
}

// TrimRightFunc returns a slice of the string s with all trailing
// Unicode code points c satisfying f(c) removed.
func TrimRightFunc(s string, f func(rune) bool) string {
	i := lastIndexFunc(s, f, false)
	if i >= 0 && s[i] >= utf8.RuneSelf {
		_, wid := utf8.DecodeRuneInString(s[i:])
		i += wid
	} else {
		i++
	}
	return s[0:i]
}

// TrimFunc returns a slice of the string s with all leading
// and trailing Unicode code points c satisfying f(c) removed.
func TrimFunc(s string, f func(rune) bool) string {
	return TrimRightFunc(TrimLeftFunc(s, f), f)
}

// IndexFunc returns the index into s of the first Unicode
// code point satisfying f(c), or -1 if none do.
func IndexFunc(s string, f func(rune) bool) int {
	return indexFunc(s, f, true)
}

// LastIndexFunc returns the index into s of the last
// Unicode code point satisfying f(c), or -1 if none do.
func LastIndexFunc(s string, f func(rune) bool) int {
	return lastIndexFunc(s, f, true)
}

// indexFunc is the same as IndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func indexFunc(s string, f func(rune) bool, truth bool) int {
	for i, r := range s {
		if f(r) == truth {
			return i
		}
	}
	return -1
}

// lastIndexFunc is the same as LastIndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
	for i := len(s); i > 0; {
		r, size := utf8.DecodeLastRuneInString(s[0:i])
		i -= size
		if f(r) == truth {
			return i
		}
	}
	return -1
}

// asciiSet is a 32-byte value, where each bit represents the presence of a
// given ASCII character in the set. The 128-bits of the lower 16 bytes,
// starting with the least-significant bit of the lowest word to the
// most-significant bit of the highest word, map to the full range of all
// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
// ensuring that any non-ASCII character will be reported as not in the set.
// This allocates a total of 32 bytes even though the upper half
// is unused to avoid bounds checks in asciiSet.contains.
type asciiSet [8]uint32

// makeASCIISet creates a set of ASCII characters and reports whether all
// characters in chars are ASCII.
func makeASCIISet(chars string) (as asciiSet, ok bool) {
	for i := 0; i < len(chars); i++ {
		c := chars[i]
		if c >= utf8.RuneSelf {
			return as, false
		}
		as[c/32] |= 1 << (c % 32)
	}
	return as, true
}

// contains reports whether c is inside the set.
func (as *asciiSet) contains(c byte) bool {
	return (as[c/32] & (1 << (c % 32))) != 0
}

// Trim returns a slice of the string s with all leading and
// trailing Unicode code points contained in cutset removed.
func Trim(s, cutset string) string {
	if s == "" || cutset == "" {
		return s
	}
	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
		return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0])
	}
	if as, ok := makeASCIISet(cutset); ok {
		return trimLeftASCII(trimRightASCII(s, &as), &as)
	}
	return trimLeftUnicode(trimRightUnicode(s, cutset), cutset)
}

// TrimLeft returns a slice of the string s with all leading
// Unicode code points contained in cutset removed.
//
// To remove a prefix, use TrimPrefix instead.
func TrimLeft(s, cutset string) string {
	if s == "" || cutset == "" {
		return s
	}
	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
		return trimLeftByte(s, cutset[0])
	}
	if as, ok := makeASCIISet(cutset); ok {
		return trimLeftASCII(s, &as)
	}
	return trimLeftUnicode(s, cutset)
}

func trimLeftByte(s string, c byte) string {
	for len(s) > 0 && s[0] == c {
		s = s[1:]
	}
	return s
}

func trimLeftASCII(s string, as *asciiSet) string {
	for len(s) > 0 {
		if !as.contains(s[0]) {
			break
		}
		s = s[1:]
	}
	return s
}

func trimLeftUnicode(s, cutset string) string {
	for len(s) > 0 {
		r, n := rune(s[0]), 1
		if r >= utf8.RuneSelf {
			r, n = utf8.DecodeRuneInString(s)
		}
		if !ContainsRune(cutset, r) {
			break
		}
		s = s[n:]
	}
	return s
}

// TrimRight returns a slice of the string s, with all trailing
// Unicode code points contained in cutset removed.
//
// To remove a suffix, use TrimSuffix instead.
func TrimRight(s, cutset string) string {
	if s == "" || cutset == "" {
		return s
	}
	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
		return trimRightByte(s, cutset[0])
	}
	if as, ok := makeASCIISet(cutset); ok {
		return trimRightASCII(s, &as)
	}
	return trimRightUnicode(s, cutset)
}

func trimRightByte(s string, c byte) string {
	for len(s) > 0 && s[len(s)-1] == c {
		s = s[:len(s)-1]
	}
	return s
}

func trimRightASCII(s string, as *asciiSet) string {
	for len(s) > 0 {
		if !as.contains(s[len(s)-1]) {
			break
		}
		s = s[:len(s)-1]
	}
	return s
}

func trimRightUnicode(s, cutset string) string {
	for len(s) > 0 {
		r, n := rune(s[len(s)-1]), 1
		if r >= utf8.RuneSelf {
			r, n = utf8.DecodeLastRuneInString(s)
		}
		if !ContainsRune(cutset, r) {
			break
		}
		s = s[:len(s)-n]
	}
	return s
}

// TrimSpace returns a slice of the string s, with all leading
// and trailing white space removed, as defined by Unicode.
func TrimSpace(s string) string {
	// Fast path for ASCII: look for the first ASCII non-space byte
	start := 0
	for ; start < len(s); start++ {
		c := s[start]
		if c >= utf8.RuneSelf {
			// If we run into a non-ASCII byte, fall back to the
			// slower unicode-aware method on the remaining bytes
			return TrimFunc(s[start:], unicode.IsSpace)
		}
		if asciiSpace[c] == 0 {
			break
		}
	}

	// Now look for the first ASCII non-space byte from the end
	stop := len(s)
	for ; stop > start; stop-- {
		c := s[stop-1]
		if c >= utf8.RuneSelf {
			// start has been already trimmed above, should trim end only
			return TrimRightFunc(s[start:stop], unicode.IsSpace)
		}
		if asciiSpace[c] == 0 {
			break
		}
	}

	// At this point s[start:stop] starts and ends with an ASCII
	// non-space bytes, so we're done. Non-ASCII cases have already
	// been handled above.
	return s[start:stop]
}

// TrimPrefix returns s without the provided leading prefix string.
// If s doesn't start with prefix, s is returned unchanged.
func TrimPrefix(s, prefix string) string {
	if HasPrefix(s, prefix) {
		return s[len(prefix):]
	}
	return s
}

// TrimSuffix returns s without the provided trailing suffix string.
// If s doesn't end with suffix, s is returned unchanged.
func TrimSuffix(s, suffix string) string {
	if HasSuffix(s, suffix) {
		return s[:len(s)-len(suffix)]
	}
	return s
}

// Replace returns a copy of the string s with the first n
// non-overlapping instances of old replaced by new.
// If old is empty, it matches at the beginning of the string
// and after each UTF-8 sequence, yielding up to k+1 replacements
// for a k-rune string.
// If n < 0, there is no limit on the number of replacements.
func Replace(s, old, new string, n int) string {
	if old == new || n == 0 {
		return s // avoid allocation
	}

	// Compute number of replacements.
	if m := Count(s, old); m == 0 {
		return s // avoid allocation
	} else if n < 0 || m < n {
		n = m
	}

	// Apply replacements to buffer.
	var b Builder
	b.Grow(len(s) + n*(len(new)-len(old)))
	start := 0
	for i := 0; i < n; i++ {
		j := start
		if len(old) == 0 {
			if i > 0 {
				_, wid := utf8.DecodeRuneInString(s[start:])
				j += wid
			}
		} else {
			j += Index(s[start:], old)
		}
		b.WriteString(s[start:j])
		b.WriteString(new)
		start = j + len(old)
	}
	b.WriteString(s[start:])
	return b.String()
}

// ReplaceAll returns a copy of the string s with all
// non-overlapping instances of old replaced by new.
// If old is empty, it matches at the beginning of the string
// and after each UTF-8 sequence, yielding up to k+1 replacements
// for a k-rune string.
func ReplaceAll(s, old, new string) string {
	return Replace(s, old, new, -1)
}

// EqualFold reports whether s and t, interpreted as UTF-8 strings,
// are equal under simple Unicode case-folding, which is a more general
// form of case-insensitivity.
func EqualFold(s, t string) bool {
	// ASCII fast path
	i := 0
	for ; i < len(s) && i < len(t); i++ {
		sr := s[i]
		tr := t[i]
		if sr|tr >= utf8.RuneSelf {
			goto hasUnicode
		}

		// Easy case.
		if tr == sr {
			continue
		}

		// Make sr < tr to simplify what follows.
		if tr < sr {
			tr, sr = sr, tr
		}
		// ASCII only, sr/tr must be upper/lower case
		if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
			continue
		}
		return false
	}
	// Check if we've exhausted both strings.
	return len(s) == len(t)

hasUnicode:
	s = s[i:]
	t = t[i:]
	for _, sr := range s {
		// If t is exhausted the strings are not equal.
		if len(t) == 0 {
			return false
		}

		// Extract first rune from second string.
		var tr rune
		if t[0] < utf8.RuneSelf {
			tr, t = rune(t[0]), t[1:]
		} else {
			r, size := utf8.DecodeRuneInString(t)
			tr, t = r, t[size:]
		}

		// If they match, keep going; if not, return false.

		// Easy case.
		if tr == sr {
			continue
		}

		// Make sr < tr to simplify what follows.
		if tr < sr {
			tr, sr = sr, tr
		}
		// Fast check for ASCII.
		if tr < utf8.RuneSelf {
			// ASCII only, sr/tr must be upper/lower case
			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
				continue
			}
			return false
		}

		// General case. SimpleFold(x) returns the next equivalent rune > x
		// or wraps around to smaller values.
		r := unicode.SimpleFold(sr)
		for r != sr && r < tr {
			r = unicode.SimpleFold(r)
		}
		if r == tr {
			continue
		}
		return false
	}

	// First string is empty, so check if the second one is also empty.
	return len(t) == 0
}

// Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
func Index(s, substr string) int {
	n := len(substr)
	switch {
	case n == 0:
		return 0
	case n == 1:
		return IndexByte(s, substr[0])
	case n == len(s):
		if substr == s {
			return 0
		}
		return -1
	case n > len(s):
		return -1
	case n <= bytealg.MaxLen:
		// Use brute force when s and substr both are small
		if len(s) <= bytealg.MaxBruteForce {
			return bytealg.IndexString(s, substr)
		}
		c0 := substr[0]
		c1 := substr[1]
		i := 0
		t := len(s) - n + 1
		fails := 0
		for i < t {
			if s[i] != c0 {
				// IndexByte is faster than bytealg.IndexString, so use it as long as
				// we're not getting lots of false positives.
				o := IndexByte(s[i+1:t], c0)
				if o < 0 {
					return -1
				}
				i += o + 1
			}
			if s[i+1] == c1 && s[i:i+n] == substr {
				return i
			}
			fails++
			i++
			// Switch to bytealg.IndexString when IndexByte produces too many false positives.
			if fails > bytealg.Cutover(i) {
				r := bytealg.IndexString(s[i:], substr)
				if r >= 0 {
					return r + i
				}
				return -1
			}
		}
		return -1
	}
	c0 := substr[0]
	c1 := substr[1]
	i := 0
	t := len(s) - n + 1
	fails := 0
	for i < t {
		if s[i] != c0 {
			o := IndexByte(s[i+1:t], c0)
			if o < 0 {
				return -1
			}
			i += o + 1
		}
		if s[i+1] == c1 && s[i:i+n] == substr {
			return i
		}
		i++
		fails++
		if fails >= 4+i>>4 && i < t {
			// See comment in ../bytes/bytes.go.
			j := bytealg.IndexRabinKarp(s[i:], substr)
			if j < 0 {
				return -1
			}
			return i + j
		}
	}
	return -1
}

// Cut slices s around the first instance of sep,
// returning the text before and after sep.
// The found result reports whether sep appears in s.
// If sep does not appear in s, cut returns s, "", false.
func Cut(s, sep string) (before, after string, found bool) {
	if i := Index(s, sep); i >= 0 {
		return s[:i], s[i+len(sep):], true
	}
	return s, "", false
}

// CutPrefix returns s without the provided leading prefix string
// and reports whether it found the prefix.
// If s doesn't start with prefix, CutPrefix returns s, false.
// If prefix is the empty string, CutPrefix returns s, true.
func CutPrefix(s, prefix string) (after string, found bool) {
	if !HasPrefix(s, prefix) {
		return s, false
	}
	return s[len(prefix):], true
}

// CutSuffix returns s without the provided ending suffix string
// and reports whether it found the suffix.
// If s doesn't end with suffix, CutSuffix returns s, false.
// If suffix is the empty string, CutSuffix returns s, true.
func CutSuffix(s, suffix string) (before string, found bool) {
	if !HasSuffix(s, suffix) {
		return s, false
	}
	return s[:len(s)-len(suffix)], true
}