summaryrefslogtreecommitdiffstats
path: root/test/typeparam/orderedmap.go
diff options
context:
space:
mode:
Diffstat (limited to 'test/typeparam/orderedmap.go')
-rw-r--r--test/typeparam/orderedmap.go286
1 files changed, 286 insertions, 0 deletions
diff --git a/test/typeparam/orderedmap.go b/test/typeparam/orderedmap.go
new file mode 100644
index 0000000..1245669
--- /dev/null
+++ b/test/typeparam/orderedmap.go
@@ -0,0 +1,286 @@
+// run
+
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package orderedmap provides an ordered map, implemented as a binary tree.
+package main
+
+import (
+ "bytes"
+ "context"
+ "fmt"
+ "runtime"
+)
+
+type Ordered interface {
+ ~int | ~int8 | ~int16 | ~int32 | ~int64 |
+ ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
+ ~float32 | ~float64 |
+ ~string
+}
+
+// _Map is an ordered map.
+type _Map[K, V any] struct {
+ root *node[K, V]
+ compare func(K, K) int
+}
+
+// node is the type of a node in the binary tree.
+type node[K, V any] struct {
+ key K
+ val V
+ left, right *node[K, V]
+}
+
+// _New returns a new map. It takes a comparison function that compares two
+// keys and returns < 0 if the first is less, == 0 if they are equal,
+// > 0 if the first is greater.
+func _New[K, V any](compare func(K, K) int) *_Map[K, V] {
+ return &_Map[K, V]{compare: compare}
+}
+
+// _NewOrdered returns a new map whose key is an ordered type.
+// This is like _New, but does not require providing a compare function.
+// The map compare function uses the obvious key ordering.
+func _NewOrdered[K Ordered, V any]() *_Map[K, V] {
+ return _New[K, V](func(k1, k2 K) int {
+ switch {
+ case k1 < k2:
+ return -1
+ case k1 == k2:
+ return 0
+ default:
+ return 1
+ }
+ })
+}
+
+// find looks up key in the map, returning either a pointer to the slot of the
+// node holding key, or a pointer to the slot where should a node would go.
+func (m *_Map[K, V]) find(key K) **node[K, V] {
+ pn := &m.root
+ for *pn != nil {
+ switch cmp := m.compare(key, (*pn).key); {
+ case cmp < 0:
+ pn = &(*pn).left
+ case cmp > 0:
+ pn = &(*pn).right
+ default:
+ return pn
+ }
+ }
+ return pn
+}
+
+// Insert inserts a new key/value into the map.
+// If the key is already present, the value is replaced.
+// Reports whether this is a new key.
+func (m *_Map[K, V]) Insert(key K, val V) bool {
+ pn := m.find(key)
+ if *pn != nil {
+ (*pn).val = val
+ return false
+ }
+ *pn = &node[K, V]{key: key, val: val}
+ return true
+}
+
+// Find returns the value associated with a key, or the zero value
+// if not present. The found result reports whether the key was found.
+func (m *_Map[K, V]) Find(key K) (V, bool) {
+ pn := m.find(key)
+ if *pn == nil {
+ var zero V
+ return zero, false
+ }
+ return (*pn).val, true
+}
+
+// keyValue is a pair of key and value used while iterating.
+type keyValue[K, V any] struct {
+ key K
+ val V
+}
+
+// iterate returns an iterator that traverses the map.
+func (m *_Map[K, V]) Iterate() *_Iterator[K, V] {
+ sender, receiver := _Ranger[keyValue[K, V]]()
+ var f func(*node[K, V]) bool
+ f = func(n *node[K, V]) bool {
+ if n == nil {
+ return true
+ }
+ // Stop the traversal if Send fails, which means that
+ // nothing is listening to the receiver.
+ return f(n.left) &&
+ sender.Send(context.Background(), keyValue[K, V]{n.key, n.val}) &&
+ f(n.right)
+ }
+ go func() {
+ f(m.root)
+ sender.Close()
+ }()
+ return &_Iterator[K, V]{receiver}
+}
+
+// _Iterator is used to iterate over the map.
+type _Iterator[K, V any] struct {
+ r *_Receiver[keyValue[K, V]]
+}
+
+// Next returns the next key and value pair, and a boolean that reports
+// whether they are valid. If not valid, we have reached the end of the map.
+func (it *_Iterator[K, V]) Next() (K, V, bool) {
+ keyval, ok := it.r.Next(context.Background())
+ if !ok {
+ var zerok K
+ var zerov V
+ return zerok, zerov, false
+ }
+ return keyval.key, keyval.val, true
+}
+
+func TestMap() {
+ m := _New[[]byte, int](bytes.Compare)
+
+ if _, found := m.Find([]byte("a")); found {
+ panic(fmt.Sprintf("unexpectedly found %q in empty map", []byte("a")))
+ }
+ if !m.Insert([]byte("a"), 'a') {
+ panic(fmt.Sprintf("key %q unexpectedly already present", []byte("a")))
+ }
+ if !m.Insert([]byte("c"), 'c') {
+ panic(fmt.Sprintf("key %q unexpectedly already present", []byte("c")))
+ }
+ if !m.Insert([]byte("b"), 'b') {
+ panic(fmt.Sprintf("key %q unexpectedly already present", []byte("b")))
+ }
+ if m.Insert([]byte("c"), 'x') {
+ panic(fmt.Sprintf("key %q unexpectedly not present", []byte("c")))
+ }
+
+ if v, found := m.Find([]byte("a")); !found {
+ panic(fmt.Sprintf("did not find %q", []byte("a")))
+ } else if v != 'a' {
+ panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("a"), v, 'a'))
+ }
+ if v, found := m.Find([]byte("c")); !found {
+ panic(fmt.Sprintf("did not find %q", []byte("c")))
+ } else if v != 'x' {
+ panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("c"), v, 'x'))
+ }
+
+ if _, found := m.Find([]byte("d")); found {
+ panic(fmt.Sprintf("unexpectedly found %q", []byte("d")))
+ }
+
+ gather := func(it *_Iterator[[]byte, int]) []int {
+ var r []int
+ for {
+ _, v, ok := it.Next()
+ if !ok {
+ return r
+ }
+ r = append(r, v)
+ }
+ }
+ got := gather(m.Iterate())
+ want := []int{'a', 'b', 'x'}
+ if !_SliceEqual(got, want) {
+ panic(fmt.Sprintf("Iterate returned %v, want %v", got, want))
+ }
+}
+
+func main() {
+ TestMap()
+}
+
+// _Equal reports whether two slices are equal: the same length and all
+// elements equal. All floating point NaNs are considered equal.
+func _SliceEqual[Elem comparable](s1, s2 []Elem) bool {
+ if len(s1) != len(s2) {
+ return false
+ }
+ for i, v1 := range s1 {
+ v2 := s2[i]
+ if v1 != v2 {
+ isNaN := func(f Elem) bool { return f != f }
+ if !isNaN(v1) || !isNaN(v2) {
+ return false
+ }
+ }
+ }
+ return true
+}
+
+// Ranger returns a Sender and a Receiver. The Receiver provides a
+// Next method to retrieve values. The Sender provides a Send method
+// to send values and a Close method to stop sending values. The Next
+// method indicates when the Sender has been closed, and the Send
+// method indicates when the Receiver has been freed.
+//
+// This is a convenient way to exit a goroutine sending values when
+// the receiver stops reading them.
+func _Ranger[Elem any]() (*_Sender[Elem], *_Receiver[Elem]) {
+ c := make(chan Elem)
+ d := make(chan struct{})
+ s := &_Sender[Elem]{
+ values: c,
+ done: d,
+ }
+ r := &_Receiver[Elem]{
+ values: c,
+ done: d,
+ }
+ runtime.SetFinalizer(r, (*_Receiver[Elem]).finalize)
+ return s, r
+}
+
+// A _Sender is used to send values to a Receiver.
+type _Sender[Elem any] struct {
+ values chan<- Elem
+ done <-chan struct{}
+}
+
+// Send sends a value to the receiver. It reports whether the value was sent.
+// The value will not be sent if the context is closed or the receiver
+// is freed.
+func (s *_Sender[Elem]) Send(ctx context.Context, v Elem) bool {
+ select {
+ case <-ctx.Done():
+ return false
+ case s.values <- v:
+ return true
+ case <-s.done:
+ return false
+ }
+}
+
+// Close tells the receiver that no more values will arrive.
+// After Close is called, the _Sender may no longer be used.
+func (s *_Sender[Elem]) Close() {
+ close(s.values)
+}
+
+// A _Receiver receives values from a _Sender.
+type _Receiver[Elem any] struct {
+ values <-chan Elem
+ done chan<- struct{}
+}
+
+// Next returns the next value from the channel. The bool result indicates
+// whether the value is valid.
+func (r *_Receiver[Elem]) Next(ctx context.Context) (v Elem, ok bool) {
+ select {
+ case <-ctx.Done():
+ case v, ok = <-r.values:
+ }
+ return v, ok
+}
+
+// finalize is a finalizer for the receiver.
+func (r *_Receiver[Elem]) finalize() {
+ close(r.done)
+}