summaryrefslogtreecommitdiffstats
path: root/src/sync/map.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/sync/map.go')
-rw-r--r--src/sync/map.go515
1 files changed, 515 insertions, 0 deletions
diff --git a/src/sync/map.go b/src/sync/map.go
new file mode 100644
index 0000000..e8ccf58
--- /dev/null
+++ b/src/sync/map.go
@@ -0,0 +1,515 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package sync
+
+import (
+ "sync/atomic"
+)
+
+// Map is like a Go map[interface{}]interface{} but is safe for concurrent use
+// by multiple goroutines without additional locking or coordination.
+// Loads, stores, and deletes run in amortized constant time.
+//
+// The Map type is specialized. Most code should use a plain Go map instead,
+// with separate locking or coordination, for better type safety and to make it
+// easier to maintain other invariants along with the map content.
+//
+// The Map type is optimized for two common use cases: (1) when the entry for a given
+// key is only ever written once but read many times, as in caches that only grow,
+// or (2) when multiple goroutines read, write, and overwrite entries for disjoint
+// sets of keys. In these two cases, use of a Map may significantly reduce lock
+// contention compared to a Go map paired with a separate Mutex or RWMutex.
+//
+// The zero Map is empty and ready for use. A Map must not be copied after first use.
+//
+// In the terminology of the Go memory model, Map arranges that a write operation
+// “synchronizes before” any read operation that observes the effect of the write, where
+// read and write operations are defined as follows.
+// Load, LoadAndDelete, LoadOrStore, Swap, CompareAndSwap, and CompareAndDelete
+// are read operations; Delete, LoadAndDelete, Store, and Swap are write operations;
+// LoadOrStore is a write operation when it returns loaded set to false;
+// CompareAndSwap is a write operation when it returns swapped set to true;
+// and CompareAndDelete is a write operation when it returns deleted set to true.
+type Map struct {
+ mu Mutex
+
+ // read contains the portion of the map's contents that are safe for
+ // concurrent access (with or without mu held).
+ //
+ // The read field itself is always safe to load, but must only be stored with
+ // mu held.
+ //
+ // Entries stored in read may be updated concurrently without mu, but updating
+ // a previously-expunged entry requires that the entry be copied to the dirty
+ // map and unexpunged with mu held.
+ read atomic.Pointer[readOnly]
+
+ // dirty contains the portion of the map's contents that require mu to be
+ // held. To ensure that the dirty map can be promoted to the read map quickly,
+ // it also includes all of the non-expunged entries in the read map.
+ //
+ // Expunged entries are not stored in the dirty map. An expunged entry in the
+ // clean map must be unexpunged and added to the dirty map before a new value
+ // can be stored to it.
+ //
+ // If the dirty map is nil, the next write to the map will initialize it by
+ // making a shallow copy of the clean map, omitting stale entries.
+ dirty map[any]*entry
+
+ // misses counts the number of loads since the read map was last updated that
+ // needed to lock mu to determine whether the key was present.
+ //
+ // Once enough misses have occurred to cover the cost of copying the dirty
+ // map, the dirty map will be promoted to the read map (in the unamended
+ // state) and the next store to the map will make a new dirty copy.
+ misses int
+}
+
+// readOnly is an immutable struct stored atomically in the Map.read field.
+type readOnly struct {
+ m map[any]*entry
+ amended bool // true if the dirty map contains some key not in m.
+}
+
+// expunged is an arbitrary pointer that marks entries which have been deleted
+// from the dirty map.
+var expunged = new(any)
+
+// An entry is a slot in the map corresponding to a particular key.
+type entry struct {
+ // p points to the interface{} value stored for the entry.
+ //
+ // If p == nil, the entry has been deleted, and either m.dirty == nil or
+ // m.dirty[key] is e.
+ //
+ // If p == expunged, the entry has been deleted, m.dirty != nil, and the entry
+ // is missing from m.dirty.
+ //
+ // Otherwise, the entry is valid and recorded in m.read.m[key] and, if m.dirty
+ // != nil, in m.dirty[key].
+ //
+ // An entry can be deleted by atomic replacement with nil: when m.dirty is
+ // next created, it will atomically replace nil with expunged and leave
+ // m.dirty[key] unset.
+ //
+ // An entry's associated value can be updated by atomic replacement, provided
+ // p != expunged. If p == expunged, an entry's associated value can be updated
+ // only after first setting m.dirty[key] = e so that lookups using the dirty
+ // map find the entry.
+ p atomic.Pointer[any]
+}
+
+func newEntry(i any) *entry {
+ e := &entry{}
+ e.p.Store(&i)
+ return e
+}
+
+func (m *Map) loadReadOnly() readOnly {
+ if p := m.read.Load(); p != nil {
+ return *p
+ }
+ return readOnly{}
+}
+
+// Load returns the value stored in the map for a key, or nil if no
+// value is present.
+// The ok result indicates whether value was found in the map.
+func (m *Map) Load(key any) (value any, ok bool) {
+ read := m.loadReadOnly()
+ e, ok := read.m[key]
+ if !ok && read.amended {
+ m.mu.Lock()
+ // Avoid reporting a spurious miss if m.dirty got promoted while we were
+ // blocked on m.mu. (If further loads of the same key will not miss, it's
+ // not worth copying the dirty map for this key.)
+ read = m.loadReadOnly()
+ e, ok = read.m[key]
+ if !ok && read.amended {
+ e, ok = m.dirty[key]
+ // Regardless of whether the entry was present, record a miss: this key
+ // will take the slow path until the dirty map is promoted to the read
+ // map.
+ m.missLocked()
+ }
+ m.mu.Unlock()
+ }
+ if !ok {
+ return nil, false
+ }
+ return e.load()
+}
+
+func (e *entry) load() (value any, ok bool) {
+ p := e.p.Load()
+ if p == nil || p == expunged {
+ return nil, false
+ }
+ return *p, true
+}
+
+// Store sets the value for a key.
+func (m *Map) Store(key, value any) {
+ _, _ = m.Swap(key, value)
+}
+
+// tryCompareAndSwap compare the entry with the given old value and swaps
+// it with a new value if the entry is equal to the old value, and the entry
+// has not been expunged.
+//
+// If the entry is expunged, tryCompareAndSwap returns false and leaves
+// the entry unchanged.
+func (e *entry) tryCompareAndSwap(old, new any) bool {
+ p := e.p.Load()
+ if p == nil || p == expunged || *p != old {
+ return false
+ }
+
+ // Copy the interface after the first load to make this method more amenable
+ // to escape analysis: if the comparison fails from the start, we shouldn't
+ // bother heap-allocating an interface value to store.
+ nc := new
+ for {
+ if e.p.CompareAndSwap(p, &nc) {
+ return true
+ }
+ p = e.p.Load()
+ if p == nil || p == expunged || *p != old {
+ return false
+ }
+ }
+}
+
+// unexpungeLocked ensures that the entry is not marked as expunged.
+//
+// If the entry was previously expunged, it must be added to the dirty map
+// before m.mu is unlocked.
+func (e *entry) unexpungeLocked() (wasExpunged bool) {
+ return e.p.CompareAndSwap(expunged, nil)
+}
+
+// swapLocked unconditionally swaps a value into the entry.
+//
+// The entry must be known not to be expunged.
+func (e *entry) swapLocked(i *any) *any {
+ return e.p.Swap(i)
+}
+
+// LoadOrStore returns the existing value for the key if present.
+// Otherwise, it stores and returns the given value.
+// The loaded result is true if the value was loaded, false if stored.
+func (m *Map) LoadOrStore(key, value any) (actual any, loaded bool) {
+ // Avoid locking if it's a clean hit.
+ read := m.loadReadOnly()
+ if e, ok := read.m[key]; ok {
+ actual, loaded, ok := e.tryLoadOrStore(value)
+ if ok {
+ return actual, loaded
+ }
+ }
+
+ m.mu.Lock()
+ read = m.loadReadOnly()
+ if e, ok := read.m[key]; ok {
+ if e.unexpungeLocked() {
+ m.dirty[key] = e
+ }
+ actual, loaded, _ = e.tryLoadOrStore(value)
+ } else if e, ok := m.dirty[key]; ok {
+ actual, loaded, _ = e.tryLoadOrStore(value)
+ m.missLocked()
+ } else {
+ if !read.amended {
+ // We're adding the first new key to the dirty map.
+ // Make sure it is allocated and mark the read-only map as incomplete.
+ m.dirtyLocked()
+ m.read.Store(&readOnly{m: read.m, amended: true})
+ }
+ m.dirty[key] = newEntry(value)
+ actual, loaded = value, false
+ }
+ m.mu.Unlock()
+
+ return actual, loaded
+}
+
+// tryLoadOrStore atomically loads or stores a value if the entry is not
+// expunged.
+//
+// If the entry is expunged, tryLoadOrStore leaves the entry unchanged and
+// returns with ok==false.
+func (e *entry) tryLoadOrStore(i any) (actual any, loaded, ok bool) {
+ p := e.p.Load()
+ if p == expunged {
+ return nil, false, false
+ }
+ if p != nil {
+ return *p, true, true
+ }
+
+ // Copy the interface after the first load to make this method more amenable
+ // to escape analysis: if we hit the "load" path or the entry is expunged, we
+ // shouldn't bother heap-allocating.
+ ic := i
+ for {
+ if e.p.CompareAndSwap(nil, &ic) {
+ return i, false, true
+ }
+ p = e.p.Load()
+ if p == expunged {
+ return nil, false, false
+ }
+ if p != nil {
+ return *p, true, true
+ }
+ }
+}
+
+// LoadAndDelete deletes the value for a key, returning the previous value if any.
+// The loaded result reports whether the key was present.
+func (m *Map) LoadAndDelete(key any) (value any, loaded bool) {
+ read := m.loadReadOnly()
+ e, ok := read.m[key]
+ if !ok && read.amended {
+ m.mu.Lock()
+ read = m.loadReadOnly()
+ e, ok = read.m[key]
+ if !ok && read.amended {
+ e, ok = m.dirty[key]
+ delete(m.dirty, key)
+ // Regardless of whether the entry was present, record a miss: this key
+ // will take the slow path until the dirty map is promoted to the read
+ // map.
+ m.missLocked()
+ }
+ m.mu.Unlock()
+ }
+ if ok {
+ return e.delete()
+ }
+ return nil, false
+}
+
+// Delete deletes the value for a key.
+func (m *Map) Delete(key any) {
+ m.LoadAndDelete(key)
+}
+
+func (e *entry) delete() (value any, ok bool) {
+ for {
+ p := e.p.Load()
+ if p == nil || p == expunged {
+ return nil, false
+ }
+ if e.p.CompareAndSwap(p, nil) {
+ return *p, true
+ }
+ }
+}
+
+// trySwap swaps a value if the entry has not been expunged.
+//
+// If the entry is expunged, trySwap returns false and leaves the entry
+// unchanged.
+func (e *entry) trySwap(i *any) (*any, bool) {
+ for {
+ p := e.p.Load()
+ if p == expunged {
+ return nil, false
+ }
+ if e.p.CompareAndSwap(p, i) {
+ return p, true
+ }
+ }
+}
+
+// Swap swaps the value for a key and returns the previous value if any.
+// The loaded result reports whether the key was present.
+func (m *Map) Swap(key, value any) (previous any, loaded bool) {
+ read := m.loadReadOnly()
+ if e, ok := read.m[key]; ok {
+ if v, ok := e.trySwap(&value); ok {
+ if v == nil {
+ return nil, false
+ }
+ return *v, true
+ }
+ }
+
+ m.mu.Lock()
+ read = m.loadReadOnly()
+ if e, ok := read.m[key]; ok {
+ if e.unexpungeLocked() {
+ // The entry was previously expunged, which implies that there is a
+ // non-nil dirty map and this entry is not in it.
+ m.dirty[key] = e
+ }
+ if v := e.swapLocked(&value); v != nil {
+ loaded = true
+ previous = *v
+ }
+ } else if e, ok := m.dirty[key]; ok {
+ if v := e.swapLocked(&value); v != nil {
+ loaded = true
+ previous = *v
+ }
+ } else {
+ if !read.amended {
+ // We're adding the first new key to the dirty map.
+ // Make sure it is allocated and mark the read-only map as incomplete.
+ m.dirtyLocked()
+ m.read.Store(&readOnly{m: read.m, amended: true})
+ }
+ m.dirty[key] = newEntry(value)
+ }
+ m.mu.Unlock()
+ return previous, loaded
+}
+
+// CompareAndSwap swaps the old and new values for key
+// if the value stored in the map is equal to old.
+// The old value must be of a comparable type.
+func (m *Map) CompareAndSwap(key, old, new any) bool {
+ read := m.loadReadOnly()
+ if e, ok := read.m[key]; ok {
+ return e.tryCompareAndSwap(old, new)
+ } else if !read.amended {
+ return false // No existing value for key.
+ }
+
+ m.mu.Lock()
+ defer m.mu.Unlock()
+ read = m.loadReadOnly()
+ swapped := false
+ if e, ok := read.m[key]; ok {
+ swapped = e.tryCompareAndSwap(old, new)
+ } else if e, ok := m.dirty[key]; ok {
+ swapped = e.tryCompareAndSwap(old, new)
+ // We needed to lock mu in order to load the entry for key,
+ // and the operation didn't change the set of keys in the map
+ // (so it would be made more efficient by promoting the dirty
+ // map to read-only).
+ // Count it as a miss so that we will eventually switch to the
+ // more efficient steady state.
+ m.missLocked()
+ }
+ return swapped
+}
+
+// CompareAndDelete deletes the entry for key if its value is equal to old.
+// The old value must be of a comparable type.
+//
+// If there is no current value for key in the map, CompareAndDelete
+// returns false (even if the old value is the nil interface value).
+func (m *Map) CompareAndDelete(key, old any) (deleted bool) {
+ read := m.loadReadOnly()
+ e, ok := read.m[key]
+ if !ok && read.amended {
+ m.mu.Lock()
+ read = m.loadReadOnly()
+ e, ok = read.m[key]
+ if !ok && read.amended {
+ e, ok = m.dirty[key]
+ // Don't delete key from m.dirty: we still need to do the “compare” part
+ // of the operation. The entry will eventually be expunged when the
+ // dirty map is promoted to the read map.
+ //
+ // Regardless of whether the entry was present, record a miss: this key
+ // will take the slow path until the dirty map is promoted to the read
+ // map.
+ m.missLocked()
+ }
+ m.mu.Unlock()
+ }
+ for ok {
+ p := e.p.Load()
+ if p == nil || p == expunged || *p != old {
+ return false
+ }
+ if e.p.CompareAndSwap(p, nil) {
+ return true
+ }
+ }
+ return false
+}
+
+// Range calls f sequentially for each key and value present in the map.
+// If f returns false, range stops the iteration.
+//
+// Range does not necessarily correspond to any consistent snapshot of the Map's
+// contents: no key will be visited more than once, but if the value for any key
+// is stored or deleted concurrently (including by f), Range may reflect any
+// mapping for that key from any point during the Range call. Range does not
+// block other methods on the receiver; even f itself may call any method on m.
+//
+// Range may be O(N) with the number of elements in the map even if f returns
+// false after a constant number of calls.
+func (m *Map) Range(f func(key, value any) bool) {
+ // We need to be able to iterate over all of the keys that were already
+ // present at the start of the call to Range.
+ // If read.amended is false, then read.m satisfies that property without
+ // requiring us to hold m.mu for a long time.
+ read := m.loadReadOnly()
+ if read.amended {
+ // m.dirty contains keys not in read.m. Fortunately, Range is already O(N)
+ // (assuming the caller does not break out early), so a call to Range
+ // amortizes an entire copy of the map: we can promote the dirty copy
+ // immediately!
+ m.mu.Lock()
+ read = m.loadReadOnly()
+ if read.amended {
+ read = readOnly{m: m.dirty}
+ m.read.Store(&read)
+ m.dirty = nil
+ m.misses = 0
+ }
+ m.mu.Unlock()
+ }
+
+ for k, e := range read.m {
+ v, ok := e.load()
+ if !ok {
+ continue
+ }
+ if !f(k, v) {
+ break
+ }
+ }
+}
+
+func (m *Map) missLocked() {
+ m.misses++
+ if m.misses < len(m.dirty) {
+ return
+ }
+ m.read.Store(&readOnly{m: m.dirty})
+ m.dirty = nil
+ m.misses = 0
+}
+
+func (m *Map) dirtyLocked() {
+ if m.dirty != nil {
+ return
+ }
+
+ read := m.loadReadOnly()
+ m.dirty = make(map[any]*entry, len(read.m))
+ for k, e := range read.m {
+ if !e.tryExpungeLocked() {
+ m.dirty[k] = e
+ }
+ }
+}
+
+func (e *entry) tryExpungeLocked() (isExpunged bool) {
+ p := e.p.Load()
+ for p == nil {
+ if e.p.CompareAndSwap(nil, expunged) {
+ return true
+ }
+ p = e.p.Load()
+ }
+ return p == expunged
+}