summaryrefslogtreecommitdiffstats
path: root/src/runtime/mbitmap.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/mbitmap.go')
-rw-r--r--src/runtime/mbitmap.go1501
1 files changed, 1501 insertions, 0 deletions
diff --git a/src/runtime/mbitmap.go b/src/runtime/mbitmap.go
new file mode 100644
index 0000000..a242872
--- /dev/null
+++ b/src/runtime/mbitmap.go
@@ -0,0 +1,1501 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Garbage collector: type and heap bitmaps.
+//
+// Stack, data, and bss bitmaps
+//
+// Stack frames and global variables in the data and bss sections are
+// described by bitmaps with 1 bit per pointer-sized word. A "1" bit
+// means the word is a live pointer to be visited by the GC (referred to
+// as "pointer"). A "0" bit means the word should be ignored by GC
+// (referred to as "scalar", though it could be a dead pointer value).
+//
+// Heap bitmap
+//
+// The heap bitmap comprises 1 bit for each pointer-sized word in the heap,
+// recording whether a pointer is stored in that word or not. This bitmap
+// is stored in the heapArena metadata backing each heap arena.
+// That is, if ha is the heapArena for the arena starting at "start",
+// then ha.bitmap[0] holds the 64 bits for the 64 words "start"
+// through start+63*ptrSize, ha.bitmap[1] holds the entries for
+// start+64*ptrSize through start+127*ptrSize, and so on.
+// Bits correspond to words in little-endian order. ha.bitmap[0]&1 represents
+// the word at "start", ha.bitmap[0]>>1&1 represents the word at start+8, etc.
+// (For 32-bit platforms, s/64/32/.)
+//
+// We also keep a noMorePtrs bitmap which allows us to stop scanning
+// the heap bitmap early in certain situations. If ha.noMorePtrs[i]>>j&1
+// is 1, then the object containing the last word described by ha.bitmap[8*i+j]
+// has no more pointers beyond those described by ha.bitmap[8*i+j].
+// If ha.noMorePtrs[i]>>j&1 is set, the entries in ha.bitmap[8*i+j+1] and
+// beyond must all be zero until the start of the next object.
+//
+// The bitmap for noscan spans is set to all zero at span allocation time.
+//
+// The bitmap for unallocated objects in scannable spans is not maintained
+// (can be junk).
+
+package runtime
+
+import (
+ "internal/goarch"
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// addb returns the byte pointer p+n.
+//
+//go:nowritebarrier
+//go:nosplit
+func addb(p *byte, n uintptr) *byte {
+ // Note: wrote out full expression instead of calling add(p, n)
+ // to reduce the number of temporaries generated by the
+ // compiler for this trivial expression during inlining.
+ return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
+}
+
+// subtractb returns the byte pointer p-n.
+//
+//go:nowritebarrier
+//go:nosplit
+func subtractb(p *byte, n uintptr) *byte {
+ // Note: wrote out full expression instead of calling add(p, -n)
+ // to reduce the number of temporaries generated by the
+ // compiler for this trivial expression during inlining.
+ return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
+}
+
+// add1 returns the byte pointer p+1.
+//
+//go:nowritebarrier
+//go:nosplit
+func add1(p *byte) *byte {
+ // Note: wrote out full expression instead of calling addb(p, 1)
+ // to reduce the number of temporaries generated by the
+ // compiler for this trivial expression during inlining.
+ return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
+}
+
+// subtract1 returns the byte pointer p-1.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nowritebarrier
+//go:nosplit
+func subtract1(p *byte) *byte {
+ // Note: wrote out full expression instead of calling subtractb(p, 1)
+ // to reduce the number of temporaries generated by the
+ // compiler for this trivial expression during inlining.
+ return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
+}
+
+// markBits provides access to the mark bit for an object in the heap.
+// bytep points to the byte holding the mark bit.
+// mask is a byte with a single bit set that can be &ed with *bytep
+// to see if the bit has been set.
+// *m.byte&m.mask != 0 indicates the mark bit is set.
+// index can be used along with span information to generate
+// the address of the object in the heap.
+// We maintain one set of mark bits for allocation and one for
+// marking purposes.
+type markBits struct {
+ bytep *uint8
+ mask uint8
+ index uintptr
+}
+
+//go:nosplit
+func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits {
+ bytep, mask := s.allocBits.bitp(allocBitIndex)
+ return markBits{bytep, mask, allocBitIndex}
+}
+
+// refillAllocCache takes 8 bytes s.allocBits starting at whichByte
+// and negates them so that ctz (count trailing zeros) instructions
+// can be used. It then places these 8 bytes into the cached 64 bit
+// s.allocCache.
+func (s *mspan) refillAllocCache(whichByte uintptr) {
+ bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte)))
+ aCache := uint64(0)
+ aCache |= uint64(bytes[0])
+ aCache |= uint64(bytes[1]) << (1 * 8)
+ aCache |= uint64(bytes[2]) << (2 * 8)
+ aCache |= uint64(bytes[3]) << (3 * 8)
+ aCache |= uint64(bytes[4]) << (4 * 8)
+ aCache |= uint64(bytes[5]) << (5 * 8)
+ aCache |= uint64(bytes[6]) << (6 * 8)
+ aCache |= uint64(bytes[7]) << (7 * 8)
+ s.allocCache = ^aCache
+}
+
+// nextFreeIndex returns the index of the next free object in s at
+// or after s.freeindex.
+// There are hardware instructions that can be used to make this
+// faster if profiling warrants it.
+func (s *mspan) nextFreeIndex() uintptr {
+ sfreeindex := s.freeindex
+ snelems := s.nelems
+ if sfreeindex == snelems {
+ return sfreeindex
+ }
+ if sfreeindex > snelems {
+ throw("s.freeindex > s.nelems")
+ }
+
+ aCache := s.allocCache
+
+ bitIndex := sys.TrailingZeros64(aCache)
+ for bitIndex == 64 {
+ // Move index to start of next cached bits.
+ sfreeindex = (sfreeindex + 64) &^ (64 - 1)
+ if sfreeindex >= snelems {
+ s.freeindex = snelems
+ return snelems
+ }
+ whichByte := sfreeindex / 8
+ // Refill s.allocCache with the next 64 alloc bits.
+ s.refillAllocCache(whichByte)
+ aCache = s.allocCache
+ bitIndex = sys.TrailingZeros64(aCache)
+ // nothing available in cached bits
+ // grab the next 8 bytes and try again.
+ }
+ result := sfreeindex + uintptr(bitIndex)
+ if result >= snelems {
+ s.freeindex = snelems
+ return snelems
+ }
+
+ s.allocCache >>= uint(bitIndex + 1)
+ sfreeindex = result + 1
+
+ if sfreeindex%64 == 0 && sfreeindex != snelems {
+ // We just incremented s.freeindex so it isn't 0.
+ // As each 1 in s.allocCache was encountered and used for allocation
+ // it was shifted away. At this point s.allocCache contains all 0s.
+ // Refill s.allocCache so that it corresponds
+ // to the bits at s.allocBits starting at s.freeindex.
+ whichByte := sfreeindex / 8
+ s.refillAllocCache(whichByte)
+ }
+ s.freeindex = sfreeindex
+ return result
+}
+
+// isFree reports whether the index'th object in s is unallocated.
+//
+// The caller must ensure s.state is mSpanInUse, and there must have
+// been no preemption points since ensuring this (which could allow a
+// GC transition, which would allow the state to change).
+func (s *mspan) isFree(index uintptr) bool {
+ if index < s.freeIndexForScan {
+ return false
+ }
+ bytep, mask := s.allocBits.bitp(index)
+ return *bytep&mask == 0
+}
+
+// divideByElemSize returns n/s.elemsize.
+// n must be within [0, s.npages*_PageSize),
+// or may be exactly s.npages*_PageSize
+// if s.elemsize is from sizeclasses.go.
+//
+// nosplit, because it is called by objIndex, which is nosplit
+//
+//go:nosplit
+func (s *mspan) divideByElemSize(n uintptr) uintptr {
+ const doubleCheck = false
+
+ // See explanation in mksizeclasses.go's computeDivMagic.
+ q := uintptr((uint64(n) * uint64(s.divMul)) >> 32)
+
+ if doubleCheck && q != n/s.elemsize {
+ println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q)
+ throw("bad magic division")
+ }
+ return q
+}
+
+// nosplit, because it is called by other nosplit code like findObject
+//
+//go:nosplit
+func (s *mspan) objIndex(p uintptr) uintptr {
+ return s.divideByElemSize(p - s.base())
+}
+
+func markBitsForAddr(p uintptr) markBits {
+ s := spanOf(p)
+ objIndex := s.objIndex(p)
+ return s.markBitsForIndex(objIndex)
+}
+
+func (s *mspan) markBitsForIndex(objIndex uintptr) markBits {
+ bytep, mask := s.gcmarkBits.bitp(objIndex)
+ return markBits{bytep, mask, objIndex}
+}
+
+func (s *mspan) markBitsForBase() markBits {
+ return markBits{&s.gcmarkBits.x, uint8(1), 0}
+}
+
+// isMarked reports whether mark bit m is set.
+func (m markBits) isMarked() bool {
+ return *m.bytep&m.mask != 0
+}
+
+// setMarked sets the marked bit in the markbits, atomically.
+func (m markBits) setMarked() {
+ // Might be racing with other updates, so use atomic update always.
+ // We used to be clever here and use a non-atomic update in certain
+ // cases, but it's not worth the risk.
+ atomic.Or8(m.bytep, m.mask)
+}
+
+// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
+func (m markBits) setMarkedNonAtomic() {
+ *m.bytep |= m.mask
+}
+
+// clearMarked clears the marked bit in the markbits, atomically.
+func (m markBits) clearMarked() {
+ // Might be racing with other updates, so use atomic update always.
+ // We used to be clever here and use a non-atomic update in certain
+ // cases, but it's not worth the risk.
+ atomic.And8(m.bytep, ^m.mask)
+}
+
+// markBitsForSpan returns the markBits for the span base address base.
+func markBitsForSpan(base uintptr) (mbits markBits) {
+ mbits = markBitsForAddr(base)
+ if mbits.mask != 1 {
+ throw("markBitsForSpan: unaligned start")
+ }
+ return mbits
+}
+
+// advance advances the markBits to the next object in the span.
+func (m *markBits) advance() {
+ if m.mask == 1<<7 {
+ m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
+ m.mask = 1
+ } else {
+ m.mask = m.mask << 1
+ }
+ m.index++
+}
+
+// clobberdeadPtr is a special value that is used by the compiler to
+// clobber dead stack slots, when -clobberdead flag is set.
+const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32))
+
+// badPointer throws bad pointer in heap panic.
+func badPointer(s *mspan, p, refBase, refOff uintptr) {
+ // Typically this indicates an incorrect use
+ // of unsafe or cgo to store a bad pointer in
+ // the Go heap. It may also indicate a runtime
+ // bug.
+ //
+ // TODO(austin): We could be more aggressive
+ // and detect pointers to unallocated objects
+ // in allocated spans.
+ printlock()
+ print("runtime: pointer ", hex(p))
+ if s != nil {
+ state := s.state.get()
+ if state != mSpanInUse {
+ print(" to unallocated span")
+ } else {
+ print(" to unused region of span")
+ }
+ print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state)
+ }
+ print("\n")
+ if refBase != 0 {
+ print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
+ gcDumpObject("object", refBase, refOff)
+ }
+ getg().m.traceback = 2
+ throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
+}
+
+// findObject returns the base address for the heap object containing
+// the address p, the object's span, and the index of the object in s.
+// If p does not point into a heap object, it returns base == 0.
+//
+// If p points is an invalid heap pointer and debug.invalidptr != 0,
+// findObject panics.
+//
+// refBase and refOff optionally give the base address of the object
+// in which the pointer p was found and the byte offset at which it
+// was found. These are used for error reporting.
+//
+// It is nosplit so it is safe for p to be a pointer to the current goroutine's stack.
+// Since p is a uintptr, it would not be adjusted if the stack were to move.
+//
+//go:nosplit
+func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) {
+ s = spanOf(p)
+ // If s is nil, the virtual address has never been part of the heap.
+ // This pointer may be to some mmap'd region, so we allow it.
+ if s == nil {
+ if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 {
+ // Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now,
+ // as they are the only platform where compiler's clobberdead mode is
+ // implemented. On these platforms clobberdeadPtr cannot be a valid address.
+ badPointer(s, p, refBase, refOff)
+ }
+ return
+ }
+ // If p is a bad pointer, it may not be in s's bounds.
+ //
+ // Check s.state to synchronize with span initialization
+ // before checking other fields. See also spanOfHeap.
+ if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit {
+ // Pointers into stacks are also ok, the runtime manages these explicitly.
+ if state == mSpanManual {
+ return
+ }
+ // The following ensures that we are rigorous about what data
+ // structures hold valid pointers.
+ if debug.invalidptr != 0 {
+ badPointer(s, p, refBase, refOff)
+ }
+ return
+ }
+
+ objIndex = s.objIndex(p)
+ base = s.base() + objIndex*s.elemsize
+ return
+}
+
+// reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok.
+//
+//go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr
+func reflect_verifyNotInHeapPtr(p uintptr) bool {
+ // Conversion to a pointer is ok as long as findObject above does not call badPointer.
+ // Since we're already promised that p doesn't point into the heap, just disallow heap
+ // pointers and the special clobbered pointer.
+ return spanOf(p) == nil && p != clobberdeadPtr
+}
+
+const ptrBits = 8 * goarch.PtrSize
+
+// heapBits provides access to the bitmap bits for a single heap word.
+// The methods on heapBits take value receivers so that the compiler
+// can more easily inline calls to those methods and registerize the
+// struct fields independently.
+type heapBits struct {
+ // heapBits will report on pointers in the range [addr,addr+size).
+ // The low bit of mask contains the pointerness of the word at addr
+ // (assuming valid>0).
+ addr, size uintptr
+
+ // The next few pointer bits representing words starting at addr.
+ // Those bits already returned by next() are zeroed.
+ mask uintptr
+ // Number of bits in mask that are valid. mask is always less than 1<<valid.
+ valid uintptr
+}
+
+// heapBitsForAddr returns the heapBits for the address addr.
+// The caller must ensure [addr,addr+size) is in an allocated span.
+// In particular, be careful not to point past the end of an object.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func heapBitsForAddr(addr, size uintptr) heapBits {
+ // Find arena
+ ai := arenaIndex(addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+
+ // Word index in arena.
+ word := addr / goarch.PtrSize % heapArenaWords
+
+ // Word index and bit offset in bitmap array.
+ idx := word / ptrBits
+ off := word % ptrBits
+
+ // Grab relevant bits of bitmap.
+ mask := ha.bitmap[idx] >> off
+ valid := ptrBits - off
+
+ // Process depending on where the object ends.
+ nptr := size / goarch.PtrSize
+ if nptr < valid {
+ // Bits for this object end before the end of this bitmap word.
+ // Squash bits for the following objects.
+ mask &= 1<<(nptr&(ptrBits-1)) - 1
+ valid = nptr
+ } else if nptr == valid {
+ // Bits for this object end at exactly the end of this bitmap word.
+ // All good.
+ } else {
+ // Bits for this object extend into the next bitmap word. See if there
+ // may be any pointers recorded there.
+ if uintptr(ha.noMorePtrs[idx/8])>>(idx%8)&1 != 0 {
+ // No more pointers in this object after this bitmap word.
+ // Update size so we know not to look there.
+ size = valid * goarch.PtrSize
+ }
+ }
+
+ return heapBits{addr: addr, size: size, mask: mask, valid: valid}
+}
+
+// Returns the (absolute) address of the next known pointer and
+// a heapBits iterator representing any remaining pointers.
+// If there are no more pointers, returns address 0.
+// Note that next does not modify h. The caller must record the result.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func (h heapBits) next() (heapBits, uintptr) {
+ for {
+ if h.mask != 0 {
+ var i int
+ if goarch.PtrSize == 8 {
+ i = sys.TrailingZeros64(uint64(h.mask))
+ } else {
+ i = sys.TrailingZeros32(uint32(h.mask))
+ }
+ h.mask ^= uintptr(1) << (i & (ptrBits - 1))
+ return h, h.addr + uintptr(i)*goarch.PtrSize
+ }
+
+ // Skip words that we've already processed.
+ h.addr += h.valid * goarch.PtrSize
+ h.size -= h.valid * goarch.PtrSize
+ if h.size == 0 {
+ return h, 0 // no more pointers
+ }
+
+ // Grab more bits and try again.
+ h = heapBitsForAddr(h.addr, h.size)
+ }
+}
+
+// nextFast is like next, but can return 0 even when there are more pointers
+// to be found. Callers should call next if nextFast returns 0 as its second
+// return value.
+//
+// if addr, h = h.nextFast(); addr == 0 {
+// if addr, h = h.next(); addr == 0 {
+// ... no more pointers ...
+// }
+// }
+// ... process pointer at addr ...
+//
+// nextFast is designed to be inlineable.
+//
+//go:nosplit
+func (h heapBits) nextFast() (heapBits, uintptr) {
+ // TESTQ/JEQ
+ if h.mask == 0 {
+ return h, 0
+ }
+ // BSFQ
+ var i int
+ if goarch.PtrSize == 8 {
+ i = sys.TrailingZeros64(uint64(h.mask))
+ } else {
+ i = sys.TrailingZeros32(uint32(h.mask))
+ }
+ // BTCQ
+ h.mask ^= uintptr(1) << (i & (ptrBits - 1))
+ // LEAQ (XX)(XX*8)
+ return h, h.addr + uintptr(i)*goarch.PtrSize
+}
+
+// bulkBarrierPreWrite executes a write barrier
+// for every pointer slot in the memory range [src, src+size),
+// using pointer/scalar information from [dst, dst+size).
+// This executes the write barriers necessary before a memmove.
+// src, dst, and size must be pointer-aligned.
+// The range [dst, dst+size) must lie within a single object.
+// It does not perform the actual writes.
+//
+// As a special case, src == 0 indicates that this is being used for a
+// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
+// barrier.
+//
+// Callers should call bulkBarrierPreWrite immediately before
+// calling memmove(dst, src, size). This function is marked nosplit
+// to avoid being preempted; the GC must not stop the goroutine
+// between the memmove and the execution of the barriers.
+// The caller is also responsible for cgo pointer checks if this
+// may be writing Go pointers into non-Go memory.
+//
+// The pointer bitmap is not maintained for allocations containing
+// no pointers at all; any caller of bulkBarrierPreWrite must first
+// make sure the underlying allocation contains pointers, usually
+// by checking typ.PtrBytes.
+//
+// Callers must perform cgo checks if goexperiment.CgoCheck2.
+//
+//go:nosplit
+func bulkBarrierPreWrite(dst, src, size uintptr) {
+ if (dst|src|size)&(goarch.PtrSize-1) != 0 {
+ throw("bulkBarrierPreWrite: unaligned arguments")
+ }
+ if !writeBarrier.needed {
+ return
+ }
+ if s := spanOf(dst); s == nil {
+ // If dst is a global, use the data or BSS bitmaps to
+ // execute write barriers.
+ for _, datap := range activeModules() {
+ if datap.data <= dst && dst < datap.edata {
+ bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
+ return
+ }
+ }
+ for _, datap := range activeModules() {
+ if datap.bss <= dst && dst < datap.ebss {
+ bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
+ return
+ }
+ }
+ return
+ } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst {
+ // dst was heap memory at some point, but isn't now.
+ // It can't be a global. It must be either our stack,
+ // or in the case of direct channel sends, it could be
+ // another stack. Either way, no need for barriers.
+ // This will also catch if dst is in a freed span,
+ // though that should never have.
+ return
+ }
+
+ buf := &getg().m.p.ptr().wbBuf
+ h := heapBitsForAddr(dst, size)
+ if src == 0 {
+ for {
+ var addr uintptr
+ if h, addr = h.next(); addr == 0 {
+ break
+ }
+ dstx := (*uintptr)(unsafe.Pointer(addr))
+ p := buf.get1()
+ p[0] = *dstx
+ }
+ } else {
+ for {
+ var addr uintptr
+ if h, addr = h.next(); addr == 0 {
+ break
+ }
+ dstx := (*uintptr)(unsafe.Pointer(addr))
+ srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst)))
+ p := buf.get2()
+ p[0] = *dstx
+ p[1] = *srcx
+ }
+ }
+}
+
+// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
+// does not execute write barriers for [dst, dst+size).
+//
+// In addition to the requirements of bulkBarrierPreWrite
+// callers need to ensure [dst, dst+size) is zeroed.
+//
+// This is used for special cases where e.g. dst was just
+// created and zeroed with malloc.
+//
+//go:nosplit
+func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) {
+ if (dst|src|size)&(goarch.PtrSize-1) != 0 {
+ throw("bulkBarrierPreWrite: unaligned arguments")
+ }
+ if !writeBarrier.needed {
+ return
+ }
+ buf := &getg().m.p.ptr().wbBuf
+ h := heapBitsForAddr(dst, size)
+ for {
+ var addr uintptr
+ if h, addr = h.next(); addr == 0 {
+ break
+ }
+ srcx := (*uintptr)(unsafe.Pointer(addr - dst + src))
+ p := buf.get1()
+ p[0] = *srcx
+ }
+}
+
+// bulkBarrierBitmap executes write barriers for copying from [src,
+// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
+// assumed to start maskOffset bytes into the data covered by the
+// bitmap in bits (which may not be a multiple of 8).
+//
+// This is used by bulkBarrierPreWrite for writes to data and BSS.
+//
+//go:nosplit
+func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) {
+ word := maskOffset / goarch.PtrSize
+ bits = addb(bits, word/8)
+ mask := uint8(1) << (word % 8)
+
+ buf := &getg().m.p.ptr().wbBuf
+ for i := uintptr(0); i < size; i += goarch.PtrSize {
+ if mask == 0 {
+ bits = addb(bits, 1)
+ if *bits == 0 {
+ // Skip 8 words.
+ i += 7 * goarch.PtrSize
+ continue
+ }
+ mask = 1
+ }
+ if *bits&mask != 0 {
+ dstx := (*uintptr)(unsafe.Pointer(dst + i))
+ if src == 0 {
+ p := buf.get1()
+ p[0] = *dstx
+ } else {
+ srcx := (*uintptr)(unsafe.Pointer(src + i))
+ p := buf.get2()
+ p[0] = *dstx
+ p[1] = *srcx
+ }
+ }
+ mask <<= 1
+ }
+}
+
+// typeBitsBulkBarrier executes a write barrier for every
+// pointer that would be copied from [src, src+size) to [dst,
+// dst+size) by a memmove using the type bitmap to locate those
+// pointer slots.
+//
+// The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
+// dst, src, and size must be pointer-aligned.
+// The type typ must have a plain bitmap, not a GC program.
+// The only use of this function is in channel sends, and the
+// 64 kB channel element limit takes care of this for us.
+//
+// Must not be preempted because it typically runs right before memmove,
+// and the GC must observe them as an atomic action.
+//
+// Callers must perform cgo checks if goexperiment.CgoCheck2.
+//
+//go:nosplit
+func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {
+ if typ == nil {
+ throw("runtime: typeBitsBulkBarrier without type")
+ }
+ if typ.Size_ != size {
+ println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " of size ", typ.Size_, " but memory size", size)
+ throw("runtime: invalid typeBitsBulkBarrier")
+ }
+ if typ.Kind_&kindGCProg != 0 {
+ println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " with GC prog")
+ throw("runtime: invalid typeBitsBulkBarrier")
+ }
+ if !writeBarrier.needed {
+ return
+ }
+ ptrmask := typ.GCData
+ buf := &getg().m.p.ptr().wbBuf
+ var bits uint32
+ for i := uintptr(0); i < typ.PtrBytes; i += goarch.PtrSize {
+ if i&(goarch.PtrSize*8-1) == 0 {
+ bits = uint32(*ptrmask)
+ ptrmask = addb(ptrmask, 1)
+ } else {
+ bits = bits >> 1
+ }
+ if bits&1 != 0 {
+ dstx := (*uintptr)(unsafe.Pointer(dst + i))
+ srcx := (*uintptr)(unsafe.Pointer(src + i))
+ p := buf.get2()
+ p[0] = *dstx
+ p[1] = *srcx
+ }
+ }
+}
+
+// initHeapBits initializes the heap bitmap for a span.
+// If this is a span of single pointer allocations, it initializes all
+// words to pointer. If force is true, clears all bits.
+func (s *mspan) initHeapBits(forceClear bool) {
+ if forceClear || s.spanclass.noscan() {
+ // Set all the pointer bits to zero. We do this once
+ // when the span is allocated so we don't have to do it
+ // for each object allocation.
+ base := s.base()
+ size := s.npages * pageSize
+ h := writeHeapBitsForAddr(base)
+ h.flush(base, size)
+ return
+ }
+ isPtrs := goarch.PtrSize == 8 && s.elemsize == goarch.PtrSize
+ if !isPtrs {
+ return // nothing to do
+ }
+ h := writeHeapBitsForAddr(s.base())
+ size := s.npages * pageSize
+ nptrs := size / goarch.PtrSize
+ for i := uintptr(0); i < nptrs; i += ptrBits {
+ h = h.write(^uintptr(0), ptrBits)
+ }
+ h.flush(s.base(), size)
+}
+
+// countAlloc returns the number of objects allocated in span s by
+// scanning the allocation bitmap.
+func (s *mspan) countAlloc() int {
+ count := 0
+ bytes := divRoundUp(s.nelems, 8)
+ // Iterate over each 8-byte chunk and count allocations
+ // with an intrinsic. Note that newMarkBits guarantees that
+ // gcmarkBits will be 8-byte aligned, so we don't have to
+ // worry about edge cases, irrelevant bits will simply be zero.
+ for i := uintptr(0); i < bytes; i += 8 {
+ // Extract 64 bits from the byte pointer and get a OnesCount.
+ // Note that the unsafe cast here doesn't preserve endianness,
+ // but that's OK. We only care about how many bits are 1, not
+ // about the order we discover them in.
+ mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i)))
+ count += sys.OnesCount64(mrkBits)
+ }
+ return count
+}
+
+type writeHeapBits struct {
+ addr uintptr // address that the low bit of mask represents the pointer state of.
+ mask uintptr // some pointer bits starting at the address addr.
+ valid uintptr // number of bits in buf that are valid (including low)
+ low uintptr // number of low-order bits to not overwrite
+}
+
+func writeHeapBitsForAddr(addr uintptr) (h writeHeapBits) {
+ // We start writing bits maybe in the middle of a heap bitmap word.
+ // Remember how many bits into the word we started, so we can be sure
+ // not to overwrite the previous bits.
+ h.low = addr / goarch.PtrSize % ptrBits
+
+ // round down to heap word that starts the bitmap word.
+ h.addr = addr - h.low*goarch.PtrSize
+
+ // We don't have any bits yet.
+ h.mask = 0
+ h.valid = h.low
+
+ return
+}
+
+// write appends the pointerness of the next valid pointer slots
+// using the low valid bits of bits. 1=pointer, 0=scalar.
+func (h writeHeapBits) write(bits, valid uintptr) writeHeapBits {
+ if h.valid+valid <= ptrBits {
+ // Fast path - just accumulate the bits.
+ h.mask |= bits << h.valid
+ h.valid += valid
+ return h
+ }
+ // Too many bits to fit in this word. Write the current word
+ // out and move on to the next word.
+
+ data := h.mask | bits<<h.valid // mask for this word
+ h.mask = bits >> (ptrBits - h.valid) // leftover for next word
+ h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them
+
+ // Flush mask to the memory bitmap.
+ // TODO: figure out how to cache arena lookup.
+ ai := arenaIndex(h.addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
+ m := uintptr(1)<<h.low - 1
+ ha.bitmap[idx] = ha.bitmap[idx]&m | data
+ // Note: no synchronization required for this write because
+ // the allocator has exclusive access to the page, and the bitmap
+ // entries are all for a single page. Also, visibility of these
+ // writes is guaranteed by the publication barrier in mallocgc.
+
+ // Clear noMorePtrs bit, since we're going to be writing bits
+ // into the following word.
+ ha.noMorePtrs[idx/8] &^= uint8(1) << (idx % 8)
+ // Note: same as above
+
+ // Move to next word of bitmap.
+ h.addr += ptrBits * goarch.PtrSize
+ h.low = 0
+ return h
+}
+
+// Add padding of size bytes.
+func (h writeHeapBits) pad(size uintptr) writeHeapBits {
+ if size == 0 {
+ return h
+ }
+ words := size / goarch.PtrSize
+ for words > ptrBits {
+ h = h.write(0, ptrBits)
+ words -= ptrBits
+ }
+ return h.write(0, words)
+}
+
+// Flush the bits that have been written, and add zeros as needed
+// to cover the full object [addr, addr+size).
+func (h writeHeapBits) flush(addr, size uintptr) {
+ // zeros counts the number of bits needed to represent the object minus the
+ // number of bits we've already written. This is the number of 0 bits
+ // that need to be added.
+ zeros := (addr+size-h.addr)/goarch.PtrSize - h.valid
+
+ // Add zero bits up to the bitmap word boundary
+ if zeros > 0 {
+ z := ptrBits - h.valid
+ if z > zeros {
+ z = zeros
+ }
+ h.valid += z
+ zeros -= z
+ }
+
+ // Find word in bitmap that we're going to write.
+ ai := arenaIndex(h.addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
+
+ // Write remaining bits.
+ if h.valid != h.low {
+ m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low"
+ m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid"
+ ha.bitmap[idx] = ha.bitmap[idx]&m | h.mask
+ }
+ if zeros == 0 {
+ return
+ }
+
+ // Record in the noMorePtrs map that there won't be any more 1 bits,
+ // so readers can stop early.
+ ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8)
+
+ // Advance to next bitmap word.
+ h.addr += ptrBits * goarch.PtrSize
+
+ // Continue on writing zeros for the rest of the object.
+ // For standard use of the ptr bits this is not required, as
+ // the bits are read from the beginning of the object. Some uses,
+ // like noscan spans, oblets, bulk write barriers, and cgocheck, might
+ // start mid-object, so these writes are still required.
+ for {
+ // Write zero bits.
+ ai := arenaIndex(h.addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
+ if zeros < ptrBits {
+ ha.bitmap[idx] &^= uintptr(1)<<zeros - 1
+ break
+ } else if zeros == ptrBits {
+ ha.bitmap[idx] = 0
+ break
+ } else {
+ ha.bitmap[idx] = 0
+ zeros -= ptrBits
+ }
+ ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8)
+ h.addr += ptrBits * goarch.PtrSize
+ }
+}
+
+// Read the bytes starting at the aligned pointer p into a uintptr.
+// Read is little-endian.
+func readUintptr(p *byte) uintptr {
+ x := *(*uintptr)(unsafe.Pointer(p))
+ if goarch.BigEndian {
+ if goarch.PtrSize == 8 {
+ return uintptr(sys.Bswap64(uint64(x)))
+ }
+ return uintptr(sys.Bswap32(uint32(x)))
+ }
+ return x
+}
+
+// heapBitsSetType records that the new allocation [x, x+size)
+// holds in [x, x+dataSize) one or more values of type typ.
+// (The number of values is given by dataSize / typ.Size.)
+// If dataSize < size, the fragment [x+dataSize, x+size) is
+// recorded as non-pointer data.
+// It is known that the type has pointers somewhere;
+// malloc does not call heapBitsSetType when there are no pointers,
+// because all free objects are marked as noscan during
+// heapBitsSweepSpan.
+//
+// There can only be one allocation from a given span active at a time,
+// and the bitmap for a span always falls on word boundaries,
+// so there are no write-write races for access to the heap bitmap.
+// Hence, heapBitsSetType can access the bitmap without atomics.
+//
+// There can be read-write races between heapBitsSetType and things
+// that read the heap bitmap like scanobject. However, since
+// heapBitsSetType is only used for objects that have not yet been
+// made reachable, readers will ignore bits being modified by this
+// function. This does mean this function cannot transiently modify
+// bits that belong to neighboring objects. Also, on weakly-ordered
+// machines, callers must execute a store/store (publication) barrier
+// between calling this function and making the object reachable.
+func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
+ const doubleCheck = false // slow but helpful; enable to test modifications to this code
+
+ if doubleCheck && dataSize%typ.Size_ != 0 {
+ throw("heapBitsSetType: dataSize not a multiple of typ.Size")
+ }
+
+ if goarch.PtrSize == 8 && size == goarch.PtrSize {
+ // It's one word and it has pointers, it must be a pointer.
+ // Since all allocated one-word objects are pointers
+ // (non-pointers are aggregated into tinySize allocations),
+ // (*mspan).initHeapBits sets the pointer bits for us.
+ // Nothing to do here.
+ if doubleCheck {
+ h, addr := heapBitsForAddr(x, size).next()
+ if addr != x {
+ throw("heapBitsSetType: pointer bit missing")
+ }
+ _, addr = h.next()
+ if addr != 0 {
+ throw("heapBitsSetType: second pointer bit found")
+ }
+ }
+ return
+ }
+
+ h := writeHeapBitsForAddr(x)
+
+ // Handle GC program.
+ if typ.Kind_&kindGCProg != 0 {
+ // Expand the gc program into the storage we're going to use for the actual object.
+ obj := (*uint8)(unsafe.Pointer(x))
+ n := runGCProg(addb(typ.GCData, 4), obj)
+ // Use the expanded program to set the heap bits.
+ for i := uintptr(0); true; i += typ.Size_ {
+ // Copy expanded program to heap bitmap.
+ p := obj
+ j := n
+ for j > 8 {
+ h = h.write(uintptr(*p), 8)
+ p = add1(p)
+ j -= 8
+ }
+ h = h.write(uintptr(*p), j)
+
+ if i+typ.Size_ == dataSize {
+ break // no padding after last element
+ }
+
+ // Pad with zeros to the start of the next element.
+ h = h.pad(typ.Size_ - n*goarch.PtrSize)
+ }
+
+ h.flush(x, size)
+
+ // Erase the expanded GC program.
+ memclrNoHeapPointers(unsafe.Pointer(obj), (n+7)/8)
+ return
+ }
+
+ // Note about sizes:
+ //
+ // typ.Size is the number of words in the object,
+ // and typ.PtrBytes is the number of words in the prefix
+ // of the object that contains pointers. That is, the final
+ // typ.Size - typ.PtrBytes words contain no pointers.
+ // This allows optimization of a common pattern where
+ // an object has a small header followed by a large scalar
+ // buffer. If we know the pointers are over, we don't have
+ // to scan the buffer's heap bitmap at all.
+ // The 1-bit ptrmasks are sized to contain only bits for
+ // the typ.PtrBytes prefix, zero padded out to a full byte
+ // of bitmap. If there is more room in the allocated object,
+ // that space is pointerless. The noMorePtrs bitmap will prevent
+ // scanning large pointerless tails of an object.
+ //
+ // Replicated copies are not as nice: if there is an array of
+ // objects with scalar tails, all but the last tail does have to
+ // be initialized, because there is no way to say "skip forward".
+
+ ptrs := typ.PtrBytes / goarch.PtrSize
+ if typ.Size_ == dataSize { // Single element
+ if ptrs <= ptrBits { // Single small element
+ m := readUintptr(typ.GCData)
+ h = h.write(m, ptrs)
+ } else { // Single large element
+ p := typ.GCData
+ for {
+ h = h.write(readUintptr(p), ptrBits)
+ p = addb(p, ptrBits/8)
+ ptrs -= ptrBits
+ if ptrs <= ptrBits {
+ break
+ }
+ }
+ m := readUintptr(p)
+ h = h.write(m, ptrs)
+ }
+ } else { // Repeated element
+ words := typ.Size_ / goarch.PtrSize // total words, including scalar tail
+ if words <= ptrBits { // Repeated small element
+ n := dataSize / typ.Size_
+ m := readUintptr(typ.GCData)
+ // Make larger unit to repeat
+ for words <= ptrBits/2 {
+ if n&1 != 0 {
+ h = h.write(m, words)
+ }
+ n /= 2
+ m |= m << words
+ ptrs += words
+ words *= 2
+ if n == 1 {
+ break
+ }
+ }
+ for n > 1 {
+ h = h.write(m, words)
+ n--
+ }
+ h = h.write(m, ptrs)
+ } else { // Repeated large element
+ for i := uintptr(0); true; i += typ.Size_ {
+ p := typ.GCData
+ j := ptrs
+ for j > ptrBits {
+ h = h.write(readUintptr(p), ptrBits)
+ p = addb(p, ptrBits/8)
+ j -= ptrBits
+ }
+ m := readUintptr(p)
+ h = h.write(m, j)
+ if i+typ.Size_ == dataSize {
+ break // don't need the trailing nonptr bits on the last element.
+ }
+ // Pad with zeros to the start of the next element.
+ h = h.pad(typ.Size_ - typ.PtrBytes)
+ }
+ }
+ }
+ h.flush(x, size)
+
+ if doubleCheck {
+ h := heapBitsForAddr(x, size)
+ for i := uintptr(0); i < size; i += goarch.PtrSize {
+ // Compute the pointer bit we want at offset i.
+ want := false
+ if i < dataSize {
+ off := i % typ.Size_
+ if off < typ.PtrBytes {
+ j := off / goarch.PtrSize
+ want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
+ }
+ }
+ if want {
+ var addr uintptr
+ h, addr = h.next()
+ if addr != x+i {
+ throw("heapBitsSetType: pointer entry not correct")
+ }
+ }
+ }
+ if _, addr := h.next(); addr != 0 {
+ throw("heapBitsSetType: extra pointer")
+ }
+ }
+}
+
+var debugPtrmask struct {
+ lock mutex
+ data *byte
+}
+
+// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
+// size the size of the region described by prog, in bytes.
+// The resulting bitvector will have no more than size/goarch.PtrSize bits.
+func progToPointerMask(prog *byte, size uintptr) bitvector {
+ n := (size/goarch.PtrSize + 7) / 8
+ x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
+ x[len(x)-1] = 0xa1 // overflow check sentinel
+ n = runGCProg(prog, &x[0])
+ if x[len(x)-1] != 0xa1 {
+ throw("progToPointerMask: overflow")
+ }
+ return bitvector{int32(n), &x[0]}
+}
+
+// Packed GC pointer bitmaps, aka GC programs.
+//
+// For large types containing arrays, the type information has a
+// natural repetition that can be encoded to save space in the
+// binary and in the memory representation of the type information.
+//
+// The encoding is a simple Lempel-Ziv style bytecode machine
+// with the following instructions:
+//
+// 00000000: stop
+// 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
+// 10000000 n c: repeat the previous n bits c times; n, c are varints
+// 1nnnnnnn c: repeat the previous n bits c times; c is a varint
+
+// runGCProg returns the number of 1-bit entries written to memory.
+func runGCProg(prog, dst *byte) uintptr {
+ dstStart := dst
+
+ // Bits waiting to be written to memory.
+ var bits uintptr
+ var nbits uintptr
+
+ p := prog
+Run:
+ for {
+ // Flush accumulated full bytes.
+ // The rest of the loop assumes that nbits <= 7.
+ for ; nbits >= 8; nbits -= 8 {
+ *dst = uint8(bits)
+ dst = add1(dst)
+ bits >>= 8
+ }
+
+ // Process one instruction.
+ inst := uintptr(*p)
+ p = add1(p)
+ n := inst & 0x7F
+ if inst&0x80 == 0 {
+ // Literal bits; n == 0 means end of program.
+ if n == 0 {
+ // Program is over.
+ break Run
+ }
+ nbyte := n / 8
+ for i := uintptr(0); i < nbyte; i++ {
+ bits |= uintptr(*p) << nbits
+ p = add1(p)
+ *dst = uint8(bits)
+ dst = add1(dst)
+ bits >>= 8
+ }
+ if n %= 8; n > 0 {
+ bits |= uintptr(*p) << nbits
+ p = add1(p)
+ nbits += n
+ }
+ continue Run
+ }
+
+ // Repeat. If n == 0, it is encoded in a varint in the next bytes.
+ if n == 0 {
+ for off := uint(0); ; off += 7 {
+ x := uintptr(*p)
+ p = add1(p)
+ n |= (x & 0x7F) << off
+ if x&0x80 == 0 {
+ break
+ }
+ }
+ }
+
+ // Count is encoded in a varint in the next bytes.
+ c := uintptr(0)
+ for off := uint(0); ; off += 7 {
+ x := uintptr(*p)
+ p = add1(p)
+ c |= (x & 0x7F) << off
+ if x&0x80 == 0 {
+ break
+ }
+ }
+ c *= n // now total number of bits to copy
+
+ // If the number of bits being repeated is small, load them
+ // into a register and use that register for the entire loop
+ // instead of repeatedly reading from memory.
+ // Handling fewer than 8 bits here makes the general loop simpler.
+ // The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add
+ // the pattern to a bit buffer holding at most 7 bits (a partial byte)
+ // it will not overflow.
+ src := dst
+ const maxBits = goarch.PtrSize*8 - 7
+ if n <= maxBits {
+ // Start with bits in output buffer.
+ pattern := bits
+ npattern := nbits
+
+ // If we need more bits, fetch them from memory.
+ src = subtract1(src)
+ for npattern < n {
+ pattern <<= 8
+ pattern |= uintptr(*src)
+ src = subtract1(src)
+ npattern += 8
+ }
+
+ // We started with the whole bit output buffer,
+ // and then we loaded bits from whole bytes.
+ // Either way, we might now have too many instead of too few.
+ // Discard the extra.
+ if npattern > n {
+ pattern >>= npattern - n
+ npattern = n
+ }
+
+ // Replicate pattern to at most maxBits.
+ if npattern == 1 {
+ // One bit being repeated.
+ // If the bit is 1, make the pattern all 1s.
+ // If the bit is 0, the pattern is already all 0s,
+ // but we can claim that the number of bits
+ // in the word is equal to the number we need (c),
+ // because right shift of bits will zero fill.
+ if pattern == 1 {
+ pattern = 1<<maxBits - 1
+ npattern = maxBits
+ } else {
+ npattern = c
+ }
+ } else {
+ b := pattern
+ nb := npattern
+ if nb+nb <= maxBits {
+ // Double pattern until the whole uintptr is filled.
+ for nb <= goarch.PtrSize*8 {
+ b |= b << nb
+ nb += nb
+ }
+ // Trim away incomplete copy of original pattern in high bits.
+ // TODO(rsc): Replace with table lookup or loop on systems without divide?
+ nb = maxBits / npattern * npattern
+ b &= 1<<nb - 1
+ pattern = b
+ npattern = nb
+ }
+ }
+
+ // Add pattern to bit buffer and flush bit buffer, c/npattern times.
+ // Since pattern contains >8 bits, there will be full bytes to flush
+ // on each iteration.
+ for ; c >= npattern; c -= npattern {
+ bits |= pattern << nbits
+ nbits += npattern
+ for nbits >= 8 {
+ *dst = uint8(bits)
+ dst = add1(dst)
+ bits >>= 8
+ nbits -= 8
+ }
+ }
+
+ // Add final fragment to bit buffer.
+ if c > 0 {
+ pattern &= 1<<c - 1
+ bits |= pattern << nbits
+ nbits += c
+ }
+ continue Run
+ }
+
+ // Repeat; n too large to fit in a register.
+ // Since nbits <= 7, we know the first few bytes of repeated data
+ // are already written to memory.
+ off := n - nbits // n > nbits because n > maxBits and nbits <= 7
+ // Leading src fragment.
+ src = subtractb(src, (off+7)/8)
+ if frag := off & 7; frag != 0 {
+ bits |= uintptr(*src) >> (8 - frag) << nbits
+ src = add1(src)
+ nbits += frag
+ c -= frag
+ }
+ // Main loop: load one byte, write another.
+ // The bits are rotating through the bit buffer.
+ for i := c / 8; i > 0; i-- {
+ bits |= uintptr(*src) << nbits
+ src = add1(src)
+ *dst = uint8(bits)
+ dst = add1(dst)
+ bits >>= 8
+ }
+ // Final src fragment.
+ if c %= 8; c > 0 {
+ bits |= (uintptr(*src) & (1<<c - 1)) << nbits
+ nbits += c
+ }
+ }
+
+ // Write any final bits out, using full-byte writes, even for the final byte.
+ totalBits := (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
+ nbits += -nbits & 7
+ for ; nbits > 0; nbits -= 8 {
+ *dst = uint8(bits)
+ dst = add1(dst)
+ bits >>= 8
+ }
+ return totalBits
+}
+
+// materializeGCProg allocates space for the (1-bit) pointer bitmask
+// for an object of size ptrdata. Then it fills that space with the
+// pointer bitmask specified by the program prog.
+// The bitmask starts at s.startAddr.
+// The result must be deallocated with dematerializeGCProg.
+func materializeGCProg(ptrdata uintptr, prog *byte) *mspan {
+ // Each word of ptrdata needs one bit in the bitmap.
+ bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize)
+ // Compute the number of pages needed for bitmapBytes.
+ pages := divRoundUp(bitmapBytes, pageSize)
+ s := mheap_.allocManual(pages, spanAllocPtrScalarBits)
+ runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr)))
+ return s
+}
+func dematerializeGCProg(s *mspan) {
+ mheap_.freeManual(s, spanAllocPtrScalarBits)
+}
+
+func dumpGCProg(p *byte) {
+ nptr := 0
+ for {
+ x := *p
+ p = add1(p)
+ if x == 0 {
+ print("\t", nptr, " end\n")
+ break
+ }
+ if x&0x80 == 0 {
+ print("\t", nptr, " lit ", x, ":")
+ n := int(x+7) / 8
+ for i := 0; i < n; i++ {
+ print(" ", hex(*p))
+ p = add1(p)
+ }
+ print("\n")
+ nptr += int(x)
+ } else {
+ nbit := int(x &^ 0x80)
+ if nbit == 0 {
+ for nb := uint(0); ; nb += 7 {
+ x := *p
+ p = add1(p)
+ nbit |= int(x&0x7f) << nb
+ if x&0x80 == 0 {
+ break
+ }
+ }
+ }
+ count := 0
+ for nb := uint(0); ; nb += 7 {
+ x := *p
+ p = add1(p)
+ count |= int(x&0x7f) << nb
+ if x&0x80 == 0 {
+ break
+ }
+ }
+ print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
+ nptr += nbit * count
+ }
+ }
+}
+
+// Testing.
+
+// reflect_gcbits returns the GC type info for x, for testing.
+// The result is the bitmap entries (0 or 1), one entry per byte.
+//
+//go:linkname reflect_gcbits reflect.gcbits
+func reflect_gcbits(x any) []byte {
+ return getgcmask(x)
+}
+
+// Returns GC type info for the pointer stored in ep for testing.
+// If ep points to the stack, only static live information will be returned
+// (i.e. not for objects which are only dynamically live stack objects).
+func getgcmask(ep any) (mask []byte) {
+ e := *efaceOf(&ep)
+ p := e.data
+ t := e._type
+ // data or bss
+ for _, datap := range activeModules() {
+ // data
+ if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
+ bitmap := datap.gcdatamask.bytedata
+ n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - datap.data) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
+ }
+ return
+ }
+
+ // bss
+ if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
+ bitmap := datap.gcbssmask.bytedata
+ n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - datap.bss) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
+ }
+ return
+ }
+ }
+
+ // heap
+ if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 {
+ if s.spanclass.noscan() {
+ return nil
+ }
+ n := s.elemsize
+ hbits := heapBitsForAddr(base, n)
+ mask = make([]byte, n/goarch.PtrSize)
+ for {
+ var addr uintptr
+ if hbits, addr = hbits.next(); addr == 0 {
+ break
+ }
+ mask[(addr-base)/goarch.PtrSize] = 1
+ }
+ // Callers expect this mask to end at the last pointer.
+ for len(mask) > 0 && mask[len(mask)-1] == 0 {
+ mask = mask[:len(mask)-1]
+ }
+ return
+ }
+
+ // stack
+ if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi {
+ found := false
+ var u unwinder
+ for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() {
+ if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp {
+ found = true
+ break
+ }
+ }
+ if found {
+ locals, _, _ := u.frame.getStackMap(nil, false)
+ if locals.n == 0 {
+ return
+ }
+ size := uintptr(locals.n) * goarch.PtrSize
+ n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = locals.ptrbit(off)
+ }
+ }
+ return
+ }
+
+ // otherwise, not something the GC knows about.
+ // possibly read-only data, like malloc(0).
+ // must not have pointers
+ return
+}