summaryrefslogtreecommitdiffstats
path: root/src/runtime/mcache.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/mcache.go')
-rw-r--r--src/runtime/mcache.go331
1 files changed, 331 insertions, 0 deletions
diff --git a/src/runtime/mcache.go b/src/runtime/mcache.go
new file mode 100644
index 0000000..acfd99b
--- /dev/null
+++ b/src/runtime/mcache.go
@@ -0,0 +1,331 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+import (
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// Per-thread (in Go, per-P) cache for small objects.
+// This includes a small object cache and local allocation stats.
+// No locking needed because it is per-thread (per-P).
+//
+// mcaches are allocated from non-GC'd memory, so any heap pointers
+// must be specially handled.
+type mcache struct {
+ _ sys.NotInHeap
+
+ // The following members are accessed on every malloc,
+ // so they are grouped here for better caching.
+ nextSample uintptr // trigger heap sample after allocating this many bytes
+ scanAlloc uintptr // bytes of scannable heap allocated
+
+ // Allocator cache for tiny objects w/o pointers.
+ // See "Tiny allocator" comment in malloc.go.
+
+ // tiny points to the beginning of the current tiny block, or
+ // nil if there is no current tiny block.
+ //
+ // tiny is a heap pointer. Since mcache is in non-GC'd memory,
+ // we handle it by clearing it in releaseAll during mark
+ // termination.
+ //
+ // tinyAllocs is the number of tiny allocations performed
+ // by the P that owns this mcache.
+ tiny uintptr
+ tinyoffset uintptr
+ tinyAllocs uintptr
+
+ // The rest is not accessed on every malloc.
+
+ alloc [numSpanClasses]*mspan // spans to allocate from, indexed by spanClass
+
+ stackcache [_NumStackOrders]stackfreelist
+
+ // flushGen indicates the sweepgen during which this mcache
+ // was last flushed. If flushGen != mheap_.sweepgen, the spans
+ // in this mcache are stale and need to the flushed so they
+ // can be swept. This is done in acquirep.
+ flushGen atomic.Uint32
+}
+
+// A gclink is a node in a linked list of blocks, like mlink,
+// but it is opaque to the garbage collector.
+// The GC does not trace the pointers during collection,
+// and the compiler does not emit write barriers for assignments
+// of gclinkptr values. Code should store references to gclinks
+// as gclinkptr, not as *gclink.
+type gclink struct {
+ next gclinkptr
+}
+
+// A gclinkptr is a pointer to a gclink, but it is opaque
+// to the garbage collector.
+type gclinkptr uintptr
+
+// ptr returns the *gclink form of p.
+// The result should be used for accessing fields, not stored
+// in other data structures.
+func (p gclinkptr) ptr() *gclink {
+ return (*gclink)(unsafe.Pointer(p))
+}
+
+type stackfreelist struct {
+ list gclinkptr // linked list of free stacks
+ size uintptr // total size of stacks in list
+}
+
+// dummy mspan that contains no free objects.
+var emptymspan mspan
+
+func allocmcache() *mcache {
+ var c *mcache
+ systemstack(func() {
+ lock(&mheap_.lock)
+ c = (*mcache)(mheap_.cachealloc.alloc())
+ c.flushGen.Store(mheap_.sweepgen)
+ unlock(&mheap_.lock)
+ })
+ for i := range c.alloc {
+ c.alloc[i] = &emptymspan
+ }
+ c.nextSample = nextSample()
+ return c
+}
+
+// freemcache releases resources associated with this
+// mcache and puts the object onto a free list.
+//
+// In some cases there is no way to simply release
+// resources, such as statistics, so donate them to
+// a different mcache (the recipient).
+func freemcache(c *mcache) {
+ systemstack(func() {
+ c.releaseAll()
+ stackcache_clear(c)
+
+ // NOTE(rsc,rlh): If gcworkbuffree comes back, we need to coordinate
+ // with the stealing of gcworkbufs during garbage collection to avoid
+ // a race where the workbuf is double-freed.
+ // gcworkbuffree(c.gcworkbuf)
+
+ lock(&mheap_.lock)
+ mheap_.cachealloc.free(unsafe.Pointer(c))
+ unlock(&mheap_.lock)
+ })
+}
+
+// getMCache is a convenience function which tries to obtain an mcache.
+//
+// Returns nil if we're not bootstrapping or we don't have a P. The caller's
+// P must not change, so we must be in a non-preemptible state.
+func getMCache(mp *m) *mcache {
+ // Grab the mcache, since that's where stats live.
+ pp := mp.p.ptr()
+ var c *mcache
+ if pp == nil {
+ // We will be called without a P while bootstrapping,
+ // in which case we use mcache0, which is set in mallocinit.
+ // mcache0 is cleared when bootstrapping is complete,
+ // by procresize.
+ c = mcache0
+ } else {
+ c = pp.mcache
+ }
+ return c
+}
+
+// refill acquires a new span of span class spc for c. This span will
+// have at least one free object. The current span in c must be full.
+//
+// Must run in a non-preemptible context since otherwise the owner of
+// c could change.
+func (c *mcache) refill(spc spanClass) {
+ // Return the current cached span to the central lists.
+ s := c.alloc[spc]
+
+ if uintptr(s.allocCount) != s.nelems {
+ throw("refill of span with free space remaining")
+ }
+ if s != &emptymspan {
+ // Mark this span as no longer cached.
+ if s.sweepgen != mheap_.sweepgen+3 {
+ throw("bad sweepgen in refill")
+ }
+ mheap_.central[spc].mcentral.uncacheSpan(s)
+
+ // Count up how many slots were used and record it.
+ stats := memstats.heapStats.acquire()
+ slotsUsed := int64(s.allocCount) - int64(s.allocCountBeforeCache)
+ atomic.Xadd64(&stats.smallAllocCount[spc.sizeclass()], slotsUsed)
+
+ // Flush tinyAllocs.
+ if spc == tinySpanClass {
+ atomic.Xadd64(&stats.tinyAllocCount, int64(c.tinyAllocs))
+ c.tinyAllocs = 0
+ }
+ memstats.heapStats.release()
+
+ // Count the allocs in inconsistent, internal stats.
+ bytesAllocated := slotsUsed * int64(s.elemsize)
+ gcController.totalAlloc.Add(bytesAllocated)
+
+ // Clear the second allocCount just to be safe.
+ s.allocCountBeforeCache = 0
+ }
+
+ // Get a new cached span from the central lists.
+ s = mheap_.central[spc].mcentral.cacheSpan()
+ if s == nil {
+ throw("out of memory")
+ }
+
+ if uintptr(s.allocCount) == s.nelems {
+ throw("span has no free space")
+ }
+
+ // Indicate that this span is cached and prevent asynchronous
+ // sweeping in the next sweep phase.
+ s.sweepgen = mheap_.sweepgen + 3
+
+ // Store the current alloc count for accounting later.
+ s.allocCountBeforeCache = s.allocCount
+
+ // Update heapLive and flush scanAlloc.
+ //
+ // We have not yet allocated anything new into the span, but we
+ // assume that all of its slots will get used, so this makes
+ // heapLive an overestimate.
+ //
+ // When the span gets uncached, we'll fix up this overestimate
+ // if necessary (see releaseAll).
+ //
+ // We pick an overestimate here because an underestimate leads
+ // the pacer to believe that it's in better shape than it is,
+ // which appears to lead to more memory used. See #53738 for
+ // more details.
+ usedBytes := uintptr(s.allocCount) * s.elemsize
+ gcController.update(int64(s.npages*pageSize)-int64(usedBytes), int64(c.scanAlloc))
+ c.scanAlloc = 0
+
+ c.alloc[spc] = s
+}
+
+// allocLarge allocates a span for a large object.
+func (c *mcache) allocLarge(size uintptr, noscan bool) *mspan {
+ if size+_PageSize < size {
+ throw("out of memory")
+ }
+ npages := size >> _PageShift
+ if size&_PageMask != 0 {
+ npages++
+ }
+
+ // Deduct credit for this span allocation and sweep if
+ // necessary. mHeap_Alloc will also sweep npages, so this only
+ // pays the debt down to npage pages.
+ deductSweepCredit(npages*_PageSize, npages)
+
+ spc := makeSpanClass(0, noscan)
+ s := mheap_.alloc(npages, spc)
+ if s == nil {
+ throw("out of memory")
+ }
+
+ // Count the alloc in consistent, external stats.
+ stats := memstats.heapStats.acquire()
+ atomic.Xadd64(&stats.largeAlloc, int64(npages*pageSize))
+ atomic.Xadd64(&stats.largeAllocCount, 1)
+ memstats.heapStats.release()
+
+ // Count the alloc in inconsistent, internal stats.
+ gcController.totalAlloc.Add(int64(npages * pageSize))
+
+ // Update heapLive.
+ gcController.update(int64(s.npages*pageSize), 0)
+
+ // Put the large span in the mcentral swept list so that it's
+ // visible to the background sweeper.
+ mheap_.central[spc].mcentral.fullSwept(mheap_.sweepgen).push(s)
+ s.limit = s.base() + size
+ s.initHeapBits(false)
+ return s
+}
+
+func (c *mcache) releaseAll() {
+ // Take this opportunity to flush scanAlloc.
+ scanAlloc := int64(c.scanAlloc)
+ c.scanAlloc = 0
+
+ sg := mheap_.sweepgen
+ dHeapLive := int64(0)
+ for i := range c.alloc {
+ s := c.alloc[i]
+ if s != &emptymspan {
+ slotsUsed := int64(s.allocCount) - int64(s.allocCountBeforeCache)
+ s.allocCountBeforeCache = 0
+
+ // Adjust smallAllocCount for whatever was allocated.
+ stats := memstats.heapStats.acquire()
+ atomic.Xadd64(&stats.smallAllocCount[spanClass(i).sizeclass()], slotsUsed)
+ memstats.heapStats.release()
+
+ // Adjust the actual allocs in inconsistent, internal stats.
+ // We assumed earlier that the full span gets allocated.
+ gcController.totalAlloc.Add(slotsUsed * int64(s.elemsize))
+
+ if s.sweepgen != sg+1 {
+ // refill conservatively counted unallocated slots in gcController.heapLive.
+ // Undo this.
+ //
+ // If this span was cached before sweep, then gcController.heapLive was totally
+ // recomputed since caching this span, so we don't do this for stale spans.
+ dHeapLive -= int64(uintptr(s.nelems)-uintptr(s.allocCount)) * int64(s.elemsize)
+ }
+
+ // Release the span to the mcentral.
+ mheap_.central[i].mcentral.uncacheSpan(s)
+ c.alloc[i] = &emptymspan
+ }
+ }
+ // Clear tinyalloc pool.
+ c.tiny = 0
+ c.tinyoffset = 0
+
+ // Flush tinyAllocs.
+ stats := memstats.heapStats.acquire()
+ atomic.Xadd64(&stats.tinyAllocCount, int64(c.tinyAllocs))
+ c.tinyAllocs = 0
+ memstats.heapStats.release()
+
+ // Update heapLive and heapScan.
+ gcController.update(dHeapLive, scanAlloc)
+}
+
+// prepareForSweep flushes c if the system has entered a new sweep phase
+// since c was populated. This must happen between the sweep phase
+// starting and the first allocation from c.
+func (c *mcache) prepareForSweep() {
+ // Alternatively, instead of making sure we do this on every P
+ // between starting the world and allocating on that P, we
+ // could leave allocate-black on, allow allocation to continue
+ // as usual, use a ragged barrier at the beginning of sweep to
+ // ensure all cached spans are swept, and then disable
+ // allocate-black. However, with this approach it's difficult
+ // to avoid spilling mark bits into the *next* GC cycle.
+ sg := mheap_.sweepgen
+ flushGen := c.flushGen.Load()
+ if flushGen == sg {
+ return
+ } else if flushGen != sg-2 {
+ println("bad flushGen", flushGen, "in prepareForSweep; sweepgen", sg)
+ throw("bad flushGen")
+ }
+ c.releaseAll()
+ stackcache_clear(c)
+ c.flushGen.Store(mheap_.sweepgen) // Synchronizes with gcStart
+}