diff options
Diffstat (limited to 'src/crypto/rsa/rsa.go')
-rw-r--r-- | src/crypto/rsa/rsa.go | 781 |
1 files changed, 781 insertions, 0 deletions
diff --git a/src/crypto/rsa/rsa.go b/src/crypto/rsa/rsa.go new file mode 100644 index 0000000..f0aef1f --- /dev/null +++ b/src/crypto/rsa/rsa.go @@ -0,0 +1,781 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017. +// +// RSA is a single, fundamental operation that is used in this package to +// implement either public-key encryption or public-key signatures. +// +// The original specification for encryption and signatures with RSA is PKCS #1 +// and the terms "RSA encryption" and "RSA signatures" by default refer to +// PKCS #1 version 1.5. However, that specification has flaws and new designs +// should use version 2, usually called by just OAEP and PSS, where +// possible. +// +// Two sets of interfaces are included in this package. When a more abstract +// interface isn't necessary, there are functions for encrypting/decrypting +// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract +// over the public key primitive, the PrivateKey type implements the +// Decrypter and Signer interfaces from the crypto package. +// +// Operations in this package are implemented using constant-time algorithms, +// except for [GenerateKey], [PrivateKey.Precompute], and [PrivateKey.Validate]. +// Every other operation only leaks the bit size of the involved values, which +// all depend on the selected key size. +package rsa + +import ( + "crypto" + "crypto/internal/bigmod" + "crypto/internal/boring" + "crypto/internal/boring/bbig" + "crypto/internal/randutil" + "crypto/rand" + "crypto/subtle" + "errors" + "hash" + "io" + "math" + "math/big" +) + +var bigOne = big.NewInt(1) + +// A PublicKey represents the public part of an RSA key. +type PublicKey struct { + N *big.Int // modulus + E int // public exponent +} + +// Any methods implemented on PublicKey might need to also be implemented on +// PrivateKey, as the latter embeds the former and will expose its methods. + +// Size returns the modulus size in bytes. Raw signatures and ciphertexts +// for or by this public key will have the same size. +func (pub *PublicKey) Size() int { + return (pub.N.BitLen() + 7) / 8 +} + +// Equal reports whether pub and x have the same value. +func (pub *PublicKey) Equal(x crypto.PublicKey) bool { + xx, ok := x.(*PublicKey) + if !ok { + return false + } + return bigIntEqual(pub.N, xx.N) && pub.E == xx.E +} + +// OAEPOptions is an interface for passing options to OAEP decryption using the +// crypto.Decrypter interface. +type OAEPOptions struct { + // Hash is the hash function that will be used when generating the mask. + Hash crypto.Hash + + // MGFHash is the hash function used for MGF1. + // If zero, Hash is used instead. + MGFHash crypto.Hash + + // Label is an arbitrary byte string that must be equal to the value + // used when encrypting. + Label []byte +} + +var ( + errPublicModulus = errors.New("crypto/rsa: missing public modulus") + errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") + errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") +) + +// checkPub sanity checks the public key before we use it. +// We require pub.E to fit into a 32-bit integer so that we +// do not have different behavior depending on whether +// int is 32 or 64 bits. See also +// https://www.imperialviolet.org/2012/03/16/rsae.html. +func checkPub(pub *PublicKey) error { + if pub.N == nil { + return errPublicModulus + } + if pub.E < 2 { + return errPublicExponentSmall + } + if pub.E > 1<<31-1 { + return errPublicExponentLarge + } + return nil +} + +// A PrivateKey represents an RSA key +type PrivateKey struct { + PublicKey // public part. + D *big.Int // private exponent + Primes []*big.Int // prime factors of N, has >= 2 elements. + + // Precomputed contains precomputed values that speed up RSA operations, + // if available. It must be generated by calling PrivateKey.Precompute and + // must not be modified. + Precomputed PrecomputedValues +} + +// Public returns the public key corresponding to priv. +func (priv *PrivateKey) Public() crypto.PublicKey { + return &priv.PublicKey +} + +// Equal reports whether priv and x have equivalent values. It ignores +// Precomputed values. +func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { + xx, ok := x.(*PrivateKey) + if !ok { + return false + } + if !priv.PublicKey.Equal(&xx.PublicKey) || !bigIntEqual(priv.D, xx.D) { + return false + } + if len(priv.Primes) != len(xx.Primes) { + return false + } + for i := range priv.Primes { + if !bigIntEqual(priv.Primes[i], xx.Primes[i]) { + return false + } + } + return true +} + +// bigIntEqual reports whether a and b are equal leaking only their bit length +// through timing side-channels. +func bigIntEqual(a, b *big.Int) bool { + return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 +} + +// Sign signs digest with priv, reading randomness from rand. If opts is a +// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will +// be used. digest must be the result of hashing the input message using +// opts.HashFunc(). +// +// This method implements crypto.Signer, which is an interface to support keys +// where the private part is kept in, for example, a hardware module. Common +// uses should use the Sign* functions in this package directly. +func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { + if pssOpts, ok := opts.(*PSSOptions); ok { + return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts) + } + + return SignPKCS1v15(rand, priv, opts.HashFunc(), digest) +} + +// Decrypt decrypts ciphertext with priv. If opts is nil or of type +// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise +// opts must have type *OAEPOptions and OAEP decryption is done. +func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { + if opts == nil { + return DecryptPKCS1v15(rand, priv, ciphertext) + } + + switch opts := opts.(type) { + case *OAEPOptions: + if opts.MGFHash == 0 { + return decryptOAEP(opts.Hash.New(), opts.Hash.New(), rand, priv, ciphertext, opts.Label) + } else { + return decryptOAEP(opts.Hash.New(), opts.MGFHash.New(), rand, priv, ciphertext, opts.Label) + } + + case *PKCS1v15DecryptOptions: + if l := opts.SessionKeyLen; l > 0 { + plaintext = make([]byte, l) + if _, err := io.ReadFull(rand, plaintext); err != nil { + return nil, err + } + if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { + return nil, err + } + return plaintext, nil + } else { + return DecryptPKCS1v15(rand, priv, ciphertext) + } + + default: + return nil, errors.New("crypto/rsa: invalid options for Decrypt") + } +} + +type PrecomputedValues struct { + Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) + Qinv *big.Int // Q^-1 mod P + + // CRTValues is used for the 3rd and subsequent primes. Due to a + // historical accident, the CRT for the first two primes is handled + // differently in PKCS #1 and interoperability is sufficiently + // important that we mirror this. + // + // Deprecated: These values are still filled in by Precompute for + // backwards compatibility but are not used. Multi-prime RSA is very rare, + // and is implemented by this package without CRT optimizations to limit + // complexity. + CRTValues []CRTValue + + n, p, q *bigmod.Modulus // moduli for CRT with Montgomery precomputed constants +} + +// CRTValue contains the precomputed Chinese remainder theorem values. +type CRTValue struct { + Exp *big.Int // D mod (prime-1). + Coeff *big.Int // R·Coeff ≡ 1 mod Prime. + R *big.Int // product of primes prior to this (inc p and q). +} + +// Validate performs basic sanity checks on the key. +// It returns nil if the key is valid, or else an error describing a problem. +func (priv *PrivateKey) Validate() error { + if err := checkPub(&priv.PublicKey); err != nil { + return err + } + + // Check that Πprimes == n. + modulus := new(big.Int).Set(bigOne) + for _, prime := range priv.Primes { + // Any primes ≤ 1 will cause divide-by-zero panics later. + if prime.Cmp(bigOne) <= 0 { + return errors.New("crypto/rsa: invalid prime value") + } + modulus.Mul(modulus, prime) + } + if modulus.Cmp(priv.N) != 0 { + return errors.New("crypto/rsa: invalid modulus") + } + + // Check that de ≡ 1 mod p-1, for each prime. + // This implies that e is coprime to each p-1 as e has a multiplicative + // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = + // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 + // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. + congruence := new(big.Int) + de := new(big.Int).SetInt64(int64(priv.E)) + de.Mul(de, priv.D) + for _, prime := range priv.Primes { + pminus1 := new(big.Int).Sub(prime, bigOne) + congruence.Mod(de, pminus1) + if congruence.Cmp(bigOne) != 0 { + return errors.New("crypto/rsa: invalid exponents") + } + } + return nil +} + +// GenerateKey generates a random RSA private key of the given bit size. +// +// Most applications should use [crypto/rand.Reader] as rand. Note that the +// returned key does not depend deterministically on the bytes read from rand, +// and may change between calls and/or between versions. +func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { + return GenerateMultiPrimeKey(random, 2, bits) +} + +// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit +// size and the given random source. +// +// Table 1 in "[On the Security of Multi-prime RSA]" suggests maximum numbers of +// primes for a given bit size. +// +// Although the public keys are compatible (actually, indistinguishable) from +// the 2-prime case, the private keys are not. Thus it may not be possible to +// export multi-prime private keys in certain formats or to subsequently import +// them into other code. +// +// This package does not implement CRT optimizations for multi-prime RSA, so the +// keys with more than two primes will have worse performance. +// +// Deprecated: The use of this function with a number of primes different from +// two is not recommended for the above security, compatibility, and performance +// reasons. Use GenerateKey instead. +// +// [On the Security of Multi-prime RSA]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf +func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { + randutil.MaybeReadByte(random) + + if boring.Enabled && random == boring.RandReader && nprimes == 2 && + (bits == 2048 || bits == 3072 || bits == 4096) { + bN, bE, bD, bP, bQ, bDp, bDq, bQinv, err := boring.GenerateKeyRSA(bits) + if err != nil { + return nil, err + } + N := bbig.Dec(bN) + E := bbig.Dec(bE) + D := bbig.Dec(bD) + P := bbig.Dec(bP) + Q := bbig.Dec(bQ) + Dp := bbig.Dec(bDp) + Dq := bbig.Dec(bDq) + Qinv := bbig.Dec(bQinv) + e64 := E.Int64() + if !E.IsInt64() || int64(int(e64)) != e64 { + return nil, errors.New("crypto/rsa: generated key exponent too large") + } + + mn, err := bigmod.NewModulusFromBig(N) + if err != nil { + return nil, err + } + mp, err := bigmod.NewModulusFromBig(P) + if err != nil { + return nil, err + } + mq, err := bigmod.NewModulusFromBig(Q) + if err != nil { + return nil, err + } + + key := &PrivateKey{ + PublicKey: PublicKey{ + N: N, + E: int(e64), + }, + D: D, + Primes: []*big.Int{P, Q}, + Precomputed: PrecomputedValues{ + Dp: Dp, + Dq: Dq, + Qinv: Qinv, + CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute + n: mn, + p: mp, + q: mq, + }, + } + return key, nil + } + + priv := new(PrivateKey) + priv.E = 65537 + + if nprimes < 2 { + return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") + } + + if bits < 64 { + primeLimit := float64(uint64(1) << uint(bits/nprimes)) + // pi approximates the number of primes less than primeLimit + pi := primeLimit / (math.Log(primeLimit) - 1) + // Generated primes start with 11 (in binary) so we can only + // use a quarter of them. + pi /= 4 + // Use a factor of two to ensure that key generation terminates + // in a reasonable amount of time. + pi /= 2 + if pi <= float64(nprimes) { + return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") + } + } + + primes := make([]*big.Int, nprimes) + +NextSetOfPrimes: + for { + todo := bits + // crypto/rand should set the top two bits in each prime. + // Thus each prime has the form + // p_i = 2^bitlen(p_i) × 0.11... (in base 2). + // And the product is: + // P = 2^todo × α + // where α is the product of nprimes numbers of the form 0.11... + // + // If α < 1/2 (which can happen for nprimes > 2), we need to + // shift todo to compensate for lost bits: the mean value of 0.11... + // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 + // will give good results. + if nprimes >= 7 { + todo += (nprimes - 2) / 5 + } + for i := 0; i < nprimes; i++ { + var err error + primes[i], err = rand.Prime(random, todo/(nprimes-i)) + if err != nil { + return nil, err + } + todo -= primes[i].BitLen() + } + + // Make sure that primes is pairwise unequal. + for i, prime := range primes { + for j := 0; j < i; j++ { + if prime.Cmp(primes[j]) == 0 { + continue NextSetOfPrimes + } + } + } + + n := new(big.Int).Set(bigOne) + totient := new(big.Int).Set(bigOne) + pminus1 := new(big.Int) + for _, prime := range primes { + n.Mul(n, prime) + pminus1.Sub(prime, bigOne) + totient.Mul(totient, pminus1) + } + if n.BitLen() != bits { + // This should never happen for nprimes == 2 because + // crypto/rand should set the top two bits in each prime. + // For nprimes > 2 we hope it does not happen often. + continue NextSetOfPrimes + } + + priv.D = new(big.Int) + e := big.NewInt(int64(priv.E)) + ok := priv.D.ModInverse(e, totient) + + if ok != nil { + priv.Primes = primes + priv.N = n + break + } + } + + priv.Precompute() + return priv, nil +} + +// incCounter increments a four byte, big-endian counter. +func incCounter(c *[4]byte) { + if c[3]++; c[3] != 0 { + return + } + if c[2]++; c[2] != 0 { + return + } + if c[1]++; c[1] != 0 { + return + } + c[0]++ +} + +// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function +// specified in PKCS #1 v2.1. +func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { + var counter [4]byte + var digest []byte + + done := 0 + for done < len(out) { + hash.Write(seed) + hash.Write(counter[0:4]) + digest = hash.Sum(digest[:0]) + hash.Reset() + + for i := 0; i < len(digest) && done < len(out); i++ { + out[done] ^= digest[i] + done++ + } + incCounter(&counter) + } +} + +// ErrMessageTooLong is returned when attempting to encrypt or sign a message +// which is too large for the size of the key. When using SignPSS, this can also +// be returned if the size of the salt is too large. +var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size") + +func encrypt(pub *PublicKey, plaintext []byte) ([]byte, error) { + boring.Unreachable() + + // Most of the CPU time for encryption and verification is spent in this + // NewModulusFromBig call, because PublicKey doesn't have a Precomputed + // field. If performance becomes an issue, consider placing a private + // sync.Once on PublicKey to compute this. + N, err := bigmod.NewModulusFromBig(pub.N) + if err != nil { + return nil, err + } + m, err := bigmod.NewNat().SetBytes(plaintext, N) + if err != nil { + return nil, err + } + e := uint(pub.E) + + return bigmod.NewNat().ExpShort(m, e, N).Bytes(N), nil +} + +// EncryptOAEP encrypts the given message with RSA-OAEP. +// +// OAEP is parameterised by a hash function that is used as a random oracle. +// Encryption and decryption of a given message must use the same hash function +// and sha256.New() is a reasonable choice. +// +// The random parameter is used as a source of entropy to ensure that +// encrypting the same message twice doesn't result in the same ciphertext. +// Most applications should use [crypto/rand.Reader] as random. +// +// The label parameter may contain arbitrary data that will not be encrypted, +// but which gives important context to the message. For example, if a given +// public key is used to encrypt two types of messages then distinct label +// values could be used to ensure that a ciphertext for one purpose cannot be +// used for another by an attacker. If not required it can be empty. +// +// The message must be no longer than the length of the public modulus minus +// twice the hash length, minus a further 2. +func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { + // Note that while we don't commit to deterministic execution with respect + // to the random stream, we also don't apply MaybeReadByte, so per Hyrum's + // Law it's probably relied upon by some. It's a tolerable promise because a + // well-specified number of random bytes is included in the ciphertext, in a + // well-specified way. + + if err := checkPub(pub); err != nil { + return nil, err + } + hash.Reset() + k := pub.Size() + if len(msg) > k-2*hash.Size()-2 { + return nil, ErrMessageTooLong + } + + if boring.Enabled && random == boring.RandReader { + bkey, err := boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSAOAEP(hash, hash, bkey, msg, label) + } + boring.UnreachableExceptTests() + + hash.Write(label) + lHash := hash.Sum(nil) + hash.Reset() + + em := make([]byte, k) + seed := em[1 : 1+hash.Size()] + db := em[1+hash.Size():] + + copy(db[0:hash.Size()], lHash) + db[len(db)-len(msg)-1] = 1 + copy(db[len(db)-len(msg):], msg) + + _, err := io.ReadFull(random, seed) + if err != nil { + return nil, err + } + + mgf1XOR(db, hash, seed) + mgf1XOR(seed, hash, db) + + if boring.Enabled { + var bkey *boring.PublicKeyRSA + bkey, err = boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSANoPadding(bkey, em) + } + + return encrypt(pub, em) +} + +// ErrDecryption represents a failure to decrypt a message. +// It is deliberately vague to avoid adaptive attacks. +var ErrDecryption = errors.New("crypto/rsa: decryption error") + +// ErrVerification represents a failure to verify a signature. +// It is deliberately vague to avoid adaptive attacks. +var ErrVerification = errors.New("crypto/rsa: verification error") + +// Precompute performs some calculations that speed up private key operations +// in the future. +func (priv *PrivateKey) Precompute() { + if priv.Precomputed.n == nil && len(priv.Primes) == 2 { + // Precomputed values _should_ always be valid, but if they aren't + // just return. We could also panic. + var err error + priv.Precomputed.n, err = bigmod.NewModulusFromBig(priv.N) + if err != nil { + return + } + priv.Precomputed.p, err = bigmod.NewModulusFromBig(priv.Primes[0]) + if err != nil { + // Unset previous values, so we either have everything or nothing + priv.Precomputed.n = nil + return + } + priv.Precomputed.q, err = bigmod.NewModulusFromBig(priv.Primes[1]) + if err != nil { + // Unset previous values, so we either have everything or nothing + priv.Precomputed.n, priv.Precomputed.p = nil, nil + return + } + } + + // Fill in the backwards-compatibility *big.Int values. + if priv.Precomputed.Dp != nil { + return + } + + priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) + priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) + + priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) + priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) + + priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) + + r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) + priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) + for i := 2; i < len(priv.Primes); i++ { + prime := priv.Primes[i] + values := &priv.Precomputed.CRTValues[i-2] + + values.Exp = new(big.Int).Sub(prime, bigOne) + values.Exp.Mod(priv.D, values.Exp) + + values.R = new(big.Int).Set(r) + values.Coeff = new(big.Int).ModInverse(r, prime) + + r.Mul(r, prime) + } +} + +const withCheck = true +const noCheck = false + +// decrypt performs an RSA decryption of ciphertext into out. If check is true, +// m^e is calculated and compared with ciphertext, in order to defend against +// errors in the CRT computation. +func decrypt(priv *PrivateKey, ciphertext []byte, check bool) ([]byte, error) { + if len(priv.Primes) <= 2 { + boring.Unreachable() + } + + var ( + err error + m, c *bigmod.Nat + N *bigmod.Modulus + t0 = bigmod.NewNat() + ) + if priv.Precomputed.n == nil { + N, err = bigmod.NewModulusFromBig(priv.N) + if err != nil { + return nil, ErrDecryption + } + c, err = bigmod.NewNat().SetBytes(ciphertext, N) + if err != nil { + return nil, ErrDecryption + } + m = bigmod.NewNat().Exp(c, priv.D.Bytes(), N) + } else { + N = priv.Precomputed.n + P, Q := priv.Precomputed.p, priv.Precomputed.q + Qinv, err := bigmod.NewNat().SetBytes(priv.Precomputed.Qinv.Bytes(), P) + if err != nil { + return nil, ErrDecryption + } + c, err = bigmod.NewNat().SetBytes(ciphertext, N) + if err != nil { + return nil, ErrDecryption + } + + // m = c ^ Dp mod p + m = bigmod.NewNat().Exp(t0.Mod(c, P), priv.Precomputed.Dp.Bytes(), P) + // m2 = c ^ Dq mod q + m2 := bigmod.NewNat().Exp(t0.Mod(c, Q), priv.Precomputed.Dq.Bytes(), Q) + // m = m - m2 mod p + m.Sub(t0.Mod(m2, P), P) + // m = m * Qinv mod p + m.Mul(Qinv, P) + // m = m * q mod N + m.ExpandFor(N).Mul(t0.Mod(Q.Nat(), N), N) + // m = m + m2 mod N + m.Add(m2.ExpandFor(N), N) + } + + if check { + c1 := bigmod.NewNat().ExpShort(m, uint(priv.E), N) + if c1.Equal(c) != 1 { + return nil, ErrDecryption + } + } + + return m.Bytes(N), nil +} + +// DecryptOAEP decrypts ciphertext using RSA-OAEP. +// +// OAEP is parameterised by a hash function that is used as a random oracle. +// Encryption and decryption of a given message must use the same hash function +// and sha256.New() is a reasonable choice. +// +// The random parameter is legacy and ignored, and it can be nil. +// +// The label parameter must match the value given when encrypting. See +// EncryptOAEP for details. +func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { + return decryptOAEP(hash, hash, random, priv, ciphertext, label) +} + +func decryptOAEP(hash, mgfHash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { + if err := checkPub(&priv.PublicKey); err != nil { + return nil, err + } + k := priv.Size() + if len(ciphertext) > k || + k < hash.Size()*2+2 { + return nil, ErrDecryption + } + + if boring.Enabled { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + out, err := boring.DecryptRSAOAEP(hash, mgfHash, bkey, ciphertext, label) + if err != nil { + return nil, ErrDecryption + } + return out, nil + } + + em, err := decrypt(priv, ciphertext, noCheck) + if err != nil { + return nil, err + } + + hash.Write(label) + lHash := hash.Sum(nil) + hash.Reset() + + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + + seed := em[1 : hash.Size()+1] + db := em[hash.Size()+1:] + + mgf1XOR(seed, mgfHash, db) + mgf1XOR(db, mgfHash, seed) + + lHash2 := db[0:hash.Size()] + + // We have to validate the plaintext in constant time in order to avoid + // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal + // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 + // v2.0. In J. Kilian, editor, Advances in Cryptology. + lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) + + // The remainder of the plaintext must be zero or more 0x00, followed + // by 0x01, followed by the message. + // lookingForIndex: 1 iff we are still looking for the 0x01 + // index: the offset of the first 0x01 byte + // invalid: 1 iff we saw a non-zero byte before the 0x01. + var lookingForIndex, index, invalid int + lookingForIndex = 1 + rest := db[hash.Size():] + + for i := 0; i < len(rest); i++ { + equals0 := subtle.ConstantTimeByteEq(rest[i], 0) + equals1 := subtle.ConstantTimeByteEq(rest[i], 1) + index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) + invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) + } + + if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { + return nil, ErrDecryption + } + + return rest[index+1:], nil +} |