summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/reflectdata/alg.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/reflectdata/alg.go')
-rw-r--r--src/cmd/compile/internal/reflectdata/alg.go665
1 files changed, 665 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/reflectdata/alg.go b/src/cmd/compile/internal/reflectdata/alg.go
new file mode 100644
index 0000000..69de685
--- /dev/null
+++ b/src/cmd/compile/internal/reflectdata/alg.go
@@ -0,0 +1,665 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectdata
+
+import (
+ "fmt"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/compare"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/objw"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "cmd/internal/obj"
+ "cmd/internal/src"
+)
+
+// AlgType returns the fixed-width AMEMxx variants instead of the general
+// AMEM kind when possible.
+func AlgType(t *types.Type) types.AlgKind {
+ a, _ := types.AlgType(t)
+ if a == types.AMEM {
+ if t.Alignment() < int64(base.Ctxt.Arch.Alignment) && t.Alignment() < t.Size() {
+ // For example, we can't treat [2]int16 as an int32 if int32s require
+ // 4-byte alignment. See issue 46283.
+ return a
+ }
+ switch t.Size() {
+ case 0:
+ return types.AMEM0
+ case 1:
+ return types.AMEM8
+ case 2:
+ return types.AMEM16
+ case 4:
+ return types.AMEM32
+ case 8:
+ return types.AMEM64
+ case 16:
+ return types.AMEM128
+ }
+ }
+
+ return a
+}
+
+// genhash returns a symbol which is the closure used to compute
+// the hash of a value of type t.
+// Note: the generated function must match runtime.typehash exactly.
+func genhash(t *types.Type) *obj.LSym {
+ switch AlgType(t) {
+ default:
+ // genhash is only called for types that have equality
+ base.Fatalf("genhash %v", t)
+ case types.AMEM0:
+ return sysClosure("memhash0")
+ case types.AMEM8:
+ return sysClosure("memhash8")
+ case types.AMEM16:
+ return sysClosure("memhash16")
+ case types.AMEM32:
+ return sysClosure("memhash32")
+ case types.AMEM64:
+ return sysClosure("memhash64")
+ case types.AMEM128:
+ return sysClosure("memhash128")
+ case types.ASTRING:
+ return sysClosure("strhash")
+ case types.AINTER:
+ return sysClosure("interhash")
+ case types.ANILINTER:
+ return sysClosure("nilinterhash")
+ case types.AFLOAT32:
+ return sysClosure("f32hash")
+ case types.AFLOAT64:
+ return sysClosure("f64hash")
+ case types.ACPLX64:
+ return sysClosure("c64hash")
+ case types.ACPLX128:
+ return sysClosure("c128hash")
+ case types.AMEM:
+ // For other sizes of plain memory, we build a closure
+ // that calls memhash_varlen. The size of the memory is
+ // encoded in the first slot of the closure.
+ closure := TypeLinksymLookup(fmt.Sprintf(".hashfunc%d", t.Size()))
+ if len(closure.P) > 0 { // already generated
+ return closure
+ }
+ if memhashvarlen == nil {
+ memhashvarlen = typecheck.LookupRuntimeFunc("memhash_varlen")
+ }
+ ot := 0
+ ot = objw.SymPtr(closure, ot, memhashvarlen, 0)
+ ot = objw.Uintptr(closure, ot, uint64(t.Size())) // size encoded in closure
+ objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
+ return closure
+ case types.ASPECIAL:
+ break
+ }
+
+ closure := TypeLinksymPrefix(".hashfunc", t)
+ if len(closure.P) > 0 { // already generated
+ return closure
+ }
+
+ // Generate hash functions for subtypes.
+ // There are cases where we might not use these hashes,
+ // but in that case they will get dead-code eliminated.
+ // (And the closure generated by genhash will also get
+ // dead-code eliminated, as we call the subtype hashers
+ // directly.)
+ switch t.Kind() {
+ case types.TARRAY:
+ genhash(t.Elem())
+ case types.TSTRUCT:
+ for _, f := range t.FieldSlice() {
+ genhash(f.Type)
+ }
+ }
+
+ if base.Flag.LowerR != 0 {
+ fmt.Printf("genhash %v %v\n", closure, t)
+ }
+
+ fn := hashFunc(t)
+
+ // Build closure. It doesn't close over any variables, so
+ // it contains just the function pointer.
+ objw.SymPtr(closure, 0, fn.Linksym(), 0)
+ objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
+
+ return closure
+}
+
+func hashFunc(t *types.Type) *ir.Func {
+ sym := TypeSymPrefix(".hash", t)
+ if sym.Def != nil {
+ return sym.Def.(*ir.Name).Func
+ }
+
+ base.Pos = base.AutogeneratedPos // less confusing than end of input
+ typecheck.DeclContext = ir.PEXTERN
+
+ // func sym(p *T, h uintptr) uintptr
+ args := []*ir.Field{
+ ir.NewField(base.Pos, typecheck.Lookup("p"), types.NewPtr(t)),
+ ir.NewField(base.Pos, typecheck.Lookup("h"), types.Types[types.TUINTPTR]),
+ }
+ results := []*ir.Field{ir.NewField(base.Pos, nil, types.Types[types.TUINTPTR])}
+
+ fn := typecheck.DeclFunc(sym, nil, args, results)
+ sym.Def = fn.Nname
+ np := ir.AsNode(fn.Type().Params().Field(0).Nname)
+ nh := ir.AsNode(fn.Type().Params().Field(1).Nname)
+
+ switch t.Kind() {
+ case types.TARRAY:
+ // An array of pure memory would be handled by the
+ // standard algorithm, so the element type must not be
+ // pure memory.
+ hashel := hashfor(t.Elem())
+
+ // for i := 0; i < nelem; i++
+ ni := typecheck.Temp(types.Types[types.TINT])
+ init := ir.NewAssignStmt(base.Pos, ni, ir.NewInt(base.Pos, 0))
+ cond := ir.NewBinaryExpr(base.Pos, ir.OLT, ni, ir.NewInt(base.Pos, t.NumElem()))
+ post := ir.NewAssignStmt(base.Pos, ni, ir.NewBinaryExpr(base.Pos, ir.OADD, ni, ir.NewInt(base.Pos, 1)))
+ loop := ir.NewForStmt(base.Pos, nil, cond, post, nil, false)
+ loop.PtrInit().Append(init)
+
+ // h = hashel(&p[i], h)
+ call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
+
+ nx := ir.NewIndexExpr(base.Pos, np, ni)
+ nx.SetBounded(true)
+ na := typecheck.NodAddr(nx)
+ call.Args.Append(na)
+ call.Args.Append(nh)
+ loop.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
+
+ fn.Body.Append(loop)
+
+ case types.TSTRUCT:
+ // Walk the struct using memhash for runs of AMEM
+ // and calling specific hash functions for the others.
+ for i, fields := 0, t.FieldSlice(); i < len(fields); {
+ f := fields[i]
+
+ // Skip blank fields.
+ if f.Sym.IsBlank() {
+ i++
+ continue
+ }
+
+ // Hash non-memory fields with appropriate hash function.
+ if !compare.IsRegularMemory(f.Type) {
+ hashel := hashfor(f.Type)
+ call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
+ nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages?
+ na := typecheck.NodAddr(nx)
+ call.Args.Append(na)
+ call.Args.Append(nh)
+ fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
+ i++
+ continue
+ }
+
+ // Otherwise, hash a maximal length run of raw memory.
+ size, next := compare.Memrun(t, i)
+
+ // h = hashel(&p.first, size, h)
+ hashel := hashmem(f.Type)
+ call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
+ nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages?
+ na := typecheck.NodAddr(nx)
+ call.Args.Append(na)
+ call.Args.Append(nh)
+ call.Args.Append(ir.NewInt(base.Pos, size))
+ fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
+
+ i = next
+ }
+ }
+
+ r := ir.NewReturnStmt(base.Pos, nil)
+ r.Results.Append(nh)
+ fn.Body.Append(r)
+
+ if base.Flag.LowerR != 0 {
+ ir.DumpList("genhash body", fn.Body)
+ }
+
+ typecheck.FinishFuncBody()
+
+ fn.SetDupok(true)
+ typecheck.Func(fn)
+
+ ir.WithFunc(fn, func() {
+ typecheck.Stmts(fn.Body)
+ })
+
+ fn.SetNilCheckDisabled(true)
+ typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
+
+ return fn
+}
+
+func runtimeHashFor(name string, t *types.Type) *ir.Name {
+ n := typecheck.LookupRuntime(name)
+ n = typecheck.SubstArgTypes(n, t)
+ return n
+}
+
+// hashfor returns the function to compute the hash of a value of type t.
+func hashfor(t *types.Type) *ir.Name {
+ switch a, _ := types.AlgType(t); a {
+ case types.AMEM:
+ base.Fatalf("hashfor with AMEM type")
+ case types.AINTER:
+ return runtimeHashFor("interhash", t)
+ case types.ANILINTER:
+ return runtimeHashFor("nilinterhash", t)
+ case types.ASTRING:
+ return runtimeHashFor("strhash", t)
+ case types.AFLOAT32:
+ return runtimeHashFor("f32hash", t)
+ case types.AFLOAT64:
+ return runtimeHashFor("f64hash", t)
+ case types.ACPLX64:
+ return runtimeHashFor("c64hash", t)
+ case types.ACPLX128:
+ return runtimeHashFor("c128hash", t)
+ }
+
+ fn := hashFunc(t)
+ return fn.Nname
+}
+
+// sysClosure returns a closure which will call the
+// given runtime function (with no closed-over variables).
+func sysClosure(name string) *obj.LSym {
+ s := typecheck.LookupRuntimeVar(name + "·f")
+ if len(s.P) == 0 {
+ f := typecheck.LookupRuntimeFunc(name)
+ objw.SymPtr(s, 0, f, 0)
+ objw.Global(s, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
+ }
+ return s
+}
+
+// geneq returns a symbol which is the closure used to compute
+// equality for two objects of type t.
+func geneq(t *types.Type) *obj.LSym {
+ switch AlgType(t) {
+ case types.ANOEQ:
+ // The runtime will panic if it tries to compare
+ // a type with a nil equality function.
+ return nil
+ case types.AMEM0:
+ return sysClosure("memequal0")
+ case types.AMEM8:
+ return sysClosure("memequal8")
+ case types.AMEM16:
+ return sysClosure("memequal16")
+ case types.AMEM32:
+ return sysClosure("memequal32")
+ case types.AMEM64:
+ return sysClosure("memequal64")
+ case types.AMEM128:
+ return sysClosure("memequal128")
+ case types.ASTRING:
+ return sysClosure("strequal")
+ case types.AINTER:
+ return sysClosure("interequal")
+ case types.ANILINTER:
+ return sysClosure("nilinterequal")
+ case types.AFLOAT32:
+ return sysClosure("f32equal")
+ case types.AFLOAT64:
+ return sysClosure("f64equal")
+ case types.ACPLX64:
+ return sysClosure("c64equal")
+ case types.ACPLX128:
+ return sysClosure("c128equal")
+ case types.AMEM:
+ // make equality closure. The size of the type
+ // is encoded in the closure.
+ closure := TypeLinksymLookup(fmt.Sprintf(".eqfunc%d", t.Size()))
+ if len(closure.P) != 0 {
+ return closure
+ }
+ if memequalvarlen == nil {
+ memequalvarlen = typecheck.LookupRuntimeFunc("memequal_varlen")
+ }
+ ot := 0
+ ot = objw.SymPtr(closure, ot, memequalvarlen, 0)
+ ot = objw.Uintptr(closure, ot, uint64(t.Size()))
+ objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
+ return closure
+ case types.ASPECIAL:
+ break
+ }
+
+ closure := TypeLinksymPrefix(".eqfunc", t)
+ if len(closure.P) > 0 { // already generated
+ return closure
+ }
+
+ if base.Flag.LowerR != 0 {
+ fmt.Printf("geneq %v\n", t)
+ }
+
+ fn := eqFunc(t)
+
+ // Generate a closure which points at the function we just generated.
+ objw.SymPtr(closure, 0, fn.Linksym(), 0)
+ objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
+ return closure
+}
+
+func eqFunc(t *types.Type) *ir.Func {
+ // Autogenerate code for equality of structs and arrays.
+ sym := TypeSymPrefix(".eq", t)
+ if sym.Def != nil {
+ return sym.Def.(*ir.Name).Func
+ }
+ base.Pos = base.AutogeneratedPos // less confusing than end of input
+ typecheck.DeclContext = ir.PEXTERN
+
+ // func sym(p, q *T) bool
+ fn := typecheck.DeclFunc(sym, nil,
+ []*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("p"), types.NewPtr(t)), ir.NewField(base.Pos, typecheck.Lookup("q"), types.NewPtr(t))},
+ []*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("r"), types.Types[types.TBOOL])},
+ )
+ sym.Def = fn.Nname
+ np := ir.AsNode(fn.Type().Params().Field(0).Nname)
+ nq := ir.AsNode(fn.Type().Params().Field(1).Nname)
+ nr := ir.AsNode(fn.Type().Results().Field(0).Nname)
+
+ // Label to jump to if an equality test fails.
+ neq := typecheck.AutoLabel(".neq")
+
+ // We reach here only for types that have equality but
+ // cannot be handled by the standard algorithms,
+ // so t must be either an array or a struct.
+ switch t.Kind() {
+ default:
+ base.Fatalf("geneq %v", t)
+
+ case types.TARRAY:
+ nelem := t.NumElem()
+
+ // checkAll generates code to check the equality of all array elements.
+ // If unroll is greater than nelem, checkAll generates:
+ //
+ // if eq(p[0], q[0]) && eq(p[1], q[1]) && ... {
+ // } else {
+ // goto neq
+ // }
+ //
+ // And so on.
+ //
+ // Otherwise it generates:
+ //
+ // iterateTo := nelem/unroll*unroll
+ // for i := 0; i < iterateTo; i += unroll {
+ // if eq(p[i+0], q[i+0]) && eq(p[i+1], q[i+1]) && ... && eq(p[i+unroll-1], q[i+unroll-1]) {
+ // } else {
+ // goto neq
+ // }
+ // }
+ // if eq(p[iterateTo+0], q[iterateTo+0]) && eq(p[iterateTo+1], q[iterateTo+1]) && ... {
+ // } else {
+ // goto neq
+ // }
+ //
+ checkAll := func(unroll int64, last bool, eq func(pi, qi ir.Node) ir.Node) {
+ // checkIdx generates a node to check for equality at index i.
+ checkIdx := func(i ir.Node) ir.Node {
+ // pi := p[i]
+ pi := ir.NewIndexExpr(base.Pos, np, i)
+ pi.SetBounded(true)
+ pi.SetType(t.Elem())
+ // qi := q[i]
+ qi := ir.NewIndexExpr(base.Pos, nq, i)
+ qi.SetBounded(true)
+ qi.SetType(t.Elem())
+ return eq(pi, qi)
+ }
+
+ iterations := nelem / unroll
+ iterateTo := iterations * unroll
+ // If a loop is iterated only once, there shouldn't be any loop at all.
+ if iterations == 1 {
+ iterateTo = 0
+ }
+
+ if iterateTo > 0 {
+ // Generate an unrolled for loop.
+ // for i := 0; i < nelem/unroll*unroll; i += unroll
+ i := typecheck.Temp(types.Types[types.TINT])
+ init := ir.NewAssignStmt(base.Pos, i, ir.NewInt(base.Pos, 0))
+ cond := ir.NewBinaryExpr(base.Pos, ir.OLT, i, ir.NewInt(base.Pos, iterateTo))
+ loop := ir.NewForStmt(base.Pos, nil, cond, nil, nil, false)
+ loop.PtrInit().Append(init)
+
+ // if eq(p[i+0], q[i+0]) && eq(p[i+1], q[i+1]) && ... && eq(p[i+unroll-1], q[i+unroll-1]) {
+ // } else {
+ // goto neq
+ // }
+ for j := int64(0); j < unroll; j++ {
+ // if check {} else { goto neq }
+ nif := ir.NewIfStmt(base.Pos, checkIdx(i), nil, nil)
+ nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
+ loop.Body.Append(nif)
+ post := ir.NewAssignStmt(base.Pos, i, ir.NewBinaryExpr(base.Pos, ir.OADD, i, ir.NewInt(base.Pos, 1)))
+ loop.Body.Append(post)
+ }
+
+ fn.Body.Append(loop)
+
+ if nelem == iterateTo {
+ if last {
+ fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(base.Pos, true)))
+ }
+ return
+ }
+ }
+
+ // Generate remaining checks, if nelem is not a multiple of unroll.
+ if last {
+ // Do last comparison in a different manner.
+ nelem--
+ }
+ // if eq(p[iterateTo+0], q[iterateTo+0]) && eq(p[iterateTo+1], q[iterateTo+1]) && ... {
+ // } else {
+ // goto neq
+ // }
+ for j := iterateTo; j < nelem; j++ {
+ // if check {} else { goto neq }
+ nif := ir.NewIfStmt(base.Pos, checkIdx(ir.NewInt(base.Pos, j)), nil, nil)
+ nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
+ fn.Body.Append(nif)
+ }
+ if last {
+ fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, checkIdx(ir.NewInt(base.Pos, nelem))))
+ }
+ }
+
+ switch t.Elem().Kind() {
+ case types.TSTRING:
+ // Do two loops. First, check that all the lengths match (cheap).
+ // Second, check that all the contents match (expensive).
+ checkAll(3, false, func(pi, qi ir.Node) ir.Node {
+ // Compare lengths.
+ eqlen, _ := compare.EqString(pi, qi)
+ return eqlen
+ })
+ checkAll(1, true, func(pi, qi ir.Node) ir.Node {
+ // Compare contents.
+ _, eqmem := compare.EqString(pi, qi)
+ return eqmem
+ })
+ case types.TFLOAT32, types.TFLOAT64:
+ checkAll(2, true, func(pi, qi ir.Node) ir.Node {
+ // p[i] == q[i]
+ return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
+ })
+ case types.TSTRUCT:
+ isCall := func(n ir.Node) bool {
+ return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC
+ }
+ var expr ir.Node
+ var hasCallExprs bool
+ allCallExprs := true
+ and := func(cond ir.Node) {
+ if expr == nil {
+ expr = cond
+ } else {
+ expr = ir.NewLogicalExpr(base.Pos, ir.OANDAND, expr, cond)
+ }
+ }
+
+ var tmpPos src.XPos
+ pi := ir.NewIndexExpr(tmpPos, np, ir.NewInt(tmpPos, 0))
+ pi.SetBounded(true)
+ pi.SetType(t.Elem())
+ qi := ir.NewIndexExpr(tmpPos, nq, ir.NewInt(tmpPos, 0))
+ qi.SetBounded(true)
+ qi.SetType(t.Elem())
+ flatConds, canPanic := compare.EqStruct(t.Elem(), pi, qi)
+ for _, c := range flatConds {
+ if isCall(c) {
+ hasCallExprs = true
+ } else {
+ allCallExprs = false
+ }
+ }
+ if !hasCallExprs || allCallExprs || canPanic {
+ checkAll(1, true, func(pi, qi ir.Node) ir.Node {
+ // p[i] == q[i]
+ return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
+ })
+ } else {
+ checkAll(4, false, func(pi, qi ir.Node) ir.Node {
+ expr = nil
+ flatConds, _ := compare.EqStruct(t.Elem(), pi, qi)
+ if len(flatConds) == 0 {
+ return ir.NewBool(base.Pos, true)
+ }
+ for _, c := range flatConds {
+ if !isCall(c) {
+ and(c)
+ }
+ }
+ return expr
+ })
+ checkAll(2, true, func(pi, qi ir.Node) ir.Node {
+ expr = nil
+ flatConds, _ := compare.EqStruct(t.Elem(), pi, qi)
+ for _, c := range flatConds {
+ if isCall(c) {
+ and(c)
+ }
+ }
+ return expr
+ })
+ }
+ default:
+ checkAll(1, true, func(pi, qi ir.Node) ir.Node {
+ // p[i] == q[i]
+ return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
+ })
+ }
+
+ case types.TSTRUCT:
+ flatConds, _ := compare.EqStruct(t, np, nq)
+ if len(flatConds) == 0 {
+ fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(base.Pos, true)))
+ } else {
+ for _, c := range flatConds[:len(flatConds)-1] {
+ // if cond {} else { goto neq }
+ n := ir.NewIfStmt(base.Pos, c, nil, nil)
+ n.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
+ fn.Body.Append(n)
+ }
+ fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, flatConds[len(flatConds)-1]))
+ }
+ }
+
+ // ret:
+ // return
+ ret := typecheck.AutoLabel(".ret")
+ fn.Body.Append(ir.NewLabelStmt(base.Pos, ret))
+ fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
+
+ // neq:
+ // r = false
+ // return (or goto ret)
+ fn.Body.Append(ir.NewLabelStmt(base.Pos, neq))
+ fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(base.Pos, false)))
+ if compare.EqCanPanic(t) || anyCall(fn) {
+ // Epilogue is large, so share it with the equal case.
+ fn.Body.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, ret))
+ } else {
+ // Epilogue is small, so don't bother sharing.
+ fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
+ }
+ // TODO(khr): the epilogue size detection condition above isn't perfect.
+ // We should really do a generic CL that shares epilogues across
+ // the board. See #24936.
+
+ if base.Flag.LowerR != 0 {
+ ir.DumpList("geneq body", fn.Body)
+ }
+
+ typecheck.FinishFuncBody()
+
+ fn.SetDupok(true)
+ typecheck.Func(fn)
+
+ ir.WithFunc(fn, func() {
+ typecheck.Stmts(fn.Body)
+ })
+
+ // Disable checknils while compiling this code.
+ // We are comparing a struct or an array,
+ // neither of which can be nil, and our comparisons
+ // are shallow.
+ fn.SetNilCheckDisabled(true)
+ typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
+ return fn
+}
+
+// EqFor returns ONAME node represents type t's equal function, and a boolean
+// to indicates whether a length needs to be passed when calling the function.
+func EqFor(t *types.Type) (ir.Node, bool) {
+ switch a, _ := types.AlgType(t); a {
+ case types.AMEM:
+ n := typecheck.LookupRuntime("memequal")
+ n = typecheck.SubstArgTypes(n, t, t)
+ return n, true
+ case types.ASPECIAL:
+ fn := eqFunc(t)
+ return fn.Nname, false
+ }
+ base.Fatalf("EqFor %v", t)
+ return nil, false
+}
+
+func anyCall(fn *ir.Func) bool {
+ return ir.Any(fn, func(n ir.Node) bool {
+ // TODO(rsc): No methods?
+ op := n.Op()
+ return op == ir.OCALL || op == ir.OCALLFUNC
+ })
+}
+
+func hashmem(t *types.Type) ir.Node {
+ n := typecheck.LookupRuntime("memhash")
+ n = typecheck.SubstArgTypes(n, t)
+ return n
+}