summaryrefslogtreecommitdiffstats
path: root/doc/go_spec.html
blob: c39a44236ac82efb3946d4cdd2e87960bd2acb17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
<!--{
	"Title": "The Go Programming Language Specification",
	"Subtitle": "Version of Aug 2, 2023",
	"Path": "/ref/spec"
}-->

<h2 id="Introduction">Introduction</h2>

<p>
This is the reference manual for the Go programming language.
The pre-Go1.18 version, without generics, can be found
<a href="/doc/go1.17_spec.html">here</a>.
For more information and other documents, see <a href="/">golang.org</a>.
</p>

<p>
Go is a general-purpose language designed with systems programming
in mind. It is strongly typed and garbage-collected and has explicit
support for concurrent programming.  Programs are constructed from
<i>packages</i>, whose properties allow efficient management of
dependencies.
</p>

<p>
The syntax is compact and simple to parse, allowing for easy analysis
by automatic tools such as integrated development environments.
</p>

<h2 id="Notation">Notation</h2>
<p>
The syntax is specified using a
<a href="https://en.wikipedia.org/wiki/Wirth_syntax_notation">variant</a>
of Extended Backus-Naur Form (EBNF):
</p>

<pre class="grammar">
Syntax      = { Production } .
Production  = production_name "=" [ Expression ] "." .
Expression  = Term { "|" Term } .
Term        = Factor { Factor } .
Factor      = production_name | token [ "…" token ] | Group | Option | Repetition .
Group       = "(" Expression ")" .
Option      = "[" Expression "]" .
Repetition  = "{" Expression "}" .
</pre>

<p>
Productions are expressions constructed from terms and the following
operators, in increasing precedence:
</p>
<pre class="grammar">
|   alternation
()  grouping
[]  option (0 or 1 times)
{}  repetition (0 to n times)
</pre>

<p>
Lowercase production names are used to identify lexical (terminal) tokens.
Non-terminals are in CamelCase. Lexical tokens are enclosed in
double quotes <code>""</code> or back quotes <code>``</code>.
</p>

<p>
The form <code>a … b</code> represents the set of characters from
<code>a</code> through <code>b</code> as alternatives. The horizontal
ellipsis <code></code> is also used elsewhere in the spec to informally denote various
enumerations or code snippets that are not further specified. The character <code></code>
(as opposed to the three characters <code>...</code>) is not a token of the Go
language.
</p>

<h2 id="Source_code_representation">Source code representation</h2>

<p>
Source code is Unicode text encoded in
<a href="https://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
canonicalized, so a single accented code point is distinct from the
same character constructed from combining an accent and a letter;
those are treated as two code points.  For simplicity, this document
will use the unqualified term <i>character</i> to refer to a Unicode code point
in the source text.
</p>
<p>
Each code point is distinct; for instance, uppercase and lowercase letters
are different characters.
</p>
<p>
Implementation restriction: For compatibility with other tools, a
compiler may disallow the NUL character (U+0000) in the source text.
</p>
<p>
Implementation restriction: For compatibility with other tools, a
compiler may ignore a UTF-8-encoded byte order mark
(U+FEFF) if it is the first Unicode code point in the source text.
A byte order mark may be disallowed anywhere else in the source.
</p>

<h3 id="Characters">Characters</h3>

<p>
The following terms are used to denote specific Unicode character categories:
</p>
<pre class="ebnf">
newline        = /* the Unicode code point U+000A */ .
unicode_char   = /* an arbitrary Unicode code point except newline */ .
unicode_letter = /* a Unicode code point categorized as "Letter" */ .
unicode_digit  = /* a Unicode code point categorized as "Number, decimal digit" */ .
</pre>

<p>
In <a href="https://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
Section 4.5 "General Category" defines a set of character categories.
Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
as Unicode letters, and those in the Number category Nd as Unicode digits.
</p>

<h3 id="Letters_and_digits">Letters and digits</h3>

<p>
The underscore character <code>_</code> (U+005F) is considered a lowercase letter.
</p>
<pre class="ebnf">
letter        = unicode_letter | "_" .
decimal_digit = "0" … "9" .
binary_digit  = "0" | "1" .
octal_digit   = "0" … "7" .
hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
</pre>

<h2 id="Lexical_elements">Lexical elements</h2>

<h3 id="Comments">Comments</h3>

<p>
Comments serve as program documentation. There are two forms:
</p>

<ol>
<li>
<i>Line comments</i> start with the character sequence <code>//</code>
and stop at the end of the line.
</li>
<li>
<i>General comments</i> start with the character sequence <code>/*</code>
and stop with the first subsequent character sequence <code>*/</code>.
</li>
</ol>

<p>
A comment cannot start inside a <a href="#Rune_literals">rune</a> or
<a href="#String_literals">string literal</a>, or inside a comment.
A general comment containing no newlines acts like a space.
Any other comment acts like a newline.
</p>

<h3 id="Tokens">Tokens</h3>

<p>
Tokens form the vocabulary of the Go language.
There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
and punctuation</i>, and <i>literals</i>.  <i>White space</i>, formed from
spaces (U+0020), horizontal tabs (U+0009),
carriage returns (U+000D), and newlines (U+000A),
is ignored except as it separates tokens
that would otherwise combine into a single token. Also, a newline or end of file
may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
While breaking the input into tokens,
the next token is the longest sequence of characters that form a
valid token.
</p>

<h3 id="Semicolons">Semicolons</h3>

<p>
The formal syntax uses semicolons <code>";"</code> as terminators in
a number of productions. Go programs may omit most of these semicolons
using the following two rules:
</p>

<ol>
<li>
When the input is broken into tokens, a semicolon is automatically inserted
into the token stream immediately after a line's final token if that token is
<ul>
	<li>an
	    <a href="#Identifiers">identifier</a>
	</li>

	<li>an
	    <a href="#Integer_literals">integer</a>,
	    <a href="#Floating-point_literals">floating-point</a>,
	    <a href="#Imaginary_literals">imaginary</a>,
	    <a href="#Rune_literals">rune</a>, or
	    <a href="#String_literals">string</a> literal
	</li>

	<li>one of the <a href="#Keywords">keywords</a>
	    <code>break</code>,
	    <code>continue</code>,
	    <code>fallthrough</code>, or
	    <code>return</code>
	</li>

	<li>one of the <a href="#Operators_and_punctuation">operators and punctuation</a>
	    <code>++</code>,
	    <code>--</code>,
	    <code>)</code>,
	    <code>]</code>, or
	    <code>}</code>
	</li>
</ul>
</li>

<li>
To allow complex statements to occupy a single line, a semicolon
may be omitted before a closing <code>")"</code> or <code>"}"</code>.
</li>
</ol>

<p>
To reflect idiomatic use, code examples in this document elide semicolons
using these rules.
</p>


<h3 id="Identifiers">Identifiers</h3>

<p>
Identifiers name program entities such as variables and types.
An identifier is a sequence of one or more letters and digits.
The first character in an identifier must be a letter.
</p>
<pre class="ebnf">
identifier = letter { letter | unicode_digit } .
</pre>
<pre>
a
_x9
ThisVariableIsExported
αβ
</pre>

<p>
Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
</p>


<h3 id="Keywords">Keywords</h3>

<p>
The following keywords are reserved and may not be used as identifiers.
</p>
<pre class="grammar">
break        default      func         interface    select
case         defer        go           map          struct
chan         else         goto         package      switch
const        fallthrough  if           range        type
continue     for          import       return       var
</pre>

<h3 id="Operators_and_punctuation">Operators and punctuation</h3>

<p>
The following character sequences represent <a href="#Operators">operators</a>
(including <a href="#Assignment_statements">assignment operators</a>) and punctuation:
</p>
<pre class="grammar">
+    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
-    |     -=    |=     ||    &lt;     &lt;=    [    ]
*    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
/    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
%    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
     &amp;^          &amp;^=          ~
</pre>

<h3 id="Integer_literals">Integer literals</h3>

<p>
An integer literal is a sequence of digits representing an
<a href="#Constants">integer constant</a>.
An optional prefix sets a non-decimal base: <code>0b</code> or <code>0B</code>
for binary, <code>0</code>, <code>0o</code>, or <code>0O</code> for octal,
and <code>0x</code> or <code>0X</code> for hexadecimal.
A single <code>0</code> is considered a decimal zero.
In hexadecimal literals, letters <code>a</code> through <code>f</code>
and <code>A</code> through <code>F</code> represent values 10 through 15.
</p>

<p>
For readability, an underscore character <code>_</code> may appear after
a base prefix or between successive digits; such underscores do not change
the literal's value.
</p>
<pre class="ebnf">
int_lit        = decimal_lit | binary_lit | octal_lit | hex_lit .
decimal_lit    = "0" | ( "1" … "9" ) [ [ "_" ] decimal_digits ] .
binary_lit     = "0" ( "b" | "B" ) [ "_" ] binary_digits .
octal_lit      = "0" [ "o" | "O" ] [ "_" ] octal_digits .
hex_lit        = "0" ( "x" | "X" ) [ "_" ] hex_digits .

decimal_digits = decimal_digit { [ "_" ] decimal_digit } .
binary_digits  = binary_digit { [ "_" ] binary_digit } .
octal_digits   = octal_digit { [ "_" ] octal_digit } .
hex_digits     = hex_digit { [ "_" ] hex_digit } .
</pre>

<pre>
42
4_2
0600
0_600
0o600
0O600       // second character is capital letter 'O'
0xBadFace
0xBad_Face
0x_67_7a_2f_cc_40_c6
170141183460469231731687303715884105727
170_141183_460469_231731_687303_715884_105727

_42         // an identifier, not an integer literal
42_         // invalid: _ must separate successive digits
4__2        // invalid: only one _ at a time
0_xBadFace  // invalid: _ must separate successive digits
</pre>


<h3 id="Floating-point_literals">Floating-point literals</h3>

<p>
A floating-point literal is a decimal or hexadecimal representation of a
<a href="#Constants">floating-point constant</a>.
</p>

<p>
A decimal floating-point literal consists of an integer part (decimal digits),
a decimal point, a fractional part (decimal digits), and an exponent part
(<code>e</code> or <code>E</code> followed by an optional sign and decimal digits).
One of the integer part or the fractional part may be elided; one of the decimal point
or the exponent part may be elided.
An exponent value exp scales the mantissa (integer and fractional part) by 10<sup>exp</sup>.
</p>

<p>
A hexadecimal floating-point literal consists of a <code>0x</code> or <code>0X</code>
prefix, an integer part (hexadecimal digits), a radix point, a fractional part (hexadecimal digits),
and an exponent part (<code>p</code> or <code>P</code> followed by an optional sign and decimal digits).
One of the integer part or the fractional part may be elided; the radix point may be elided as well,
but the exponent part is required. (This syntax matches the one given in IEEE 754-2008 §5.12.3.)
An exponent value exp scales the mantissa (integer and fractional part) by 2<sup>exp</sup>.
</p>

<p>
For readability, an underscore character <code>_</code> may appear after
a base prefix or between successive digits; such underscores do not change
the literal value.
</p>

<pre class="ebnf">
float_lit         = decimal_float_lit | hex_float_lit .

decimal_float_lit = decimal_digits "." [ decimal_digits ] [ decimal_exponent ] |
                    decimal_digits decimal_exponent |
                    "." decimal_digits [ decimal_exponent ] .
decimal_exponent  = ( "e" | "E" ) [ "+" | "-" ] decimal_digits .

hex_float_lit     = "0" ( "x" | "X" ) hex_mantissa hex_exponent .
hex_mantissa      = [ "_" ] hex_digits "." [ hex_digits ] |
                    [ "_" ] hex_digits |
                    "." hex_digits .
hex_exponent      = ( "p" | "P" ) [ "+" | "-" ] decimal_digits .
</pre>

<pre>
0.
72.40
072.40       // == 72.40
2.71828
1.e+0
6.67428e-11
1E6
.25
.12345E+5
1_5.         // == 15.0
0.15e+0_2    // == 15.0

0x1p-2       // == 0.25
0x2.p10      // == 2048.0
0x1.Fp+0     // == 1.9375
0X.8p-0      // == 0.5
0X_1FFFP-16  // == 0.1249847412109375
0x15e-2      // == 0x15e - 2 (integer subtraction)

0x.p1        // invalid: mantissa has no digits
1p-2         // invalid: p exponent requires hexadecimal mantissa
0x1.5e-2     // invalid: hexadecimal mantissa requires p exponent
1_.5         // invalid: _ must separate successive digits
1._5         // invalid: _ must separate successive digits
1.5_e1       // invalid: _ must separate successive digits
1.5e_1       // invalid: _ must separate successive digits
1.5e1_       // invalid: _ must separate successive digits
</pre>


<h3 id="Imaginary_literals">Imaginary literals</h3>

<p>
An imaginary literal represents the imaginary part of a
<a href="#Constants">complex constant</a>.
It consists of an <a href="#Integer_literals">integer</a> or
<a href="#Floating-point_literals">floating-point</a> literal
followed by the lowercase letter <code>i</code>.
The value of an imaginary literal is the value of the respective
integer or floating-point literal multiplied by the imaginary unit <i>i</i>.
</p>

<pre class="ebnf">
imaginary_lit = (decimal_digits | int_lit | float_lit) "i" .
</pre>

<p>
For backward compatibility, an imaginary literal's integer part consisting
entirely of decimal digits (and possibly underscores) is considered a decimal
integer, even if it starts with a leading <code>0</code>.
</p>

<pre>
0i
0123i         // == 123i for backward-compatibility
0o123i        // == 0o123 * 1i == 83i
0xabci        // == 0xabc * 1i == 2748i
0.i
2.71828i
1.e+0i
6.67428e-11i
1E6i
.25i
.12345E+5i
0x1p-2i       // == 0x1p-2 * 1i == 0.25i
</pre>


<h3 id="Rune_literals">Rune literals</h3>

<p>
A rune literal represents a <a href="#Constants">rune constant</a>,
an integer value identifying a Unicode code point.
A rune literal is expressed as one or more characters enclosed in single quotes,
as in <code>'x'</code> or <code>'\n'</code>.
Within the quotes, any character may appear except newline and unescaped single
quote. A single quoted character represents the Unicode value
of the character itself,
while multi-character sequences beginning with a backslash encode
values in various formats.
</p>

<p>
The simplest form represents the single character within the quotes;
since Go source text is Unicode characters encoded in UTF-8, multiple
UTF-8-encoded bytes may represent a single integer value.  For
instance, the literal <code>'a'</code> holds a single byte representing
a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
<code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
</p>

<p>
Several backslash escapes allow arbitrary values to be encoded as
ASCII text.  There are four ways to represent the integer value
as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
digits; <code>\u</code> followed by exactly four hexadecimal digits;
<code>\U</code> followed by exactly eight hexadecimal digits, and a
plain backslash <code>\</code> followed by exactly three octal digits.
In each case the value of the literal is the value represented by
the digits in the corresponding base.
</p>

<p>
Although these representations all result in an integer, they have
different valid ranges.  Octal escapes must represent a value between
0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
by construction. The escapes <code>\u</code> and <code>\U</code>
represent Unicode code points so within them some values are illegal,
in particular those above <code>0x10FFFF</code> and surrogate halves.
</p>

<p>
After a backslash, certain single-character escapes represent special values:
</p>

<pre class="grammar">
\a   U+0007 alert or bell
\b   U+0008 backspace
\f   U+000C form feed
\n   U+000A line feed or newline
\r   U+000D carriage return
\t   U+0009 horizontal tab
\v   U+000B vertical tab
\\   U+005C backslash
\'   U+0027 single quote  (valid escape only within rune literals)
\"   U+0022 double quote  (valid escape only within string literals)
</pre>

<p>
An unrecognized character following a backslash in a rune literal is illegal.
</p>

<pre class="ebnf">
rune_lit         = "'" ( unicode_value | byte_value ) "'" .
unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
byte_value       = octal_byte_value | hex_byte_value .
octal_byte_value = `\` octal_digit octal_digit octal_digit .
hex_byte_value   = `\` "x" hex_digit hex_digit .
little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
                           hex_digit hex_digit hex_digit hex_digit .
escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
</pre>

<pre>
'a'
'ä'
'本'
'\t'
'\000'
'\007'
'\377'
'\x07'
'\xff'
'\u12e4'
'\U00101234'
'\''         // rune literal containing single quote character
'aa'         // illegal: too many characters
'\k'         // illegal: k is not recognized after a backslash
'\xa'        // illegal: too few hexadecimal digits
'\0'         // illegal: too few octal digits
'\400'       // illegal: octal value over 255
'\uDFFF'     // illegal: surrogate half
'\U00110000' // illegal: invalid Unicode code point
</pre>


<h3 id="String_literals">String literals</h3>

<p>
A string literal represents a <a href="#Constants">string constant</a>
obtained from concatenating a sequence of characters. There are two forms:
raw string literals and interpreted string literals.
</p>

<p>
Raw string literals are character sequences between back quotes, as in
<code>`foo`</code>.  Within the quotes, any character may appear except
back quote. The value of a raw string literal is the
string composed of the uninterpreted (implicitly UTF-8-encoded) characters
between the quotes;
in particular, backslashes have no special meaning and the string may
contain newlines.
Carriage return characters ('\r') inside raw string literals
are discarded from the raw string value.
</p>

<p>
Interpreted string literals are character sequences between double
quotes, as in <code>&quot;bar&quot;</code>.
Within the quotes, any character may appear except newline and unescaped double quote.
The text between the quotes forms the
value of the literal, with backslash escapes interpreted as they
are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
<code>\"</code> is legal), with the same restrictions.
The three-digit octal (<code>\</code><i>nnn</i>)
and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
<i>bytes</i> of the resulting string; all other escapes represent
the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
<code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
U+00FF.
</p>

<pre class="ebnf">
string_lit             = raw_string_lit | interpreted_string_lit .
raw_string_lit         = "`" { unicode_char | newline } "`" .
interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
</pre>

<pre>
`abc`                // same as "abc"
`\n
\n`                  // same as "\\n\n\\n"
"\n"
"\""                 // same as `"`
"Hello, world!\n"
"日本語"
"\u65e5本\U00008a9e"
"\xff\u00FF"
"\uD800"             // illegal: surrogate half
"\U00110000"         // illegal: invalid Unicode code point
</pre>

<p>
These examples all represent the same string:
</p>

<pre>
"日本語"                                 // UTF-8 input text
`日本語`                                 // UTF-8 input text as a raw literal
"\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
"\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
"\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
</pre>

<p>
If the source code represents a character as two code points, such as
a combining form involving an accent and a letter, the result will be
an error if placed in a rune literal (it is not a single code
point), and will appear as two code points if placed in a string
literal.
</p>


<h2 id="Constants">Constants</h2>

<p>There are <i>boolean constants</i>,
<i>rune constants</i>,
<i>integer constants</i>,
<i>floating-point constants</i>, <i>complex constants</i>,
and <i>string constants</i>. Rune, integer, floating-point,
and complex constants are
collectively called <i>numeric constants</i>.
</p>

<p>
A constant value is represented by a
<a href="#Rune_literals">rune</a>,
<a href="#Integer_literals">integer</a>,
<a href="#Floating-point_literals">floating-point</a>,
<a href="#Imaginary_literals">imaginary</a>,
or
<a href="#String_literals">string</a> literal,
an identifier denoting a constant,
a <a href="#Constant_expressions">constant expression</a>,
a <a href="#Conversions">conversion</a> with a result that is a constant, or
the result value of some built-in functions such as
<code>min</code> or <code>max</code> applied to constant arguments,
<code>unsafe.Sizeof</code> applied to <a href="#Package_unsafe">certain values</a>,
<code>cap</code> or <code>len</code> applied to
<a href="#Length_and_capacity">some expressions</a>,
<code>real</code> and <code>imag</code> applied to a complex constant
and <code>complex</code> applied to numeric constants.
The boolean truth values are represented by the predeclared constants
<code>true</code> and <code>false</code>. The predeclared identifier
<a href="#Iota">iota</a> denotes an integer constant.
</p>

<p>
In general, complex constants are a form of
<a href="#Constant_expressions">constant expression</a>
and are discussed in that section.
</p>

<p>
Numeric constants represent exact values of arbitrary precision and do not overflow.
Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
and not-a-number values.
</p>

<p>
Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
and certain <a href="#Constant_expressions">constant expressions</a>
containing only untyped constant operands are untyped.
</p>

<p>
A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
or <a href="#Conversions">conversion</a>, or implicitly when used in a
<a href="#Variable_declarations">variable declaration</a> or an
<a href="#Assignment_statements">assignment statement</a> or as an
operand in an <a href="#Expressions">expression</a>.
It is an error if the constant value
cannot be <a href="#Representability">represented</a> as a value of the respective type.
If the type is a type parameter, the constant is converted into a non-constant
value of the type parameter.
</p>

<p>
An untyped constant has a <i>default type</i> which is the type to which the
constant is implicitly converted in contexts where a typed value is required,
for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
such as <code>i := 0</code> where there is no explicit type.
The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
<code>int</code>, <code>float64</code>, <code>complex128</code>, or <code>string</code>
respectively, depending on whether it is a boolean, rune, integer, floating-point,
complex, or string constant.
</p>

<p>
Implementation restriction: Although numeric constants have arbitrary
precision in the language, a compiler may implement them using an
internal representation with limited precision.  That said, every
implementation must:
</p>

<ul>
	<li>Represent integer constants with at least 256 bits.</li>

	<li>Represent floating-point constants, including the parts of
	    a complex constant, with a mantissa of at least 256 bits
	    and a signed binary exponent of at least 16 bits.</li>

	<li>Give an error if unable to represent an integer constant
	    precisely.</li>

	<li>Give an error if unable to represent a floating-point or
	    complex constant due to overflow.</li>

	<li>Round to the nearest representable constant if unable to
	    represent a floating-point or complex constant due to limits
	    on precision.</li>
</ul>

<p>
These requirements apply both to literal constants and to the result
of evaluating <a href="#Constant_expressions">constant
expressions</a>.
</p>


<h2 id="Variables">Variables</h2>

<p>
A variable is a storage location for holding a <i>value</i>.
The set of permissible values is determined by the
variable's <i><a href="#Types">type</a></i>.
</p>

<p>
A <a href="#Variable_declarations">variable declaration</a>
or, for function parameters and results, the signature
of a <a href="#Function_declarations">function declaration</a>
or <a href="#Function_literals">function literal</a> reserves
storage for a named variable.

Calling the built-in function <a href="#Allocation"><code>new</code></a>
or taking the address of a <a href="#Composite_literals">composite literal</a>
allocates storage for a variable at run time.
Such an anonymous variable is referred to via a (possibly implicit)
<a href="#Address_operators">pointer indirection</a>.
</p>

<p>
<i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
and <a href="#Struct_types">struct</a> types have elements and fields that may
be <a href="#Address_operators">addressed</a> individually. Each such element
acts like a variable.
</p>

<p>
The <i>static type</i> (or just <i>type</i>) of a variable is the
type given in its declaration, the type provided in the
<code>new</code> call or composite literal, or the type of
an element of a structured variable.
Variables of interface type also have a distinct <i>dynamic type</i>,
which is the (non-interface) type of the value assigned to the variable at run time
(unless the value is the predeclared identifier <code>nil</code>,
which has no type).
The dynamic type may vary during execution but values stored in interface
variables are always <a href="#Assignability">assignable</a>
to the static type of the variable.
</p>

<pre>
var x interface{}  // x is nil and has static type interface{}
var v *T           // v has value nil, static type *T
x = 42             // x has value 42 and dynamic type int
x = v              // x has value (*T)(nil) and dynamic type *T
</pre>

<p>
A variable's value is retrieved by referring to the variable in an
<a href="#Expressions">expression</a>; it is the most recent value
<a href="#Assignment_statements">assigned</a> to the variable.
If a variable has not yet been assigned a value, its value is the
<a href="#The_zero_value">zero value</a> for its type.
</p>


<h2 id="Types">Types</h2>

<p>
A type determines a set of values together with operations and methods specific
to those values. A type may be denoted by a <i>type name</i>, if it has one, which must be
followed by <a href="#Instantiations">type arguments</a> if the type is generic.
A type may also be specified using a <i>type literal</i>, which composes a type
from existing types.
</p>

<pre class="ebnf">
Type      = TypeName [ TypeArgs ] | TypeLit | "(" Type ")" .
TypeName  = identifier | QualifiedIdent .
TypeArgs  = "[" TypeList [ "," ] "]" .
TypeList  = Type { "," Type } .
TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
            SliceType | MapType | ChannelType .
</pre>

<p>
The language <a href="#Predeclared_identifiers">predeclares</a> certain type names.
Others are introduced with <a href="#Type_declarations">type declarations</a>
or <a href="#Type_parameter_declarations">type parameter lists</a>.
<i>Composite types</i>&mdash;array, struct, pointer, function,
interface, slice, map, and channel types&mdash;may be constructed using
type literals.
</p>

<p>
Predeclared types, defined types, and type parameters are called <i>named types</i>.
An alias denotes a named type if the type given in the alias declaration is a named type.
</p>

<h3 id="Boolean_types">Boolean types</h3>

<p>
A <i>boolean type</i> represents the set of Boolean truth values
denoted by the predeclared constants <code>true</code>
and <code>false</code>. The predeclared boolean type is <code>bool</code>;
it is a <a href="#Type_definitions">defined type</a>.
</p>

<h3 id="Numeric_types">Numeric types</h3>

<p>
An <i>integer</i>, <i>floating-point</i>, or <i>complex</i> type
represents the set of integer, floating-point, or complex values, respectively.
They are collectively called <i>numeric types</i>.
The predeclared architecture-independent numeric types are:
</p>

<pre class="grammar">
uint8       the set of all unsigned  8-bit integers (0 to 255)
uint16      the set of all unsigned 16-bit integers (0 to 65535)
uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)

int8        the set of all signed  8-bit integers (-128 to 127)
int16       the set of all signed 16-bit integers (-32768 to 32767)
int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)

float32     the set of all IEEE-754 32-bit floating-point numbers
float64     the set of all IEEE-754 64-bit floating-point numbers

complex64   the set of all complex numbers with float32 real and imaginary parts
complex128  the set of all complex numbers with float64 real and imaginary parts

byte        alias for uint8
rune        alias for int32
</pre>

<p>
The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
<a href="https://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
</p>

<p>
There is also a set of predeclared integer types with implementation-specific sizes:
</p>

<pre class="grammar">
uint     either 32 or 64 bits
int      same size as uint
uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
</pre>

<p>
To avoid portability issues all numeric types are <a href="#Type_definitions">defined
types</a> and thus distinct except
<code>byte</code>, which is an <a href="#Alias_declarations">alias</a> for <code>uint8</code>, and
<code>rune</code>, which is an alias for <code>int32</code>.
Explicit conversions
are required when different numeric types are mixed in an expression
or assignment. For instance, <code>int32</code> and <code>int</code>
are not the same type even though they may have the same size on a
particular architecture.


<h3 id="String_types">String types</h3>

<p>
A <i>string type</i> represents the set of string values.
A string value is a (possibly empty) sequence of bytes.
The number of bytes is called the length of the string and is never negative.
Strings are immutable: once created,
it is impossible to change the contents of a string.
The predeclared string type is <code>string</code>;
it is a <a href="#Type_definitions">defined type</a>.
</p>

<p>
The length of a string <code>s</code> can be discovered using
the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
The length is a compile-time constant if the string is a constant.
A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
0 through <code>len(s)-1</code>.
It is illegal to take the address of such an element; if
<code>s[i]</code> is the <code>i</code>'th byte of a
string, <code>&amp;s[i]</code> is invalid.
</p>


<h3 id="Array_types">Array types</h3>

<p>
An array is a numbered sequence of elements of a single
type, called the element type.
The number of elements is called the length of the array and is never negative.
</p>

<pre class="ebnf">
ArrayType   = "[" ArrayLength "]" ElementType .
ArrayLength = Expression .
ElementType = Type .
</pre>

<p>
The length is part of the array's type; it must evaluate to a
non-negative <a href="#Constants">constant</a>
<a href="#Representability">representable</a> by a value
of type <code>int</code>.
The length of array <code>a</code> can be discovered
using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
The elements can be addressed by integer <a href="#Index_expressions">indices</a>
0 through <code>len(a)-1</code>.
Array types are always one-dimensional but may be composed to form
multi-dimensional types.
</p>

<pre>
[32]byte
[2*N] struct { x, y int32 }
[1000]*float64
[3][5]int
[2][2][2]float64  // same as [2]([2]([2]float64))
</pre>

<p>
An array type <code>T</code> may not have an element of type <code>T</code>,
or of a type containing <code>T</code> as a component, directly or indirectly,
if those containing types are only array or struct types.
</p>

<pre>
// invalid array types
type (
	T1 [10]T1                 // element type of T1 is T1
	T2 [10]struct{ f T2 }     // T2 contains T2 as component of a struct
	T3 [10]T4                 // T3 contains T3 as component of a struct in T4
	T4 struct{ f T3 }         // T4 contains T4 as component of array T3 in a struct
)

// valid array types
type (
	T5 [10]*T5                // T5 contains T5 as component of a pointer
	T6 [10]func() T6          // T6 contains T6 as component of a function type
	T7 [10]struct{ f []T7 }   // T7 contains T7 as component of a slice in a struct
)
</pre>

<h3 id="Slice_types">Slice types</h3>

<p>
A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
provides access to a numbered sequence of elements from that array.
A slice type denotes the set of all slices of arrays of its element type.
The number of elements is called the length of the slice and is never negative.
The value of an uninitialized slice is <code>nil</code>.
</p>

<pre class="ebnf">
SliceType = "[" "]" ElementType .
</pre>

<p>
The length of a slice <code>s</code> can be discovered by the built-in function
<a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
0 through <code>len(s)-1</code>.  The slice index of a
given element may be less than the index of the same element in the
underlying array.
</p>
<p>
A slice, once initialized, is always associated with an underlying
array that holds its elements.  A slice therefore shares storage
with its array and with other slices of the same array; by contrast,
distinct arrays always represent distinct storage.
</p>
<p>
The array underlying a slice may extend past the end of the slice.
The <i>capacity</i> is a measure of that extent: it is the sum of
the length of the slice and the length of the array beyond the slice;
a slice of length up to that capacity can be created by
<a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
The capacity of a slice <code>a</code> can be discovered using the
built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
</p>

<p>
A new, initialized slice value for a given element type <code>T</code> may be
made using the built-in function
<a href="#Making_slices_maps_and_channels"><code>make</code></a>,
which takes a slice type
and parameters specifying the length and optionally the capacity.
A slice created with <code>make</code> always allocates a new, hidden array
to which the returned slice value refers. That is, executing
</p>

<pre>
make([]T, length, capacity)
</pre>

<p>
produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
it, so these two expressions are equivalent:
</p>

<pre>
make([]int, 50, 100)
new([100]int)[0:50]
</pre>

<p>
Like arrays, slices are always one-dimensional but may be composed to construct
higher-dimensional objects.
With arrays of arrays, the inner arrays are, by construction, always the same length;
however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
Moreover, the inner slices must be initialized individually.
</p>

<h3 id="Struct_types">Struct types</h3>

<p>
A struct is a sequence of named elements, called fields, each of which has a
name and a type. Field names may be specified explicitly (IdentifierList) or
implicitly (EmbeddedField).
Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
be <a href="#Uniqueness_of_identifiers">unique</a>.
</p>

<pre class="ebnf">
StructType    = "struct" "{" { FieldDecl ";" } "}" .
FieldDecl     = (IdentifierList Type | EmbeddedField) [ Tag ] .
EmbeddedField = [ "*" ] TypeName [ TypeArgs ] .
Tag           = string_lit .
</pre>

<pre>
// An empty struct.
struct {}

// A struct with 6 fields.
struct {
	x, y int
	u float32
	_ float32  // padding
	A *[]int
	F func()
}
</pre>

<p>
A field declared with a type but no explicit field name is called an <i>embedded field</i>.
An embedded field must be specified as
a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
and <code>T</code> itself may not be
a pointer type. The unqualified type name acts as the field name.
</p>

<pre>
// A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
struct {
	T1        // field name is T1
	*T2       // field name is T2
	P.T3      // field name is T3
	*P.T4     // field name is T4
	x, y int  // field names are x and y
}
</pre>

<p>
The following declaration is illegal because field names must be unique
in a struct type:
</p>

<pre>
struct {
	T     // conflicts with embedded field *T and *P.T
	*T    // conflicts with embedded field T and *P.T
	*P.T  // conflicts with embedded field T and *T
}
</pre>

<p>
A field or <a href="#Method_declarations">method</a> <code>f</code> of an
embedded field in a struct <code>x</code> is called <i>promoted</i> if
<code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
that field or method <code>f</code>.
</p>

<p>
Promoted fields act like ordinary fields
of a struct except that they cannot be used as field names in
<a href="#Composite_literals">composite literals</a> of the struct.
</p>

<p>
Given a struct type <code>S</code> and a <a href="#Types">named type</a>
<code>T</code>, promoted methods are included in the method set of the struct as follows:
</p>
<ul>
	<li>
	If <code>S</code> contains an embedded field <code>T</code>,
	the <a href="#Method_sets">method sets</a> of <code>S</code>
	and <code>*S</code> both include promoted methods with receiver
	<code>T</code>. The method set of <code>*S</code> also
	includes promoted methods with receiver <code>*T</code>.
	</li>

	<li>
	If <code>S</code> contains an embedded field <code>*T</code>,
	the method sets of <code>S</code> and <code>*S</code> both
	include promoted methods with receiver <code>T</code> or
	<code>*T</code>.
	</li>
</ul>

<p>
A field declaration may be followed by an optional string literal <i>tag</i>,
which becomes an attribute for all the fields in the corresponding
field declaration. An empty tag string is equivalent to an absent tag.
The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
and take part in <a href="#Type_identity">type identity</a> for structs
but are otherwise ignored.
</p>

<pre>
struct {
	x, y float64 ""  // an empty tag string is like an absent tag
	name string  "any string is permitted as a tag"
	_    [4]byte "ceci n'est pas un champ de structure"
}

// A struct corresponding to a TimeStamp protocol buffer.
// The tag strings define the protocol buffer field numbers;
// they follow the convention outlined by the reflect package.
struct {
	microsec  uint64 `protobuf:"1"`
	serverIP6 uint64 `protobuf:"2"`
}
</pre>

<p>
A struct type <code>T</code> may not contain a field of type <code>T</code>,
or of a type containing <code>T</code> as a component, directly or indirectly,
if those containing types are only array or struct types.
</p>

<pre>
// invalid struct types
type (
	T1 struct{ T1 }            // T1 contains a field of T1
	T2 struct{ f [10]T2 }      // T2 contains T2 as component of an array
	T3 struct{ T4 }            // T3 contains T3 as component of an array in struct T4
	T4 struct{ f [10]T3 }      // T4 contains T4 as component of struct T3 in an array
)

// valid struct types
type (
	T5 struct{ f *T5 }         // T5 contains T5 as component of a pointer
	T6 struct{ f func() T6 }   // T6 contains T6 as component of a function type
	T7 struct{ f [10][]T7 }    // T7 contains T7 as component of a slice in an array
)
</pre>

<h3 id="Pointer_types">Pointer types</h3>

<p>
A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
type, called the <i>base type</i> of the pointer.
The value of an uninitialized pointer is <code>nil</code>.
</p>

<pre class="ebnf">
PointerType = "*" BaseType .
BaseType    = Type .
</pre>

<pre>
*Point
*[4]int
</pre>

<h3 id="Function_types">Function types</h3>

<p>
A function type denotes the set of all functions with the same parameter
and result types. The value of an uninitialized variable of function type
is <code>nil</code>.
</p>

<pre class="ebnf">
FunctionType   = "func" Signature .
Signature      = Parameters [ Result ] .
Result         = Parameters | Type .
Parameters     = "(" [ ParameterList [ "," ] ] ")" .
ParameterList  = ParameterDecl { "," ParameterDecl } .
ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
</pre>

<p>
Within a list of parameters or results, the names (IdentifierList)
must either all be present or all be absent. If present, each name
stands for one item (parameter or result) of the specified type and
all non-<a href="#Blank_identifier">blank</a> names in the signature
must be <a href="#Uniqueness_of_identifiers">unique</a>.
If absent, each type stands for one item of that type.
Parameter and result
lists are always parenthesized except that if there is exactly
one unnamed result it may be written as an unparenthesized type.
</p>

<p>
The final incoming parameter in a function signature may have
a type prefixed with <code>...</code>.
A function with such a parameter is called <i>variadic</i> and
may be invoked with zero or more arguments for that parameter.
</p>

<pre>
func()
func(x int) int
func(a, _ int, z float32) bool
func(a, b int, z float32) (bool)
func(prefix string, values ...int)
func(a, b int, z float64, opt ...interface{}) (success bool)
func(int, int, float64) (float64, *[]int)
func(n int) func(p *T)
</pre>

<h3 id="Interface_types">Interface types</h3>

<p>
An interface type defines a <i>type set</i>.
A variable of interface type can store a value of any type that is in the type
set of the interface. Such a type is said to
<a href="#Implementing_an_interface">implement the interface</a>.
The value of an uninitialized variable of interface type is <code>nil</code>.
</p>

<pre class="ebnf">
InterfaceType  = "interface" "{" { InterfaceElem ";" } "}" .
InterfaceElem  = MethodElem | TypeElem .
MethodElem     = MethodName Signature .
MethodName     = identifier .
TypeElem       = TypeTerm { "|" TypeTerm } .
TypeTerm       = Type | UnderlyingType .
UnderlyingType = "~" Type .
</pre>

<p>
An interface type is specified by a list of <i>interface elements</i>.
An interface element is either a <i>method</i> or a <i>type element</i>,
where a type element is a union of one or more <i>type terms</i>.
A type term is either a single type or a single underlying type.
</p>

<h4 id="Basic_interfaces">Basic interfaces</h4>

<p>
In its most basic form an interface specifies a (possibly empty) list of methods.
The type set defined by such an interface is the set of types which implement all of
those methods, and the corresponding <a href="#Method_sets">method set</a> consists
exactly of the methods specified by the interface.
Interfaces whose type sets can be defined entirely by a list of methods are called
<i>basic interfaces.</i>
</p>

<pre>
// A simple File interface.
interface {
	Read([]byte) (int, error)
	Write([]byte) (int, error)
	Close() error
}
</pre>

<p>
The name of each explicitly specified method must be <a href="#Uniqueness_of_identifiers">unique</a>
and not <a href="#Blank_identifier">blank</a>.
</p>

<pre>
interface {
	String() string
	String() string  // illegal: String not unique
	_(x int)         // illegal: method must have non-blank name
}
</pre>

<p>
More than one type may implement an interface.
For instance, if two types <code>S1</code> and <code>S2</code>
have the method set
</p>

<pre>
func (p T) Read(p []byte) (n int, err error)
func (p T) Write(p []byte) (n int, err error)
func (p T) Close() error
</pre>

<p>
(where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
then the <code>File</code> interface is implemented by both <code>S1</code> and
<code>S2</code>, regardless of what other methods
<code>S1</code> and <code>S2</code> may have or share.
</p>

<p>
Every type that is a member of the type set of an interface implements that interface.
Any given type may implement several distinct interfaces.
For instance, all types implement the <i>empty interface</i> which stands for the set
of all (non-interface) types:
</p>

<pre>
interface{}
</pre>

<p>
For convenience, the predeclared type <code>any</code> is an alias for the empty interface.
</p>

<p>
Similarly, consider this interface specification,
which appears within a <a href="#Type_declarations">type declaration</a>
to define an interface called <code>Locker</code>:
</p>

<pre>
type Locker interface {
	Lock()
	Unlock()
}
</pre>

<p>
If <code>S1</code> and <code>S2</code> also implement
</p>

<pre>
func (p T) Lock() { … }
func (p T) Unlock() { … }
</pre>

<p>
they implement the <code>Locker</code> interface as well
as the <code>File</code> interface.
</p>

<h4 id="Embedded_interfaces">Embedded interfaces</h4>

<p>
In a slightly more general form
an interface <code>T</code> may use a (possibly qualified) interface type
name <code>E</code> as an interface element. This is called
<i>embedding</i> interface <code>E</code> in <code>T</code>.
The type set of <code>T</code> is the <i>intersection</i> of the type sets
defined by <code>T</code>'s explicitly declared methods and the type sets
of <code>T</code>’s embedded interfaces.
In other words, the type set of <code>T</code> is the set of all types that implement all the
explicitly declared methods of <code>T</code> and also all the methods of
<code>E</code>.
</p>

<pre>
type Reader interface {
	Read(p []byte) (n int, err error)
	Close() error
}

type Writer interface {
	Write(p []byte) (n int, err error)
	Close() error
}

// ReadWriter's methods are Read, Write, and Close.
type ReadWriter interface {
	Reader  // includes methods of Reader in ReadWriter's method set
	Writer  // includes methods of Writer in ReadWriter's method set
}
</pre>

<p>
When embedding interfaces, methods with the
<a href="#Uniqueness_of_identifiers">same</a> names must
have <a href="#Type_identity">identical</a> signatures.
</p>

<pre>
type ReadCloser interface {
	Reader   // includes methods of Reader in ReadCloser's method set
	Close()  // illegal: signatures of Reader.Close and Close are different
}
</pre>

<h4 id="General_interfaces">General interfaces</h4>

<p>
In their most general form, an interface element may also be an arbitrary type term
<code>T</code>, or a term of the form <code>~T</code> specifying the underlying type <code>T</code>,
or a union of terms <code>t<sub>1</sub>|t<sub>2</sub>|…|t<sub>n</sub></code>.
Together with method specifications, these elements enable the precise
definition of an interface's type set as follows:
</p>

<ul>
	<li>The type set of the empty interface is the set of all non-interface types.
	</li>

	<li>The type set of a non-empty interface is the intersection of the type sets
		of its interface elements.
	</li>

	<li>The type set of a method specification is the set of all non-interface types
		whose method sets include that method.
	</li>

	<li>The type set of a non-interface type term is the set consisting
		of just that type.
	</li>

	<li>The type set of a term of the form <code>~T</code>
		is the set of all types whose underlying type is <code>T</code>.
	</li>

	<li>The type set of a <i>union</i> of terms
		<code>t<sub>1</sub>|t<sub>2</sub>|…|t<sub>n</sub></code>
		is the union of the type sets of the terms.
	</li>
</ul>

<p>
The quantification "the set of all non-interface types" refers not just to all (non-interface)
types declared in the program at hand, but all possible types in all possible programs, and
hence is infinite.
Similarly, given the set of all non-interface types that implement a particular method, the
intersection of the method sets of those types will contain exactly that method, even if all
types in the program at hand always pair that method with another method.
</p>

<p>
By construction, an interface's type set never contains an interface type.
</p>

<pre>
// An interface representing only the type int.
interface {
	int
}

// An interface representing all types with underlying type int.
interface {
	~int
}

// An interface representing all types with underlying type int that implement the String method.
interface {
	~int
	String() string
}

// An interface representing an empty type set: there is no type that is both an int and a string.
interface {
	int
	string
}
</pre>

<p>
In a term of the form <code>~T</code>, the underlying type of <code>T</code>
must be itself, and <code>T</code> cannot be an interface.
</p>

<pre>
type MyInt int

interface {
	~[]byte  // the underlying type of []byte is itself
	~MyInt   // illegal: the underlying type of MyInt is not MyInt
	~error   // illegal: error is an interface
}
</pre>

<p>
Union elements denote unions of type sets:
</p>

<pre>
// The Float interface represents all floating-point types
// (including any named types whose underlying types are
// either float32 or float64).
type Float interface {
	~float32 | ~float64
}
</pre>

<p>
The type <code>T</code> in a term of the form <code>T</code> or <code>~T</code> cannot
be a <a href="#Type_parameter_declarations">type parameter</a>, and the type sets of all
non-interface terms must be pairwise disjoint (the pairwise intersection of the type sets must be empty).
Given a type parameter <code>P</code>:
</p>

<pre>
interface {
	P                // illegal: P is a type parameter
	int | ~P         // illegal: P is a type parameter
	~int | MyInt     // illegal: the type sets for ~int and MyInt are not disjoint (~int includes MyInt)
	float32 | Float  // overlapping type sets but Float is an interface
}
</pre>

<p>
Implementation restriction:
A union (with more than one term) cannot contain the
<a href="#Predeclared_identifiers">predeclared identifier</a> <code>comparable</code>
or interfaces that specify methods, or embed <code>comparable</code> or interfaces
that specify methods.
</p>

<p>
Interfaces that are not <a href="#Basic_interfaces">basic</a> may only be used as type
constraints, or as elements of other interfaces used as constraints.
They cannot be the types of values or variables, or components of other,
non-interface types.
</p>

<pre>
var x Float                     // illegal: Float is not a basic interface

var x interface{} = Float(nil)  // illegal

type Floatish struct {
	f Float                 // illegal
}
</pre>

<p>
An interface type <code>T</code> may not embed a type element
that is, contains, or embeds <code>T</code>, directly or indirectly.
</p>

<pre>
// illegal: Bad may not embed itself
type Bad interface {
	Bad
}

// illegal: Bad1 may not embed itself using Bad2
type Bad1 interface {
	Bad2
}
type Bad2 interface {
	Bad1
}

// illegal: Bad3 may not embed a union containing Bad3
type Bad3 interface {
	~int | ~string | Bad3
}

// illegal: Bad4 may not embed an array containing Bad4 as element type
type Bad4 interface {
	[10]Bad4
}
</pre>

<h4 id="Implementing_an_interface">Implementing an interface</h4>

<p>
A type <code>T</code> implements an interface <code>I</code> if
</p>

<ul>
<li>
	<code>T</code> is not an interface and is an element of the type set of <code>I</code>; or
</li>
<li>
	<code>T</code> is an interface and the type set of <code>T</code> is a subset of the
	type set of <code>I</code>.
</li>
</ul>

<p>
A value of type <code>T</code> implements an interface if <code>T</code>
implements the interface.
</p>

<h3 id="Map_types">Map types</h3>

<p>
A map is an unordered group of elements of one type, called the
element type, indexed by a set of unique <i>keys</i> of another type,
called the key type.
The value of an uninitialized map is <code>nil</code>.
</p>

<pre class="ebnf">
MapType     = "map" "[" KeyType "]" ElementType .
KeyType     = Type .
</pre>

<p>
The <a href="#Comparison_operators">comparison operators</a>
<code>==</code> and <code>!=</code> must be fully defined
for operands of the key type; thus the key type must not be a function, map, or
slice.
If the key type is an interface type, these
comparison operators must be defined for the dynamic key values;
failure will cause a <a href="#Run_time_panics">run-time panic</a>.
</p>

<pre>
map[string]int
map[*T]struct{ x, y float64 }
map[string]interface{}
</pre>

<p>
The number of map elements is called its length.
For a map <code>m</code>, it can be discovered using the
built-in function <a href="#Length_and_capacity"><code>len</code></a>
and may change during execution. Elements may be added during execution
using <a href="#Assignment_statements">assignments</a> and retrieved with
<a href="#Index_expressions">index expressions</a>; they may be removed with the
<a href="#Deletion_of_map_elements"><code>delete</code></a> and
<a href="#Clear"><code>clear</code></a> built-in function.
</p>

<p>
A new, empty map value is made using the built-in
function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
which takes the map type and an optional capacity hint as arguments:
</p>

<pre>
make(map[string]int)
make(map[string]int, 100)
</pre>

<p>
The initial capacity does not bound its size:
maps grow to accommodate the number of items
stored in them, with the exception of <code>nil</code> maps.
A <code>nil</code> map is equivalent to an empty map except that no elements
may be added.

<h3 id="Channel_types">Channel types</h3>

<p>
A channel provides a mechanism for
<a href="#Go_statements">concurrently executing functions</a>
to communicate by
<a href="#Send_statements">sending</a> and
<a href="#Receive_operator">receiving</a>
values of a specified element type.
The value of an uninitialized channel is <code>nil</code>.
</p>

<pre class="ebnf">
ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
</pre>

<p>
The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
<i>send</i> or <i>receive</i>. If a direction is given, the channel is <i>directional</i>,
otherwise it is <i>bidirectional</i>.
A channel may be constrained only to send or only to receive by
<a href="#Assignment_statements">assignment</a> or
explicit <a href="#Conversions">conversion</a>.
</p>

<pre>
chan T          // can be used to send and receive values of type T
chan&lt;- float64  // can only be used to send float64s
&lt;-chan int      // can only be used to receive ints
</pre>

<p>
The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
possible:
</p>

<pre>
chan&lt;- chan int    // same as chan&lt;- (chan int)
chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
&lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
chan (&lt;-chan int)
</pre>

<p>
A new, initialized channel
value can be made using the built-in function
<a href="#Making_slices_maps_and_channels"><code>make</code></a>,
which takes the channel type and an optional <i>capacity</i> as arguments:
</p>

<pre>
make(chan int, 100)
</pre>

<p>
The capacity, in number of elements, sets the size of the buffer in the channel.
If the capacity is zero or absent, the channel is unbuffered and communication
succeeds only when both a sender and receiver are ready. Otherwise, the channel
is buffered and communication succeeds without blocking if the buffer
is not full (sends) or not empty (receives).
A <code>nil</code> channel is never ready for communication.
</p>

<p>
A channel may be closed with the built-in function
<a href="#Close"><code>close</code></a>.
The multi-valued assignment form of the
<a href="#Receive_operator">receive operator</a>
reports whether a received value was sent before
the channel was closed.
</p>

<p>
A single channel may be used in
<a href="#Send_statements">send statements</a>,
<a href="#Receive_operator">receive operations</a>,
and calls to the built-in functions
<a href="#Length_and_capacity"><code>cap</code></a> and
<a href="#Length_and_capacity"><code>len</code></a>
by any number of goroutines without further synchronization.
Channels act as first-in-first-out queues.
For example, if one goroutine sends values on a channel
and a second goroutine receives them, the values are
received in the order sent.
</p>

<h2 id="Properties_of_types_and_values">Properties of types and values</h2>

<h3 id="Underlying_types">Underlying types</h3>

<p>
Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
is one of the predeclared boolean, numeric, or string types, or a type literal,
the corresponding underlying type is <code>T</code> itself.
Otherwise, <code>T</code>'s underlying type is the underlying type of the
type to which <code>T</code> refers in its declaration.
For a type parameter that is the underlying type of its
<a href="#Type_constraints">type constraint</a>, which is always an interface.
</p>

<pre>
type (
	A1 = string
	A2 = A1
)

type (
	B1 string
	B2 B1
	B3 []B1
	B4 B3
)

func f[P any](x P) { … }
</pre>

<p>
The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>,
and <code>B2</code> is <code>string</code>.
The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>.
The underlying type of <code>P</code> is <code>interface{}</code>.
</p>

<h3 id="Core_types">Core types</h3>

<p>
Each non-interface type <code>T</code> has a <i>core type</i>, which is the same as the
<a href="#Underlying_types">underlying type</a> of <code>T</code>.
</p>

<p>
An interface <code>T</code> has a core type if one of the following
conditions is satisfied:
</p>

<ol>
<li>
There is a single type <code>U</code> which is the <a href="#Underlying_types">underlying type</a>
of all types in the <a href="#Interface_types">type set</a> of <code>T</code>; or
</li>
<li>
the type set of <code>T</code> contains only <a href="#Channel_types">channel types</a>
with identical element type <code>E</code>, and all directional channels have the same
direction.
</li>
</ol>

<p>
No other interfaces have a core type.
</p>

<p>
The core type of an interface is, depending on the condition that is satisfied, either:
</p>

<ol>
<li>
the type <code>U</code>; or
</li>
<li>
the type <code>chan E</code> if <code>T</code> contains only bidirectional
channels, or the type <code>chan&lt;- E</code> or <code>&lt;-chan E</code>
depending on the direction of the directional channels present.
</li>
</ol>

<p>
By definition, a core type is never a <a href="#Type_definitions">defined type</a>,
<a href="#Type_parameter_declarations">type parameter</a>, or
<a href="#Interface_types">interface type</a>.
</p>

<p>
Examples of interfaces with core types:
</p>

<pre>
type Celsius float32
type Kelvin  float32

interface{ int }                          // int
interface{ Celsius|Kelvin }               // float32
interface{ ~chan int }                    // chan int
interface{ ~chan int|~chan&lt;- int }        // chan&lt;- int
interface{ ~[]*data; String() string }    // []*data
</pre>

<p>
Examples of interfaces without core types:
</p>

<pre>
interface{}                               // no single underlying type
interface{ Celsius|float64 }              // no single underlying type
interface{ chan int | chan&lt;- string }     // channels have different element types
interface{ &lt;-chan int | chan&lt;- int }      // directional channels have different directions
</pre>

<p>
Some operations (<a href="#Slice_expressions">slice expressions</a>,
<a href="#Appending_and_copying_slices"><code>append</code> and <code>copy</code></a>)
rely on a slightly more loose form of core types which accept byte slices and strings.
Specifically, if there are exactly two types, <code>[]byte</code> and <code>string</code>,
which are the underlying types of all types in the type set of interface <code>T</code>,
the core type of <code>T</code> is called <code>bytestring</code>.
</p>

<p>
Examples of interfaces with <code>bytestring</code> core types:
</p>

<pre>
interface{ int }                          // int (same as ordinary core type)
interface{ []byte | string }              // bytestring
interface{ ~[]byte | myString }           // bytestring
</pre>

<p>
Note that <code>bytestring</code> is not a real type; it cannot be used to declare
variables or compose other types. It exists solely to describe the behavior of some
operations that read from a sequence of bytes, which may be a byte slice or a string.
</p>

<h3 id="Type_identity">Type identity</h3>

<p>
Two types are either <i>identical</i> or <i>different</i>.
</p>

<p>
A <a href="#Types">named type</a> is always different from any other type.
Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are
structurally equivalent; that is, they have the same literal structure and corresponding
components have identical types. In detail:
</p>

<ul>
	<li>Two array types are identical if they have identical element types and
	    the same array length.</li>

	<li>Two slice types are identical if they have identical element types.</li>

	<li>Two struct types are identical if they have the same sequence of fields,
	    and if corresponding fields have the same names, and identical types,
	    and identical tags.
	    <a href="#Exported_identifiers">Non-exported</a> field names from different
	    packages are always different.</li>

	<li>Two pointer types are identical if they have identical base types.</li>

	<li>Two function types are identical if they have the same number of parameters
	    and result values, corresponding parameter and result types are
	    identical, and either both functions are variadic or neither is.
	    Parameter and result names are not required to match.</li>

	<li>Two interface types are identical if they define the same type set.
	</li>

	<li>Two map types are identical if they have identical key and element types.</li>

	<li>Two channel types are identical if they have identical element types and
	    the same direction.</li>

	<li>Two <a href="#Instantiations">instantiated</a> types are identical if
	    their defined types and all type arguments are identical.
	</li>
</ul>

<p>
Given the declarations
</p>

<pre>
type (
	A0 = []string
	A1 = A0
	A2 = struct{ a, b int }
	A3 = int
	A4 = func(A3, float64) *A0
	A5 = func(x int, _ float64) *[]string

	B0 A0
	B1 []string
	B2 struct{ a, b int }
	B3 struct{ a, c int }
	B4 func(int, float64) *B0
	B5 func(x int, y float64) *A1

	C0 = B0
	D0[P1, P2 any] struct{ x P1; y P2 }
	E0 = D0[int, string]
)
</pre>

<p>
these types are identical:
</p>

<pre>
A0, A1, and []string
A2 and struct{ a, b int }
A3 and int
A4, func(int, float64) *[]string, and A5

B0 and C0
D0[int, string] and E0
[]int and []int
struct{ a, b *B5 } and struct{ a, b *B5 }
func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5
</pre>

<p>
<code>B0</code> and <code>B1</code> are different because they are new types
created by distinct <a href="#Type_definitions">type definitions</a>;
<code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code>
are different because <code>B0</code> is different from <code>[]string</code>;
and <code>P1</code> and <code>P2</code> are different because they are different
type parameters.
<code>D0[int, string]</code> and <code>struct{ x int; y string }</code> are
different because the former is an <a href="#Instantiations">instantiated</a>
defined type while the latter is a type literal
(but they are still <a href="#Assignability">assignable</a>).
</p>

<h3 id="Assignability">Assignability</h3>

<p>
A value <code>x</code> of type <code>V</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
("<code>x</code> is assignable to <code>T</code>") if one of the following conditions applies:
</p>

<ul>
<li>
<code>V</code> and <code>T</code> are identical.
</li>
<li>
<code>V</code> and <code>T</code> have identical
<a href="#Underlying_types">underlying types</a>
but are not type parameters and at least one of <code>V</code>
or <code>T</code> is not a <a href="#Types">named type</a>.
</li>
<li>
<code>V</code> and <code>T</code> are channel types with
identical element types, <code>V</code> is a bidirectional channel,
and at least one of <code>V</code> or <code>T</code> is not a <a href="#Types">named type</a>.
</li>
<li>
<code>T</code> is an interface type, but not a type parameter, and
<code>x</code> <a href="#Implementing_an_interface">implements</a> <code>T</code>.
</li>
<li>
<code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
is a pointer, function, slice, map, channel, or interface type,
but not a type parameter.
</li>
<li>
<code>x</code> is an untyped <a href="#Constants">constant</a>
<a href="#Representability">representable</a>
by a value of type <code>T</code>.
</li>
</ul>

<p>
Additionally, if <code>x</code>'s type <code>V</code> or <code>T</code> are type parameters, <code>x</code>
is assignable to a variable of type <code>T</code> if one of the following conditions applies:
</p>

<ul>
<li>
<code>x</code> is the predeclared identifier <code>nil</code>, <code>T</code> is
a type parameter, and <code>x</code> is assignable to each type in
<code>T</code>'s type set.
</li>
<li>
<code>V</code> is not a <a href="#Types">named type</a>, <code>T</code> is
a type parameter, and <code>x</code> is assignable to each type in
<code>T</code>'s type set.
</li>
<li>
<code>V</code> is a type parameter and <code>T</code> is not a named type,
and values of each type in <code>V</code>'s type set are assignable
to <code>T</code>.
</li>
</ul>

<h3 id="Representability">Representability</h3>

<p>
A <a href="#Constants">constant</a> <code>x</code> is <i>representable</i>
by a value of type <code>T</code>,
where <code>T</code> is not a <a href="#Type_parameter_declarations">type parameter</a>,
if one of the following conditions applies:
</p>

<ul>
<li>
<code>x</code> is in the set of values <a href="#Types">determined</a> by <code>T</code>.
</li>

<li>
<code>T</code> is a <a href="#Numeric_types">floating-point type</a> and <code>x</code> can be rounded to <code>T</code>'s
precision without overflow. Rounding uses IEEE 754 round-to-even rules but with an IEEE
negative zero further simplified to an unsigned zero. Note that constant values never result
in an IEEE negative zero, NaN, or infinity.
</li>

<li>
<code>T</code> is a complex type, and <code>x</code>'s
<a href="#Complex_numbers">components</a> <code>real(x)</code> and <code>imag(x)</code>
are representable by values of <code>T</code>'s component type (<code>float32</code> or
<code>float64</code>).
</li>
</ul>

<p>
If <code>T</code> is a type parameter,
<code>x</code> is representable by a value of type <code>T</code> if <code>x</code> is representable
by a value of each type in <code>T</code>'s type set.
</p>

<pre>
x                   T           x is representable by a value of T because

'a'                 byte        97 is in the set of byte values
97                  rune        rune is an alias for int32, and 97 is in the set of 32-bit integers
"foo"               string      "foo" is in the set of string values
1024                int16       1024 is in the set of 16-bit integers
42.0                byte        42 is in the set of unsigned 8-bit integers
1e10                uint64      10000000000 is in the set of unsigned 64-bit integers
2.718281828459045   float32     2.718281828459045 rounds to 2.7182817 which is in the set of float32 values
-1e-1000            float64     -1e-1000 rounds to IEEE -0.0 which is further simplified to 0.0
0i                  int         0 is an integer value
(42 + 0i)           float32     42.0 (with zero imaginary part) is in the set of float32 values
</pre>

<pre>
x                   T           x is not representable by a value of T because

0                   bool        0 is not in the set of boolean values
'a'                 string      'a' is a rune, it is not in the set of string values
1024                byte        1024 is not in the set of unsigned 8-bit integers
-1                  uint16      -1 is not in the set of unsigned 16-bit integers
1.1                 int         1.1 is not an integer value
42i                 float32     (0 + 42i) is not in the set of float32 values
1e1000              float64     1e1000 overflows to IEEE +Inf after rounding
</pre>

<h3 id="Method_sets">Method sets</h3>

<p>
The <i>method set</i> of a type determines the methods that can be
<a href="#Calls">called</a> on an <a href="#Operands">operand</a> of that type.
Every type has a (possibly empty) method set associated with it:
</p>

<ul>
<li>The method set of a <a href="#Type_definitions">defined type</a> <code>T</code> consists of all
<a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
</li>

<li>
The method set of a pointer to a defined type <code>T</code>
(where <code>T</code> is neither a pointer nor an interface)
is the set of all methods declared with receiver <code>*T</code> or <code>T</code>.
</li>

<li>The method set of an <a href="#Interface_types">interface type</a> is the intersection
of the method sets of each type in the interface's <a href="#Interface_types">type set</a>
(the resulting method set is usually just the set of declared methods in the interface).
</li>
</ul>

<p>
Further rules apply to structs (and pointer to structs) containing embedded fields,
as described in the section on <a href="#Struct_types">struct types</a>.
Any other type has an empty method set.
</p>

<p>
In a method set, each method must have a
<a href="#Uniqueness_of_identifiers">unique</a>
non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
</p>

<h2 id="Blocks">Blocks</h2>

<p>
A <i>block</i> is a possibly empty sequence of declarations and statements
within matching brace brackets.
</p>

<pre class="ebnf">
Block = "{" StatementList "}" .
StatementList = { Statement ";" } .
</pre>

<p>
In addition to explicit blocks in the source code, there are implicit blocks:
</p>

<ol>
	<li>The <i>universe block</i> encompasses all Go source text.</li>

	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
	    Go source text for that package.</li>

	<li>Each file has a <i>file block</i> containing all Go source text
	    in that file.</li>

	<li>Each <a href="#If_statements">"if"</a>,
	    <a href="#For_statements">"for"</a>, and
	    <a href="#Switch_statements">"switch"</a>
	    statement is considered to be in its own implicit block.</li>

	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
	    or <a href="#Select_statements">"select"</a> statement
	    acts as an implicit block.</li>
</ol>

<p>
Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
</p>


<h2 id="Declarations_and_scope">Declarations and scope</h2>

<p>
A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
<a href="#Constant_declarations">constant</a>,
<a href="#Type_declarations">type</a>,
<a href="#Type_parameter_declarations">type parameter</a>,
<a href="#Variable_declarations">variable</a>,
<a href="#Function_declarations">function</a>,
<a href="#Labeled_statements">label</a>, or
<a href="#Import_declarations">package</a>.
Every identifier in a program must be declared.
No identifier may be declared twice in the same block, and
no identifier may be declared in both the file and package block.
</p>

<p>
The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
in a declaration, but it does not introduce a binding and thus is not declared.
In the package block, the identifier <code>init</code> may only be used for
<a href="#Package_initialization"><code>init</code> function</a> declarations,
and like the blank identifier it does not introduce a new binding.
</p>

<pre class="ebnf">
Declaration   = ConstDecl | TypeDecl | VarDecl .
TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
</pre>

<p>
The <i>scope</i> of a declared identifier is the extent of source text in which
the identifier denotes the specified constant, type, variable, function, label, or package.
</p>

<p>
Go is lexically scoped using <a href="#Blocks">blocks</a>:
</p>

<ol>
	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>

	<li>The scope of an identifier denoting a constant, type, variable,
	    or function (but not method) declared at top level (outside any
	    function) is the package block.</li>

	<li>The scope of the package name of an imported package is the file block
	    of the file containing the import declaration.</li>

	<li>The scope of an identifier denoting a method receiver, function parameter,
	    or result variable is the function body.</li>

	<li>The scope of an identifier denoting a type parameter of a function
	    or declared by a method receiver begins after the name of the function
	    and ends at the end of the function body.</li>

	<li>The scope of an identifier denoting a type parameter of a type
	    begins after the name of the type and ends at the end
	    of the TypeSpec.</li>

	<li>The scope of a constant or variable identifier declared
	    inside a function begins at the end of the ConstSpec or VarSpec
	    (ShortVarDecl for short variable declarations)
	    and ends at the end of the innermost containing block.</li>

	<li>The scope of a type identifier declared inside a function
	    begins at the identifier in the TypeSpec
	    and ends at the end of the innermost containing block.</li>
</ol>

<p>
An identifier declared in a block may be redeclared in an inner block.
While the identifier of the inner declaration is in scope, it denotes
the entity declared by the inner declaration.
</p>

<p>
The <a href="#Package_clause">package clause</a> is not a declaration; the package name
does not appear in any scope. Its purpose is to identify the files belonging
to the same <a href="#Packages">package</a> and to specify the default package name for import
declarations.
</p>


<h3 id="Label_scopes">Label scopes</h3>

<p>
Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
used in the <a href="#Break_statements">"break"</a>,
<a href="#Continue_statements">"continue"</a>, and
<a href="#Goto_statements">"goto"</a> statements.
It is illegal to define a label that is never used.
In contrast to other identifiers, labels are not block scoped and do
not conflict with identifiers that are not labels. The scope of a label
is the body of the function in which it is declared and excludes
the body of any nested function.
</p>


<h3 id="Blank_identifier">Blank identifier</h3>

<p>
The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
It serves as an anonymous placeholder instead of a regular (non-blank)
identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
as an <a href="#Operands">operand</a>, and in <a href="#Assignment_statements">assignment statements</a>.
</p>


<h3 id="Predeclared_identifiers">Predeclared identifiers</h3>

<p>
The following identifiers are implicitly declared in the
<a href="#Blocks">universe block</a>:
</p>
<pre class="grammar">
Types:
	any bool byte comparable
	complex64 complex128 error float32 float64
	int int8 int16 int32 int64 rune string
	uint uint8 uint16 uint32 uint64 uintptr

Constants:
	true false iota

Zero value:
	nil

Functions:
	append cap clear close complex copy delete imag len
	make max min new panic print println real recover
</pre>

<h3 id="Exported_identifiers">Exported identifiers</h3>

<p>
An identifier may be <i>exported</i> to permit access to it from another package.
An identifier is exported if both:
</p>
<ol>
	<li>the first character of the identifier's name is a Unicode uppercase
	letter (Unicode character category Lu); and</li>
	<li>the identifier is declared in the <a href="#Blocks">package block</a>
	or it is a <a href="#Struct_types">field name</a> or
	<a href="#MethodName">method name</a>.</li>
</ol>
<p>
All other identifiers are not exported.
</p>

<h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>

<p>
Given a set of identifiers, an identifier is called <i>unique</i> if it is
<i>different</i> from every other in the set.
Two identifiers are different if they are spelled differently, or if they
appear in different <a href="#Packages">packages</a> and are not
<a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
</p>

<h3 id="Constant_declarations">Constant declarations</h3>

<p>
A constant declaration binds a list of identifiers (the names of
the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
The number of identifiers must be equal
to the number of expressions, and the <i>n</i>th identifier on
the left is bound to the value of the <i>n</i>th expression on the
right.
</p>

<pre class="ebnf">
ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .

IdentifierList = identifier { "," identifier } .
ExpressionList = Expression { "," Expression } .
</pre>

<p>
If the type is present, all constants take the type specified, and
the expressions must be <a href="#Assignability">assignable</a> to that type,
which must not be a type parameter.
If the type is omitted, the constants take the
individual types of the corresponding expressions.
If the expression values are untyped <a href="#Constants">constants</a>,
the declared constants remain untyped and the constant identifiers
denote the constant values. For instance, if the expression is a
floating-point literal, the constant identifier denotes a floating-point
constant, even if the literal's fractional part is zero.
</p>

<pre>
const Pi float64 = 3.14159265358979323846
const zero = 0.0         // untyped floating-point constant
const (
	size int64 = 1024
	eof        = -1  // untyped integer constant
)
const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
const u, v float32 = 0, 3    // u = 0.0, v = 3.0
</pre>

<p>
Within a parenthesized <code>const</code> declaration list the
expression list may be omitted from any but the first ConstSpec.
Such an empty list is equivalent to the textual substitution of the
first preceding non-empty expression list and its type if any.
Omitting the list of expressions is therefore equivalent to
repeating the previous list.  The number of identifiers must be equal
to the number of expressions in the previous list.
Together with the <a href="#Iota"><code>iota</code> constant generator</a>
this mechanism permits light-weight declaration of sequential values:
</p>

<pre>
const (
	Sunday = iota
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Partyday
	numberOfDays  // this constant is not exported
)
</pre>


<h3 id="Iota">Iota</h3>

<p>
Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
<code>iota</code> represents successive untyped integer <a href="#Constants">
constants</a>. Its value is the index of the respective <a href="#ConstSpec">ConstSpec</a>
in that constant declaration, starting at zero.
It can be used to construct a set of related constants:
</p>

<pre>
const (
	c0 = iota  // c0 == 0
	c1 = iota  // c1 == 1
	c2 = iota  // c2 == 2
)

const (
	a = 1 &lt;&lt; iota  // a == 1  (iota == 0)
	b = 1 &lt;&lt; iota  // b == 2  (iota == 1)
	c = 3          // c == 3  (iota == 2, unused)
	d = 1 &lt;&lt; iota  // d == 8  (iota == 3)
)

const (
	u         = iota * 42  // u == 0     (untyped integer constant)
	v float64 = iota * 42  // v == 42.0  (float64 constant)
	w         = iota * 42  // w == 84    (untyped integer constant)
)

const x = iota  // x == 0
const y = iota  // y == 0
</pre>

<p>
By definition, multiple uses of <code>iota</code> in the same ConstSpec all have the same value:
</p>

<pre>
const (
	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0  (iota == 0)
	bit1, mask1                           // bit1 == 2, mask1 == 1  (iota == 1)
	_, _                                  //                        (iota == 2, unused)
	bit3, mask3                           // bit3 == 8, mask3 == 7  (iota == 3)
)
</pre>

<p>
This last example exploits the <a href="#Constant_declarations">implicit repetition</a>
of the last non-empty expression list.
</p>


<h3 id="Type_declarations">Type declarations</h3>

<p>
A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>.
Type declarations come in two forms: alias declarations and type definitions.
</p>

<pre class="ebnf">
TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
TypeSpec = AliasDecl | TypeDef .
</pre>

<h4 id="Alias_declarations">Alias declarations</h4>

<p>
An alias declaration binds an identifier to the given type.
</p>

<pre class="ebnf">
AliasDecl = identifier "=" Type .
</pre>

<p>
Within the <a href="#Declarations_and_scope">scope</a> of
the identifier, it serves as an <i>alias</i> for the type.
</p>

<pre>
type (
	nodeList = []*Node  // nodeList and []*Node are identical types
	Polar    = polar    // Polar and polar denote identical types
)
</pre>


<h4 id="Type_definitions">Type definitions</h4>

<p>
A type definition creates a new, distinct type with the same
<a href="#Underlying_types">underlying type</a> and operations as the given type
and binds an identifier, the <i>type name</i>, to it.
</p>

<pre class="ebnf">
TypeDef = identifier [ TypeParameters ] Type .
</pre>

<p>
The new type is called a <i>defined type</i>.
It is <a href="#Type_identity">different</a> from any other type,
including the type it is created from.
</p>

<pre>
type (
	Point struct{ x, y float64 }  // Point and struct{ x, y float64 } are different types
	polar Point                   // polar and Point denote different types
)

type TreeNode struct {
	left, right *TreeNode
	value any
}

type Block interface {
	BlockSize() int
	Encrypt(src, dst []byte)
	Decrypt(src, dst []byte)
}
</pre>

<p>
A defined type may have <a href="#Method_declarations">methods</a> associated with it.
It does not inherit any methods bound to the given type,
but the <a href="#Method_sets">method set</a>
of an interface type or of elements of a composite type remains unchanged:
</p>

<pre>
// A Mutex is a data type with two methods, Lock and Unlock.
type Mutex struct         { /* Mutex fields */ }
func (m *Mutex) Lock()    { /* Lock implementation */ }
func (m *Mutex) Unlock()  { /* Unlock implementation */ }

// NewMutex has the same composition as Mutex but its method set is empty.
type NewMutex Mutex

// The method set of PtrMutex's underlying type *Mutex remains unchanged,
// but the method set of PtrMutex is empty.
type PtrMutex *Mutex

// The method set of *PrintableMutex contains the methods
// Lock and Unlock bound to its embedded field Mutex.
type PrintableMutex struct {
	Mutex
}

// MyBlock is an interface type that has the same method set as Block.
type MyBlock Block
</pre>

<p>
Type definitions may be used to define different boolean, numeric,
or string types and associate methods with them:
</p>

<pre>
type TimeZone int

const (
	EST TimeZone = -(5 + iota)
	CST
	MST
	PST
)

func (tz TimeZone) String() string {
	return fmt.Sprintf("GMT%+dh", tz)
}
</pre>

<p>
If the type definition specifies <a href="#Type_parameter_declarations">type parameters</a>,
the type name denotes a <i>generic type</i>.
Generic types must be <a href="#Instantiations">instantiated</a> when they
are used.
</p>

<pre>
type List[T any] struct {
	next  *List[T]
	value T
}
</pre>

<p>
In a type definition the given type cannot be a type parameter.
</p>

<pre>
type T[P any] P    // illegal: P is a type parameter

func f[T any]() {
	type L T   // illegal: T is a type parameter declared by the enclosing function
}
</pre>

<p>
A generic type may also have <a href="#Method_declarations">methods</a> associated with it.
In this case, the method receivers must declare the same number of type parameters as
present in the generic type definition.
</p>

<pre>
// The method Len returns the number of elements in the linked list l.
func (l *List[T]) Len() int  { … }
</pre>

<h3 id="Type_parameter_declarations">Type parameter declarations</h3>

<p>
A type parameter list declares the <i>type parameters</i> of a generic function or type declaration.
The type parameter list looks like an ordinary <a href="#Function_types">function parameter list</a>
except that the type parameter names must all be present and the list is enclosed
in square brackets rather than parentheses.
</p>

<pre class="ebnf">
TypeParameters  = "[" TypeParamList [ "," ] "]" .
TypeParamList   = TypeParamDecl { "," TypeParamDecl } .
TypeParamDecl   = IdentifierList TypeConstraint .
</pre>

<p>
All non-blank names in the list must be unique.
Each name declares a type parameter, which is a new and different <a href="#Types">named type</a>
that acts as a placeholder for an (as of yet) unknown type in the declaration.
The type parameter is replaced with a <i>type argument</i> upon
<a href="#Instantiations">instantiation</a> of the generic function or type.
</p>

<pre>
[P any]
[S interface{ ~[]byte|string }]
[S ~[]E, E any]
[P Constraint[int]]
[_ any]
</pre>

<p>
Just as each ordinary function parameter has a parameter type, each type parameter
has a corresponding (meta-)type which is called its
<a href="#Type_constraints"><i>type constraint</i></a>.
</p>

<p>
A parsing ambiguity arises when the type parameter list for a generic type
declares a single type parameter <code>P</code> with a constraint <code>C</code>
such that the text <code>P C</code> forms a valid expression:
</p>

<pre>
type T[P *C] …
type T[P (C)] …
type T[P *C|Q] …
…
</pre>

<p>
In these rare cases, the type parameter list is indistinguishable from an
expression and the type declaration is parsed as an array type declaration.
To resolve the ambiguity, embed the constraint in an
<a href="#Interface_types">interface</a> or use a trailing comma:
</p>

<pre>
type T[P interface{*C}] …
type T[P *C,] …
</pre>

<p>
Type parameters may also be declared by the receiver specification
of a <a href="#Method_declarations">method declaration</a> associated
with a generic type.
</p>

<p>
Within a type parameter list of a generic type <code>T</code>, a type constraint
may not (directly, or indirectly through the type parameter list of another
generic type) refer to <code>T</code>.
</p>

<pre>
type T1[P T1[P]] …                    // illegal: T1 refers to itself
type T2[P interface{ T2[int] }] …     // illegal: T2 refers to itself
type T3[P interface{ m(T3[int])}] …   // illegal: T3 refers to itself
type T4[P T5[P]] …                    // illegal: T4 refers to T5 and
type T5[P T4[P]] …                    //          T5 refers to T4

type T6[P int] struct{ f *T6[P] }     // ok: reference to T6 is not in type parameter list
</pre>

<h4 id="Type_constraints">Type constraints</h4>

<p>
A <i>type constraint</i> is an <a href="#Interface_types">interface</a> that defines the
set of permissible type arguments for the respective type parameter and controls the
operations supported by values of that type parameter.
</p>

<pre class="ebnf">
TypeConstraint = TypeElem .
</pre>

<p>
If the constraint is an interface literal of the form <code>interface{E}</code> where
<code>E</code> is an embedded <a href="#Interface_types">type element</a> (not a method), in a type parameter list
the enclosing <code>interface{ … }</code> may be omitted for convenience:
</p>

<pre>
[T []P]                      // = [T interface{[]P}]
[T ~int]                     // = [T interface{~int}]
[T int|string]               // = [T interface{int|string}]
type Constraint ~int         // illegal: ~int is not in a type parameter list
</pre>

<!--
We should be able to simplify the rules for comparable or delegate some of them
elsewhere since we have a section that clearly defines how interfaces implement
other interfaces based on their type sets. But this should get us going for now.
-->

<p>
The <a href="#Predeclared_identifiers">predeclared</a>
<a href="#Interface_types">interface type</a> <code>comparable</code>
denotes the set of all non-interface types that are
<a href="#Comparison_operators">strictly comparable</a>.
</p>

<p>
Even though interfaces that are not type parameters are <a href="#Comparison_operators">comparable</a>,
they are not strictly comparable and therefore they do not implement <code>comparable</code>.
However, they <a href="#Satisfying_a_type_constraint">satisfy</a> <code>comparable</code>.
</p>

<pre>
int                          // implements comparable (int is strictly comparable)
[]byte                       // does not implement comparable (slices cannot be compared)
interface{}                  // does not implement comparable (see above)
interface{ ~int | ~string }  // type parameter only: implements comparable (int, string types are strictly comparable)
interface{ comparable }      // type parameter only: implements comparable (comparable implements itself)
interface{ ~int | ~[]byte }  // type parameter only: does not implement comparable (slices are not comparable)
interface{ ~struct{ any } }  // type parameter only: does not implement comparable (field any is not strictly comparable)
</pre>

<p>
The <code>comparable</code> interface and interfaces that (directly or indirectly) embed
<code>comparable</code> may only be used as type constraints. They cannot be the types of
values or variables, or components of other, non-interface types.
</p>

<h4 id="Satisfying_a_type_constraint">Satisfying a type constraint</h4>

<p>
A type argument <code>T</code><i> satisfies</i> a type constraint <code>C</code>
if <code>T</code> is an element of the type set defined by <code>C</code>; i.e.,
if <code>T</code> <a href="#Implementing_an_interface">implements</a> <code>C</code>.
As an exception, a <a href="#Comparison_operators">strictly comparable</a>
type constraint may also be satisfied by a <a href="#Comparison_operators">comparable</a>
(not necessarily strictly comparable) type argument.
More precisely:
</p>

<p>
A type T <i>satisfies</i> a constraint <code>C</code> if
</p>

<ul>
<li>
	<code>T</code> <a href="#Implementing_an_interface">implements</a> <code>C</code>; or
</li>
<li>
	<code>C</code> can be written in the form <code>interface{ comparable; E }</code>,
	where <code>E</code> is a <a href="#Basic_interfaces">basic interface</a> and
	<code>T</code> is <a href="#Comparison_operators">comparable</a> and implements <code>E</code>.
</li>
</ul>

<pre>
type argument      type constraint                // constraint satisfaction

int                interface{ ~int }              // satisfied: int implements interface{ ~int }
string             comparable                     // satisfied: string implements comparable (string is strictly comparable)
[]byte             comparable                     // not satisfied: slices are not comparable
any                interface{ comparable; int }   // not satisfied: any does not implement interface{ int }
any                comparable                     // satisfied: any is comparable and implements the basic interface any
struct{f any}      comparable                     // satisfied: struct{f any} is comparable and implements the basic interface any
any                interface{ comparable; m() }   // not satisfied: any does not implement the basic interface interface{ m() }
interface{ m() }   interface{ comparable; m() }   // satisfied: interface{ m() } is comparable and implements the basic interface interface{ m() }
</pre>

<p>
Because of the exception in the constraint satisfaction rule, comparing operands of type parameter type
may panic at run-time (even though comparable type parameters are always strictly comparable).
</p>

<h3 id="Variable_declarations">Variable declarations</h3>

<p>
A variable declaration creates one or more <a href="#Variables">variables</a>,
binds corresponding identifiers to them, and gives each a type and an initial value.
</p>

<pre class="ebnf">
VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
</pre>

<pre>
var i int
var U, V, W float64
var k = 0
var x, y float32 = -1, -2
var (
	i       int
	u, v, s = 2.0, 3.0, "bar"
)
var re, im = complexSqrt(-1)
var _, found = entries[name]  // map lookup; only interested in "found"
</pre>

<p>
If a list of expressions is given, the variables are initialized
with the expressions following the rules for <a href="#Assignment_statements">assignment statements</a>.
Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
</p>

<p>
If a type is present, each variable is given that type.
Otherwise, each variable is given the type of the corresponding
initialization value in the assignment.
If that value is an untyped constant, it is first implicitly
<a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
if it is an untyped boolean value, it is first implicitly converted to type <code>bool</code>.
The predeclared value <code>nil</code> cannot be used to initialize a variable
with no explicit type.
</p>

<pre>
var d = math.Sin(0.5)  // d is float64
var i = 42             // i is int
var t, ok = x.(T)      // t is T, ok is bool
var n = nil            // illegal
</pre>

<p>
Implementation restriction: A compiler may make it illegal to declare a variable
inside a <a href="#Function_declarations">function body</a> if the variable is
never used.
</p>

<h3 id="Short_variable_declarations">Short variable declarations</h3>

<p>
A <i>short variable declaration</i> uses the syntax:
</p>

<pre class="ebnf">
ShortVarDecl = IdentifierList ":=" ExpressionList .
</pre>

<p>
It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
with initializer expressions but no types:
</p>

<pre class="grammar">
"var" IdentifierList "=" ExpressionList .
</pre>

<pre>
i, j := 0, 10
f := func() int { return 7 }
ch := make(chan int)
r, w, _ := os.Pipe()  // os.Pipe() returns a connected pair of Files and an error, if any
_, y, _ := coord(p)   // coord() returns three values; only interested in y coordinate
</pre>

<p>
Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
variables provided they were originally declared earlier in the same block
(or the parameter lists if the block is the function body) with the same type,
and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
As a consequence, redeclaration can only appear in a multi-variable short declaration.
Redeclaration does not introduce a new variable; it just assigns a new value to the original.
The non-blank variable names on the left side of <code>:=</code>
must be <a href="#Uniqueness_of_identifiers">unique</a>.
</p>

<pre>
field1, offset := nextField(str, 0)
field2, offset := nextField(str, offset)  // redeclares offset
x, y, x := 1, 2, 3                        // illegal: x repeated on left side of :=
</pre>

<p>
Short variable declarations may appear only inside functions.
In some contexts such as the initializers for
<a href="#If_statements">"if"</a>,
<a href="#For_statements">"for"</a>, or
<a href="#Switch_statements">"switch"</a> statements,
they can be used to declare local temporary variables.
</p>

<h3 id="Function_declarations">Function declarations</h3>

<!--
	Given the importance of functions, this section has always
	been woefully underdeveloped. Would be nice to expand this
	a bit.
-->

<p>
A function declaration binds an identifier, the <i>function name</i>,
to a function.
</p>

<pre class="ebnf">
FunctionDecl = "func" FunctionName [ TypeParameters ] Signature [ FunctionBody ] .
FunctionName = identifier .
FunctionBody = Block .
</pre>

<p>
If the function's <a href="#Function_types">signature</a> declares
result parameters, the function body's statement list must end in
a <a href="#Terminating_statements">terminating statement</a>.
</p>

<pre>
func IndexRune(s string, r rune) int {
	for i, c := range s {
		if c == r {
			return i
		}
	}
	// invalid: missing return statement
}
</pre>

<p>
If the function declaration specifies <a href="#Type_parameter_declarations">type parameters</a>,
the function name denotes a <i>generic function</i>.
A generic function must be <a href="#Instantiations">instantiated</a> before it can be
called or used as a value.
</p>

<pre>
func min[T ~int|~float64](x, y T) T {
	if x &lt; y {
		return x
	}
	return y
}
</pre>

<p>
A function declaration without type parameters may omit the body.
Such a declaration provides the signature for a function implemented outside Go,
such as an assembly routine.
</p>

<pre>
func flushICache(begin, end uintptr)  // implemented externally
</pre>

<h3 id="Method_declarations">Method declarations</h3>

<p>
A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
A method declaration binds an identifier, the <i>method name</i>, to a method,
and associates the method with the receiver's <i>base type</i>.
</p>

<pre class="ebnf">
MethodDecl = "func" Receiver MethodName Signature [ FunctionBody ] .
Receiver   = Parameters .
</pre>

<p>
The receiver is specified via an extra parameter section preceding the method
name. That parameter section must declare a single non-variadic parameter, the receiver.
Its type must be a <a href="#Type_definitions">defined</a> type <code>T</code> or a
pointer to a defined type <code>T</code>, possibly followed by a list of type parameter
names <code>[P1, P2, …]</code> enclosed in square brackets.
<code>T</code> is called the receiver <i>base type</i>. A receiver base type cannot be
a pointer or interface type and it must be defined in the same package as the method.
The method is said to be <i>bound</i> to its receiver base type and the method name
is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
or <code>*T</code>.
</p>

<p>
A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
<a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
If the receiver's value is not referenced inside the body of the method,
its identifier may be omitted in the declaration. The same applies in
general to parameters of functions and methods.
</p>

<p>
For a base type, the non-blank names of methods bound to it must be unique.
If the base type is a <a href="#Struct_types">struct type</a>,
the non-blank method and field names must be distinct.
</p>

<p>
Given defined type <code>Point</code> the declarations
</p>

<pre>
func (p *Point) Length() float64 {
	return math.Sqrt(p.x * p.x + p.y * p.y)
}

func (p *Point) Scale(factor float64) {
	p.x *= factor
	p.y *= factor
}
</pre>

<p>
bind the methods <code>Length</code> and <code>Scale</code>,
with receiver type <code>*Point</code>,
to the base type <code>Point</code>.
</p>

<p>
If the receiver base type is a <a href="#Type_declarations">generic type</a>, the
receiver specification must declare corresponding type parameters for the method
to use. This makes the receiver type parameters available to the method.
Syntactically, this type parameter declaration looks like an
<a href="#Instantiations">instantiation</a> of the receiver base type: the type
arguments must be identifiers denoting the type parameters being declared, one
for each type parameter of the receiver base type.
The type parameter names do not need to match their corresponding parameter names in the
receiver base type definition, and all non-blank parameter names must be unique in the
receiver parameter section and the method signature.
The receiver type parameter constraints are implied by the receiver base type definition:
corresponding type parameters have corresponding constraints.
</p>

<pre>
type Pair[A, B any] struct {
	a A
	b B
}

func (p Pair[A, B]) Swap() Pair[B, A]  { … }  // receiver declares A, B
func (p Pair[First, _]) First() First  { … }  // receiver declares First, corresponds to A in Pair
</pre>

<h2 id="Expressions">Expressions</h2>

<p>
An expression specifies the computation of a value by applying
operators and functions to operands.
</p>

<h3 id="Operands">Operands</h3>

<p>
Operands denote the elementary values in an expression. An operand may be a
literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
non-<a href="#Blank_identifier">blank</a> identifier denoting a
<a href="#Constant_declarations">constant</a>,
<a href="#Variable_declarations">variable</a>, or
<a href="#Function_declarations">function</a>,
or a parenthesized expression.
</p>

<pre class="ebnf">
Operand     = Literal | OperandName [ TypeArgs ] | "(" Expression ")" .
Literal     = BasicLit | CompositeLit | FunctionLit .
BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
OperandName = identifier | QualifiedIdent .
</pre>

<p>
An operand name denoting a <a href="#Function_declarations">generic function</a>
may be followed by a list of <a href="#Instantiations">type arguments</a>; the
resulting operand is an <a href="#Instantiations">instantiated</a> function.
</p>

<p>
The <a href="#Blank_identifier">blank identifier</a> may appear as an
operand only on the left-hand side of an <a href="#Assignment_statements">assignment statement</a>.
</p>

<p>
Implementation restriction: A compiler need not report an error if an operand's
type is a <a href="#Type_parameter_declarations">type parameter</a> with an empty
<a href="#Interface_types">type set</a>. Functions with such type parameters
cannot be <a href="#Instantiations">instantiated</a>; any attempt will lead
to an error at the instantiation site.
</p>

<h3 id="Qualified_identifiers">Qualified identifiers</h3>

<p>
A <i>qualified identifier</i> is an identifier qualified with a package name prefix.
Both the package name and the identifier must not be
<a href="#Blank_identifier">blank</a>.
</p>

<pre class="ebnf">
QualifiedIdent = PackageName "." identifier .
</pre>

<p>
A qualified identifier accesses an identifier in a different package, which
must be <a href="#Import_declarations">imported</a>.
The identifier must be <a href="#Exported_identifiers">exported</a> and
declared in the <a href="#Blocks">package block</a> of that package.
</p>

<pre>
math.Sin // denotes the Sin function in package math
</pre>

<h3 id="Composite_literals">Composite literals</h3>

<p>
Composite literals construct new composite values each time they are evaluated.
They consist of the type of the literal followed by a brace-bound list of elements.
Each element may optionally be preceded by a corresponding key.
</p>

<pre class="ebnf">
CompositeLit  = LiteralType LiteralValue .
LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
                SliceType | MapType | TypeName [ TypeArgs ] .
LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
ElementList   = KeyedElement { "," KeyedElement } .
KeyedElement  = [ Key ":" ] Element .
Key           = FieldName | Expression | LiteralValue .
FieldName     = identifier .
Element       = Expression | LiteralValue .
</pre>

<p>
The LiteralType's <a href="#Core_types">core type</a> <code>T</code>
must be a struct, array, slice, or map type
(the syntax enforces this constraint except when the type is given
as a TypeName).
The types of the elements and keys must be <a href="#Assignability">assignable</a>
to the respective field, element, and key types of type <code>T</code>;
there is no additional conversion.
The key is interpreted as a field name for struct literals,
an index for array and slice literals, and a key for map literals.
For map literals, all elements must have a key. It is an error
to specify multiple elements with the same field name or
constant key value. For non-constant map keys, see the section on
<a href="#Order_of_evaluation">evaluation order</a>.
</p>

<p>
For struct literals the following rules apply:
</p>
<ul>
	<li>A key must be a field name declared in the struct type.
	</li>
	<li>An element list that does not contain any keys must
	    list an element for each struct field in the
	    order in which the fields are declared.
	</li>
	<li>If any element has a key, every element must have a key.
	</li>
	<li>An element list that contains keys does not need to
	    have an element for each struct field. Omitted fields
	    get the zero value for that field.
	</li>
	<li>A literal may omit the element list; such a literal evaluates
	    to the zero value for its type.
	</li>
	<li>It is an error to specify an element for a non-exported
	    field of a struct belonging to a different package.
	</li>
</ul>

<p>
Given the declarations
</p>
<pre>
type Point3D struct { x, y, z float64 }
type Line struct { p, q Point3D }
</pre>

<p>
one may write
</p>

<pre>
origin := Point3D{}                            // zero value for Point3D
line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
</pre>

<p>
For array and slice literals the following rules apply:
</p>
<ul>
	<li>Each element has an associated integer index marking
	    its position in the array.
	</li>
	<li>An element with a key uses the key as its index. The
	    key must be a non-negative constant
	    <a href="#Representability">representable</a> by
	    a value of type <code>int</code>; and if it is typed
	    it must be of <a href="#Numeric_types">integer type</a>.
	</li>
	<li>An element without a key uses the previous element's index plus one.
	    If the first element has no key, its index is zero.
	</li>
</ul>

<p>
<a href="#Address_operators">Taking the address</a> of a composite literal
generates a pointer to a unique <a href="#Variables">variable</a> initialized
with the literal's value.
</p>

<pre>
var pointer *Point3D = &amp;Point3D{y: 1000}
</pre>

<p>
Note that the <a href="#The_zero_value">zero value</a> for a slice or map
type is not the same as an initialized but empty value of the same type.
Consequently, taking the address of an empty slice or map composite literal
does not have the same effect as allocating a new slice or map value with
<a href="#Allocation">new</a>.
</p>

<pre>
p1 := &amp;[]int{}    // p1 points to an initialized, empty slice with value []int{} and length 0
p2 := new([]int)  // p2 points to an uninitialized slice with value nil and length 0
</pre>

<p>
The length of an array literal is the length specified in the literal type.
If fewer elements than the length are provided in the literal, the missing
elements are set to the zero value for the array element type.
It is an error to provide elements with index values outside the index range
of the array. The notation <code>...</code> specifies an array length equal
to the maximum element index plus one.
</p>

<pre>
buffer := [10]string{}             // len(buffer) == 10
intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
days := [...]string{"Sat", "Sun"}  // len(days) == 2
</pre>

<p>
A slice literal describes the entire underlying array literal.
Thus the length and capacity of a slice literal are the maximum
element index plus one. A slice literal has the form
</p>

<pre>
[]T{x1, x2, … xn}
</pre>

<p>
and is shorthand for a slice operation applied to an array:
</p>

<pre>
tmp := [n]T{x1, x2, … xn}
tmp[0 : n]
</pre>

<p>
Within a composite literal of array, slice, or map type <code>T</code>,
elements or map keys that are themselves composite literals may elide the respective
literal type if it is identical to the element or key type of <code>T</code>.
Similarly, elements or keys that are addresses of composite literals may elide
the <code>&amp;T</code> when the element or key type is <code>*T</code>.
</p>

<pre>
[...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
[][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
[][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}

type PPoint *Point
[2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
[2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
</pre>

<p>
A parsing ambiguity arises when a composite literal using the
TypeName form of the LiteralType appears as an operand between the
<a href="#Keywords">keyword</a> and the opening brace of the block
of an "if", "for", or "switch" statement, and the composite literal
is not enclosed in parentheses, square brackets, or curly braces.
In this rare case, the opening brace of the literal is erroneously parsed
as the one introducing the block of statements. To resolve the ambiguity,
the composite literal must appear within parentheses.
</p>

<pre>
if x == (T{a,b,c}[i]) { … }
if (x == T{a,b,c}[i]) { … }
</pre>

<p>
Examples of valid array, slice, and map literals:
</p>

<pre>
// list of prime numbers
primes := []int{2, 3, 5, 7, 9, 2147483647}

// vowels[ch] is true if ch is a vowel
vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}

// the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}

// frequencies in Hz for equal-tempered scale (A4 = 440Hz)
noteFrequency := map[string]float32{
	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
	"G0": 24.50, "A0": 27.50, "B0": 30.87,
}
</pre>


<h3 id="Function_literals">Function literals</h3>

<p>
A function literal represents an anonymous <a href="#Function_declarations">function</a>.
Function literals cannot declare type parameters.
</p>

<pre class="ebnf">
FunctionLit = "func" Signature FunctionBody .
</pre>

<pre>
func(a, b int, z float64) bool { return a*b &lt; int(z) }
</pre>

<p>
A function literal can be assigned to a variable or invoked directly.
</p>

<pre>
f := func(x, y int) int { return x + y }
func(ch chan int) { ch &lt;- ACK }(replyChan)
</pre>

<p>
Function literals are <i>closures</i>: they may refer to variables
defined in a surrounding function. Those variables are then shared between
the surrounding function and the function literal, and they survive as long
as they are accessible.
</p>


<h3 id="Primary_expressions">Primary expressions</h3>

<p>
Primary expressions are the operands for unary and binary expressions.
</p>

<pre class="ebnf">
PrimaryExpr =
	Operand |
	Conversion |
	MethodExpr |
	PrimaryExpr Selector |
	PrimaryExpr Index |
	PrimaryExpr Slice |
	PrimaryExpr TypeAssertion |
	PrimaryExpr Arguments .

Selector       = "." identifier .
Index          = "[" Expression [ "," ] "]" .
Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
                 "[" [ Expression ] ":" Expression ":" Expression "]" .
TypeAssertion  = "." "(" Type ")" .
Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
</pre>


<pre>
x
2
(s + ".txt")
f(3.1415, true)
Point{1, 2}
m["foo"]
s[i : j + 1]
obj.color
f.p[i].x()
</pre>


<h3 id="Selectors">Selectors</h3>

<p>
For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
that is not a <a href="#Package_clause">package name</a>, the
<i>selector expression</i>
</p>

<pre>
x.f
</pre>

<p>
denotes the field or method <code>f</code> of the value <code>x</code>
(or sometimes <code>*x</code>; see below).
The identifier <code>f</code> is called the (field or method) <i>selector</i>;
it must not be the <a href="#Blank_identifier">blank identifier</a>.
The type of the selector expression is the type of <code>f</code>.
If <code>x</code> is a package name, see the section on
<a href="#Qualified_identifiers">qualified identifiers</a>.
</p>

<p>
A selector <code>f</code> may denote a field or method <code>f</code> of
a type <code>T</code>, or it may refer
to a field or method <code>f</code> of a nested
<a href="#Struct_types">embedded field</a> of <code>T</code>.
The number of embedded fields traversed
to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
The depth of a field or method <code>f</code>
declared in <code>T</code> is zero.
The depth of a field or method <code>f</code> declared in
an embedded field <code>A</code> in <code>T</code> is the
depth of <code>f</code> in <code>A</code> plus one.
</p>

<p>
The following rules apply to selectors:
</p>

<ol>
<li>
For a value <code>x</code> of type <code>T</code> or <code>*T</code>
where <code>T</code> is not a pointer or interface type,
<code>x.f</code> denotes the field or method at the shallowest depth
in <code>T</code> where there is such an <code>f</code>.
If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
with shallowest depth, the selector expression is illegal.
</li>

<li>
For a value <code>x</code> of type <code>I</code> where <code>I</code>
is an interface type, <code>x.f</code> denotes the actual method with name
<code>f</code> of the dynamic value of <code>x</code>.
If there is no method with name <code>f</code> in the
<a href="#Method_sets">method set</a> of <code>I</code>, the selector
expression is illegal.
</li>

<li>
As an exception, if the type of <code>x</code> is a <a href="#Type_definitions">defined</a>
pointer type and <code>(*x).f</code> is a valid selector expression denoting a field
(but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
</li>

<li>
In all other cases, <code>x.f</code> is illegal.
</li>

<li>
If <code>x</code> is of pointer type and has the value
<code>nil</code> and <code>x.f</code> denotes a struct field,
assigning to or evaluating <code>x.f</code>
causes a <a href="#Run_time_panics">run-time panic</a>.
</li>

<li>
If <code>x</code> is of interface type and has the value
<code>nil</code>, <a href="#Calls">calling</a> or
<a href="#Method_values">evaluating</a> the method <code>x.f</code>
causes a <a href="#Run_time_panics">run-time panic</a>.
</li>
</ol>

<p>
For example, given the declarations:
</p>

<pre>
type T0 struct {
	x int
}

func (*T0) M0()

type T1 struct {
	y int
}

func (T1) M1()

type T2 struct {
	z int
	T1
	*T0
}

func (*T2) M2()

type Q *T2

var t T2     // with t.T0 != nil
var p *T2    // with p != nil and (*p).T0 != nil
var q Q = p
</pre>

<p>
one may write:
</p>

<pre>
t.z          // t.z
t.y          // t.T1.y
t.x          // (*t.T0).x

p.z          // (*p).z
p.y          // (*p).T1.y
p.x          // (*(*p).T0).x

q.x          // (*(*q).T0).x        (*q).x is a valid field selector

p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
p.M2()       // p.M2()              M2 expects *T2 receiver
t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
</pre>

<p>
but the following is invalid:
</p>

<pre>
q.M0()       // (*q).M0 is valid but not a field selector
</pre>


<h3 id="Method_expressions">Method expressions</h3>

<p>
If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
<code>T.M</code> is a function that is callable as a regular function
with the same arguments as <code>M</code> prefixed by an additional
argument that is the receiver of the method.
</p>

<pre class="ebnf">
MethodExpr    = ReceiverType "." MethodName .
ReceiverType  = Type .
</pre>

<p>
Consider a struct type <code>T</code> with two methods,
<code>Mv</code>, whose receiver is of type <code>T</code>, and
<code>Mp</code>, whose receiver is of type <code>*T</code>.
</p>

<pre>
type T struct {
	a int
}
func (tv  T) Mv(a int) int         { return 0 }  // value receiver
func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver

var t T
</pre>

<p>
The expression
</p>

<pre>
T.Mv
</pre>

<p>
yields a function equivalent to <code>Mv</code> but
with an explicit receiver as its first argument; it has signature
</p>

<pre>
func(tv T, a int) int
</pre>

<p>
That function may be called normally with an explicit receiver, so
these five invocations are equivalent:
</p>

<pre>
t.Mv(7)
T.Mv(t, 7)
(T).Mv(t, 7)
f1 := T.Mv; f1(t, 7)
f2 := (T).Mv; f2(t, 7)
</pre>

<p>
Similarly, the expression
</p>

<pre>
(*T).Mp
</pre>

<p>
yields a function value representing <code>Mp</code> with signature
</p>

<pre>
func(tp *T, f float32) float32
</pre>

<p>
For a method with a value receiver, one can derive a function
with an explicit pointer receiver, so
</p>

<pre>
(*T).Mv
</pre>

<p>
yields a function value representing <code>Mv</code> with signature
</p>

<pre>
func(tv *T, a int) int
</pre>

<p>
Such a function indirects through the receiver to create a value
to pass as the receiver to the underlying method;
the method does not overwrite the value whose address is passed in
the function call.
</p>

<p>
The final case, a value-receiver function for a pointer-receiver method,
is illegal because pointer-receiver methods are not in the method set
of the value type.
</p>

<p>
Function values derived from methods are called with function call syntax;
the receiver is provided as the first argument to the call.
That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
as <code>f(t, 7)</code> not <code>t.f(7)</code>.
To construct a function that binds the receiver, use a
<a href="#Function_literals">function literal</a> or
<a href="#Method_values">method value</a>.
</p>

<p>
It is legal to derive a function value from a method of an interface type.
The resulting function takes an explicit receiver of that interface type.
</p>

<h3 id="Method_values">Method values</h3>

<p>
If the expression <code>x</code> has static type <code>T</code> and
<code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
<code>x.M</code> is called a <i>method value</i>.
The method value <code>x.M</code> is a function value that is callable
with the same arguments as a method call of <code>x.M</code>.
The expression <code>x</code> is evaluated and saved during the evaluation of the
method value; the saved copy is then used as the receiver in any calls,
which may be executed later.
</p>

<pre>
type S struct { *T }
type T int
func (t T) M() { print(t) }

t := new(T)
s := S{T: t}
f := t.M                    // receiver *t is evaluated and stored in f
g := s.M                    // receiver *(s.T) is evaluated and stored in g
*t = 42                     // does not affect stored receivers in f and g
</pre>

<p>
The type <code>T</code> may be an interface or non-interface type.
</p>

<p>
As in the discussion of <a href="#Method_expressions">method expressions</a> above,
consider a struct type <code>T</code> with two methods,
<code>Mv</code>, whose receiver is of type <code>T</code>, and
<code>Mp</code>, whose receiver is of type <code>*T</code>.
</p>

<pre>
type T struct {
	a int
}
func (tv  T) Mv(a int) int         { return 0 }  // value receiver
func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver

var t T
var pt *T
func makeT() T
</pre>

<p>
The expression
</p>

<pre>
t.Mv
</pre>

<p>
yields a function value of type
</p>

<pre>
func(int) int
</pre>

<p>
These two invocations are equivalent:
</p>

<pre>
t.Mv(7)
f := t.Mv; f(7)
</pre>

<p>
Similarly, the expression
</p>

<pre>
pt.Mp
</pre>

<p>
yields a function value of type
</p>

<pre>
func(float32) float32
</pre>

<p>
As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
</p>

<p>
As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
</p>

<pre>
f := t.Mv; f(7)   // like t.Mv(7)
f := pt.Mp; f(7)  // like pt.Mp(7)
f := pt.Mv; f(7)  // like (*pt).Mv(7)
f := t.Mp; f(7)   // like (&amp;t).Mp(7)
f := makeT().Mp   // invalid: result of makeT() is not addressable
</pre>

<p>
Although the examples above use non-interface types, it is also legal to create a method value
from a value of interface type.
</p>

<pre>
var i interface { M(int) } = myVal
f := i.M; f(7)  // like i.M(7)
</pre>


<h3 id="Index_expressions">Index expressions</h3>

<p>
A primary expression of the form
</p>

<pre>
a[x]
</pre>

<p>
denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
The following rules apply:
</p>

<p>
If <code>a</code> is neither a map nor a type parameter:
</p>
<ul>
	<li>the index <code>x</code> must be an untyped constant or its
	    <a href="#Core_types">core type</a> must be an <a href="#Numeric_types">integer</a></li>
	<li>a constant index must be non-negative and
	    <a href="#Representability">representable</a> by a value of type <code>int</code></li>
	<li>a constant index that is untyped is given type <code>int</code></li>
	<li>the index <code>x</code> is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
	    otherwise it is <i>out of range</i></li>
</ul>

<p>
For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
</p>
<ul>
	<li>a <a href="#Constants">constant</a> index must be in range</li>
	<li>if <code>x</code> is out of range at run time,
	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
	    <code>a[x]</code> is the element type of <code>A</code></li>
</ul>

<p>
For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
</p>
<ul>
	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
</ul>

<p>
For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
</p>
<ul>
	<li>if <code>x</code> is out of range at run time,
	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
	    <code>a[x]</code> is the element type of <code>S</code></li>
</ul>

<p>
For <code>a</code> of <a href="#String_types">string type</a>:
</p>
<ul>
	<li>a <a href="#Constants">constant</a> index must be in range
	    if the string <code>a</code> is also constant</li>
	<li>if <code>x</code> is out of range at run time,
	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
	    <code>a[x]</code> is <code>byte</code></li>
	<li><code>a[x]</code> may not be assigned to</li>
</ul>

<p>
For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
</p>
<ul>
	<li><code>x</code>'s type must be
	    <a href="#Assignability">assignable</a>
	    to the key type of <code>M</code></li>
	<li>if the map contains an entry with key <code>x</code>,
	    <code>a[x]</code> is the map element with key <code>x</code>
	    and the type of <code>a[x]</code> is the element type of <code>M</code></li>
	<li>if the map is <code>nil</code> or does not contain such an entry,
	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
	    for the element type of <code>M</code></li>
</ul>

<p>
For <code>a</code> of <a href="#Type_parameter_declarations">type parameter type</a> <code>P</code>:
</p>
<ul>
	<li>The index expression <code>a[x]</code> must be valid for values
	    of all types in <code>P</code>'s type set.</li>
	<li>The element types of all types in <code>P</code>'s type set must be identical.
	    In this context, the element type of a string type is <code>byte</code>.</li>
	<li>If there is a map type in the type set of <code>P</code>,
	    all types in that type set must be map types, and the respective key types
	    must be all identical.</li>
	<li><code>a[x]</code> is the array, slice, or string element at index <code>x</code>,
	    or the map element with key <code>x</code> of the type argument
	    that <code>P</code> is instantiated with, and the type of <code>a[x]</code> is
	    the type of the (identical) element types.</li>
	<li><code>a[x]</code> may not be assigned to if <code>P</code>'s type set
	    includes string types.
</ul>

<p>
Otherwise <code>a[x]</code> is illegal.
</p>

<p>
An index expression on a map <code>a</code> of type <code>map[K]V</code>
used in an <a href="#Assignment_statements">assignment statement</a> or initialization of the special form
</p>

<pre>
v, ok = a[x]
v, ok := a[x]
var v, ok = a[x]
</pre>

<p>
yields an additional untyped boolean value. The value of <code>ok</code> is
<code>true</code> if the key <code>x</code> is present in the map, and
<code>false</code> otherwise.
</p>

<p>
Assigning to an element of a <code>nil</code> map causes a
<a href="#Run_time_panics">run-time panic</a>.
</p>


<h3 id="Slice_expressions">Slice expressions</h3>

<p>
Slice expressions construct a substring or slice from a string, array, pointer
to array, or slice. There are two variants: a simple form that specifies a low
and high bound, and a full form that also specifies a bound on the capacity.
</p>

<h4>Simple slice expressions</h4>

<p>
The primary expression
</p>

<pre>
a[low : high]
</pre>

<p>
constructs a substring or slice. The <a href="#Core_types">core type</a> of
<code>a</code> must be a string, array, pointer to array, slice, or a
<a href="#Core_types"><code>bytestring</code></a>.
The <i>indices</i> <code>low</code> and
<code>high</code> select which elements of operand <code>a</code> appear
in the result. The result has indices starting at 0 and length equal to
<code>high</code>&nbsp;-&nbsp;<code>low</code>.
After slicing the array <code>a</code>
</p>

<pre>
a := [5]int{1, 2, 3, 4, 5}
s := a[1:4]
</pre>

<p>
the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
</p>

<pre>
s[0] == 2
s[1] == 3
s[2] == 4
</pre>

<p>
For convenience, any of the indices may be omitted. A missing <code>low</code>
index defaults to zero; a missing <code>high</code> index defaults to the length of the
sliced operand:
</p>

<pre>
a[2:]  // same as a[2 : len(a)]
a[:3]  // same as a[0 : 3]
a[:]   // same as a[0 : len(a)]
</pre>

<p>
If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
<code>(*a)[low : high]</code>.
</p>

<p>
For arrays or strings, the indices are <i>in range</i> if
<code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
otherwise they are <i>out of range</i>.
For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
A <a href="#Constants">constant</a> index must be non-negative and
<a href="#Representability">representable</a> by a value of type
<code>int</code>; for arrays or constant strings, constant indices must also be in range.
If both indices are constant, they must satisfy <code>low &lt;= high</code>.
If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
</p>

<p>
Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
the result of the slice operation is a non-constant value of the same type as the operand.
For untyped string operands the result is a non-constant value of type <code>string</code>.
If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
and the result of the slice operation is a slice with the same element type as the array.
</p>

<p>
If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
is a <code>nil</code> slice. Otherwise, if the result is a slice, it shares its underlying
array with the operand.
</p>

<pre>
var a [10]int
s1 := a[3:7]   // underlying array of s1 is array a; &amp;s1[2] == &amp;a[5]
s2 := s1[1:4]  // underlying array of s2 is underlying array of s1 which is array a; &amp;s2[1] == &amp;a[5]
s2[1] = 42     // s2[1] == s1[2] == a[5] == 42; they all refer to the same underlying array element

var s []int
s3 := s[:0]    // s3 == nil
</pre>


<h4>Full slice expressions</h4>

<p>
The primary expression
</p>

<pre>
a[low : high : max]
</pre>

<p>
constructs a slice of the same type, and with the same length and elements as the simple slice
expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
The <a href="#Core_types">core type</a> of <code>a</code> must be an array, pointer to array,
or slice (but not a string).
After slicing the array <code>a</code>
</p>

<pre>
a := [5]int{1, 2, 3, 4, 5}
t := a[1:3:5]
</pre>

<p>
the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
</p>

<pre>
t[0] == 2
t[1] == 3
</pre>

<p>
As for simple slice expressions, if <code>a</code> is a pointer to an array,
<code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
</p>

<p>
The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
otherwise they are <i>out of range</i>.
A <a href="#Constants">constant</a> index must be non-negative and
<a href="#Representability">representable</a> by a value of type
<code>int</code>; for arrays, constant indices must also be in range.
If multiple indices are constant, the constants that are present must be in range relative to each
other.
If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
</p>

<h3 id="Type_assertions">Type assertions</h3>

<p>
For an expression <code>x</code> of <a href="#Interface_types">interface type</a>,
but not a <a href="#Type_parameter_declarations">type parameter</a>, and a type <code>T</code>,
the primary expression
</p>

<pre>
x.(T)
</pre>

<p>
asserts that <code>x</code> is not <code>nil</code>
and that the value stored in <code>x</code> is of type <code>T</code>.
The notation <code>x.(T)</code> is called a <i>type assertion</i>.
</p>
<p>
More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
to the type <code>T</code>.
In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
otherwise the type assertion is invalid since it is not possible for <code>x</code>
to store a value of type <code>T</code>.
If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
of <code>x</code> <a href="#Implementing_an_interface">implements</a> the interface <code>T</code>.
</p>
<p>
If the type assertion holds, the value of the expression is the value
stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
a <a href="#Run_time_panics">run-time panic</a> occurs.
In other words, even though the dynamic type of <code>x</code>
is known only at run time, the type of <code>x.(T)</code> is
known to be <code>T</code> in a correct program.
</p>

<pre>
var x interface{} = 7          // x has dynamic type int and value 7
i := x.(int)                   // i has type int and value 7

type I interface { m() }

func f(y I) {
	s := y.(string)        // illegal: string does not implement I (missing method m)
	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
	…
}
</pre>

<p>
A type assertion used in an <a href="#Assignment_statements">assignment statement</a> or initialization of the special form
</p>

<pre>
v, ok = x.(T)
v, ok := x.(T)
var v, ok = x.(T)
var v, ok interface{} = x.(T) // dynamic types of v and ok are T and bool
</pre>

<p>
yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
No <a href="#Run_time_panics">run-time panic</a> occurs in this case.
</p>


<h3 id="Calls">Calls</h3>

<p>
Given an expression <code>f</code> with a <a href="#Core_types">core type</a>
<code>F</code> of <a href="#Function_types">function type</a>,
</p>

<pre>
f(a1, a2, … an)
</pre>

<p>
calls <code>f</code> with arguments <code>a1, a2, … an</code>.
Except for one special case, arguments must be single-valued expressions
<a href="#Assignability">assignable</a> to the parameter types of
<code>F</code> and are evaluated before the function is called.
The type of the expression is the result type
of <code>F</code>.
A method invocation is similar but the method itself
is specified as a selector upon a value of the receiver type for
the method.
</p>

<pre>
math.Atan2(x, y)  // function call
var pt *Point
pt.Scale(3.5)     // method call with receiver pt
</pre>

<p>
If <code>f</code> denotes a generic function, it must be
<a href="#Instantiations">instantiated</a> before it can be called
or used as a function value.
</p>

<p>
In a function call, the function value and arguments are evaluated in
<a href="#Order_of_evaluation">the usual order</a>.
After they are evaluated, the parameters of the call are passed by value to the function
and the called function begins execution.
The return parameters of the function are passed by value
back to the caller when the function returns.
</p>

<p>
Calling a <code>nil</code> function value
causes a <a href="#Run_time_panics">run-time panic</a>.
</p>

<p>
As a special case, if the return values of a function or method
<code>g</code> are equal in number and individually
assignable to the parameters of another function or method
<code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
will invoke <code>f</code> after binding the return values of
<code>g</code> to the parameters of <code>f</code> in order.  The call
of <code>f</code> must contain no parameters other than the call of <code>g</code>,
and <code>g</code> must have at least one return value.
If <code>f</code> has a final <code>...</code> parameter, it is
assigned the return values of <code>g</code> that remain after
assignment of regular parameters.
</p>

<pre>
func Split(s string, pos int) (string, string) {
	return s[0:pos], s[pos:]
}

func Join(s, t string) string {
	return s + t
}

if Join(Split(value, len(value)/2)) != value {
	log.Panic("test fails")
}
</pre>

<p>
A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
of (the type of) <code>x</code> contains <code>m</code> and the
argument list can be assigned to the parameter list of <code>m</code>.
If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
set contains <code>m</code>, <code>x.m()</code> is shorthand
for <code>(&amp;x).m()</code>:
</p>

<pre>
var p Point
p.Scale(3.5)
</pre>

<p>
There is no distinct method type and there are no method literals.
</p>

<h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>

<p>
If <code>f</code> is <a href="#Function_types">variadic</a> with a final
parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
the type of <code>p</code> is equivalent to type <code>[]T</code>.
If <code>f</code> is invoked with no actual arguments for <code>p</code>,
the value passed to <code>p</code> is <code>nil</code>.
Otherwise, the value passed is a new slice
of type <code>[]T</code> with a new underlying array whose successive elements
are the actual arguments, which all must be <a href="#Assignability">assignable</a>
to <code>T</code>. The length and capacity of the slice is therefore
the number of arguments bound to <code>p</code> and may differ for each
call site.
</p>

<p>
Given the function and calls
</p>
<pre>
func Greeting(prefix string, who ...string)
Greeting("nobody")
Greeting("hello:", "Joe", "Anna", "Eileen")
</pre>

<p>
within <code>Greeting</code>, <code>who</code> will have the value
<code>nil</code> in the first call, and
<code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
</p>

<p>
If the final argument is assignable to a slice type <code>[]T</code> and
is followed by <code>...</code>, it is passed unchanged as the value
for a <code>...T</code> parameter. In this case no new slice is created.
</p>

<p>
Given the slice <code>s</code> and call
</p>

<pre>
s := []string{"James", "Jasmine"}
Greeting("goodbye:", s...)
</pre>

<p>
within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
with the same underlying array.
</p>

<h3 id="Instantiations">Instantiations</h3>

<p>
A generic function or type is <i>instantiated</i> by substituting <i>type arguments</i>
for the type parameters.
Instantiation proceeds in two steps:
</p>

<ol>
<li>
Each type argument is substituted for its corresponding type parameter in the generic
declaration.
This substitution happens across the entire function or type declaration,
including the type parameter list itself and any types in that list.
</li>

<li>
After substitution, each type argument must <a href="#Satisfying_a_type_constraint">satisfy</a>
the <a href="#Type_parameter_declarations">constraint</a> (instantiated, if necessary)
of the corresponding type parameter. Otherwise instantiation fails.
</li>
</ol>

<p>
Instantiating a type results in a new non-generic <a href="#Types">named type</a>;
instantiating a function produces a new non-generic function.
</p>

<pre>
type parameter list    type arguments    after substitution

[P any]                int               int satisfies any
[S ~[]E, E any]        []int, int        []int satisfies ~[]int, int satisfies any
[P io.Writer]          string            illegal: string doesn't satisfy io.Writer
[P comparable]         any               any satisfies (but does not implement) comparable
</pre>

<p>
When using a generic function, type arguments may be provided explicitly,
or they may be partially or completely <a href="#Type_inference">inferred</a>
from the context in which the function is used.
Provided that they can be inferred, type argument lists may be omitted entirely if the function is:
</p>

<ul>
<li>
	<a href="#Calls">called</a> with ordinary arguments,
</li>
<li>
	<a href="#Assignment_statements">assigned</a> to a variable with a known type
</li>
<li>
	<a href="#Calls">passed as an argument</a> to another function, or
</li>
<li>
	<a href="#Return_statements">returned as a result</a>.
</li>
</ul>

<p>
In all other cases, a (possibly partial) type argument list must be present.
If a type argument list is absent or partial, all missing type arguments
must be inferrable from the context in which the function is used.
</p>

<pre>
// sum returns the sum (concatenation, for strings) of its arguments.
func sum[T ~int | ~float64 | ~string](x... T) T { … }

x := sum                       // illegal: the type of x is unknown
intSum := sum[int]             // intSum has type func(x... int) int
a := intSum(2, 3)              // a has value 5 of type int
b := sum[float64](2.0, 3)      // b has value 5.0 of type float64
c := sum(b, -1)                // c has value 4.0 of type float64

type sumFunc func(x... string) string
var f sumFunc = sum            // same as var f sumFunc = sum[string]
f = sum                        // same as f = sum[string]
</pre>

<p>
A partial type argument list cannot be empty; at least the first argument must be present.
The list is a prefix of the full list of type arguments, leaving the remaining arguments
to be inferred. Loosely speaking, type arguments may be omitted from "right to left".
</p>

<pre>
func apply[S ~[]E, E any](s S, f func(E) E) S { … }

f0 := apply[]                  // illegal: type argument list cannot be empty
f1 := apply[[]int]             // type argument for S explicitly provided, type argument for E inferred
f2 := apply[[]string, string]  // both type arguments explicitly provided

var bytes []byte
r := apply(bytes, func(byte) byte { … })  // both type arguments inferred from the function arguments
</pre>

<p>
For a generic type, all type arguments must always be provided explicitly.
</p>

<h3 id="Type_inference">Type inference</h3>

<p>
A use of a generic function may omit some or all type arguments if they can be
<i>inferred</i> from the context within which the function is used, including
the constraints of the function's type parameters.
Type inference succeeds if it can infer the missing type arguments
and <a href="#Instantiations">instantiation</a> succeeds with the
inferred type arguments.
Otherwise, type inference fails and the program is invalid.
</p>

<p>
Type inference uses the type relationships between pairs of types for inference:
For instance, a function argument must be <a href="#Assignability">assignable</a>
to its respective function parameter; this establishes a relationship between the
type of the argument and the type of the parameter.
If either of these two types contains type parameters, type inference looks for the
type arguments to substitute the type parameters with such that the assignability
relationship is satisfied.
Similarly, type inference uses the fact that a type argument must
<a href="#Satisfying_a_type_constraint">satisfy</a> the constraint of its respective
type parameter.
</p>

<p>
Each such pair of matched types corresponds to a <i>type equation</i> containing
one or multiple type parameters, from one or possibly multiple generic functions.
Inferring the missing type arguments means solving the resulting set of type
equations for the respective type parameters.
</p>

<p>
For example, given
</p>

<pre>
// dedup returns a copy of the argument slice with any duplicate entries removed.
func dedup[S ~[]E, E comparable](S) S { … }

type Slice []int
var s Slice
s = dedup(s)   // same as s = dedup[Slice, int](s)
</pre>

<p>
the variable <code>s</code> of type <code>Slice</code> must be assignable to
the function parameter type <code>S</code> for the program to be valid.
To reduce complexity, type inference ignores the directionality of assignments,
so the type relationship between <code>Slice</code> and <code>S</code> can be
expressed via the (symmetric) type equation <code>Slice ≡<sub>A</sub> S</code>
(or <code>S ≡<sub>A</sub> Slice</code> for that matter),
where the <code><sub>A</sub></code> in <code><sub>A</sub></code>
indicates that the LHS and RHS types must match per assignability rules
(see the section on <a href="#Type_unification">type unification</a> for
details).
Similarly, the type parameter <code>S</code> must satisfy its constraint
<code>~[]E</code>. This can be expressed as <code>S ≡<sub>C</sub> ~[]E</code>
where <code>X ≡<sub>C</sub> Y</code> stands for
"<code>X</code> satisfies constraint <code>Y</code>".
These observations lead to a set of two equations
</p>

<pre>
	Slice ≡<sub>A</sub> S      (1)
	S     ≡<sub>C</sub> ~[]E   (2)
</pre>

<p>
which now can be solved for the type parameters <code>S</code> and <code>E</code>.
From (1) a compiler can infer that the type argument for <code>S</code> is <code>Slice</code>.
Similarly, because the underlying type of <code>Slice</code> is <code>[]int</code>
and <code>[]int</code> must match <code>[]E</code> of the constraint,
a compiler can infer that <code>E</code> must be <code>int</code>.
Thus, for these two equations, type inference infers
</p>

<pre>
	S ➞ Slice
	E ➞ int
</pre>

<p>
Given a set of type equations, the type parameters to solve for are
the type parameters of the functions that need to be instantiated
and for which no explicit type arguments is provided.
These type parameters are called <i>bound</i> type parameters.
For instance, in the <code>dedup</code> example above, the type parameters
<code>P</code> and <code>E</code> are bound to <code>dedup</code>.
An argument to a generic function call may be a generic function itself.
The type parameters of that function are included in the set of bound
type parameters.
The types of function arguments may contain type parameters from other
functions (such as a generic function enclosing a function call).
Those type parameters may also appear in type equations but they are
not bound in that context.
Type equations are always solved for the bound type parameters only.
</p>

<p>
Type inference supports calls of generic functions and assignments
of generic functions to (explicitly function-typed) variables.
This includes passing generic functions as arguments to other
(possibly also generic) functions, and returning generic functions
as results.
Type inference operates on a set of equations specific to each of
these cases.
The equations are as follows (type argument lists are omitted for clarity):
</p>

<ul>
<li>
	<p>
	For a function call <code>f(a<sub>0</sub>, a<sub>1</sub>, …)</code> where
	<code>f</code> or a function argument <code>a<sub>i</sub></code> is
	a generic function:
	<br>
	Each pair <code>(a<sub>i</sub>, p<sub>i</sub>)</code> of corresponding
	function arguments and parameters where <code>a<sub>i</sub></code> is not an
	<a href="#Constants">untyped constant</a> yields an equation
	<code>typeof(p<sub>i</sub>) ≡<sub>A</sub> typeof(a<sub>i</sub>)</code>.
	<br>
	If <code>a<sub>i</sub></code> is an untyped constant <code>c<sub>j</sub></code>,
	and <code>typeof(p<sub>i</sub>)</code> is a bound type parameter <code>P<sub>k</sub></code>,
	the pair <code>(c<sub>j</sub>, P<sub>k</sub>)</code> is collected separately from
	the type equations.
	</p>
</li>
<li>
	<p>
	For an assignment <code>v = f</code> of a generic function <code>f</code> to a
	(non-generic) variable <code>v</code> of function type:
	<br>
	<code>typeof(v) ≡<sub>A</sub> typeof(f)</code>.
	</p>
</li>
<li>
	<p>
	For a return statement <code>return …, f, … </code> where <code>f</code> is a
	generic function returned as a result to a (non-generic) result variable
	<code>r</code> of function type:
	<br>
	<code>typeof(r) ≡<sub>A</sub> typeof(f)</code>.
	</p>
</li>
</ul>

<p>
Additionally, each type parameter <code>P<sub>k</sub></code> and corresponding type constraint
<code>C<sub>k</sub></code> yields the type equation
<code>P<sub>k</sub><sub>C</sub> C<sub>k</sub></code>.
</p>

<p>
Type inference gives precedence to type information obtained from typed operands
before considering untyped constants.
Therefore, inference proceeds in two phases:
</p>

<ol>
<li>
	<p>
	The type equations are solved for the bound
	type parameters using <a href="#Type_unification">type unification</a>.
	If unification fails, type inference fails.
	</p>
</li>
<li>
	<p>
	For each bound type parameter <code>P<sub>k</sub></code> for which no type argument
	has been inferred yet and for which one or more pairs
	<code>(c<sub>j</sub>, P<sub>k</sub>)</code> with that same type parameter
	were collected, determine the <a href="#Constant_expressions">constant kind</a>
	of the constants <code>c<sub>j</sub></code> in all those pairs the same way as for
	<a href="#Constant_expressions">constant expressions</a>.
	The type argument for <code>P<sub>k</sub></code> is the
	<a href="#Constants">default type</a> for the determined constant kind.
	If a constant kind cannot be determined due to conflicting constant kinds,
	type inference fails.
	</p>
</li>
</ol>

<p>
If not all type arguments have been found after these two phases, type inference fails.
</p>

<p>
If the two phases are successful, type inference determined a type argument for each
bound type parameter:
</p>

<pre>
	P<sub>k</sub> ➞ A<sub>k</sub>
</pre>

<p>
A type argument <code>A<sub>k</sub></code> may be a composite type,
containing other bound type parameters <code>P<sub>k</sub></code> as element types
(or even be just another bound type parameter).
In a process of repeated simplification, the bound type parameters in each type
argument are substituted with the respective type arguments for those type
parameters until each type argument is free of bound type parameters.
</p>

<p>
If type arguments contain cyclic references to themselves
through bound type parameters, simplification and thus type
inference fails.
Otherwise, type inference succeeds.
</p>

<h4 id="Type_unification">Type unification</h4>

<p>
Type inference solves type equations through <i>type unification</i>.
Type unification recursively compares the LHS and RHS types of an
equation, where either or both types may be or contain bound type parameters,
and looks for type arguments for those type parameters such that the LHS
and RHS match (become identical or assignment-compatible, depending on
context).
To that effect, type inference maintains a map of bound type parameters
to inferred type arguments; this map is consulted and updated during type unification.
Initially, the bound type parameters are known but the map is empty.
During type unification, if a new type argument <code>A</code> is inferred,
the respective mapping <code>P ➞ A</code> from type parameter to argument
is added to the map.
Conversely, when comparing types, a known type argument
(a type argument for which a map entry already exists)
takes the place of its corresponding type parameter.
As type inference progresses, the map is populated more and more
until all equations have been considered, or until unification fails.
Type inference succeeds if no unification step fails and the map has
an entry for each type parameter.
</p>

</pre>
For example, given the type equation with the bound type parameter
<code>P</code>
</p>

<pre>
	[10]struct{ elem P, list []P } ≡<sub>A</sub> [10]struct{ elem string; list []string }
</pre>

<p>
type inference starts with an empty map.
Unification first compares the top-level structure of the LHS and RHS
types.
Both are arrays of the same length; they unify if the element types unify.
Both element types are structs; they unify if they have
the same number of fields with the same names and if the
field types unify.
The type argument for <code>P</code> is not known yet (there is no map entry),
so unifying <code>P</code> with <code>string</code> adds
the mapping <code>P ➞ string</code> to the map.
Unifying the types of the <code>list</code> field requires
unifying <code>[]P</code> and <code>[]string</code> and
thus <code>P</code> and <code>string</code>.
Since the type argument for <code>P</code> is known at this point
(there is a map entry for <code>P</code>), its type argument
<code>string</code> takes the place of <code>P</code>.
And since <code>string</code> is identical to <code>string</code>,
this unification step succeeds as well.
Unification of the LHS and RHS of the equation is now finished.
Type inference succeeds because there is only one type equation,
no unification step failed, and the map is fully populated.
</p>

<p>
Unification uses a combination of <i>exact</i> and <i>loose</i>
unification depending on whether two types have to be
<a href="#Type_identity">identical</a>,
<a href="#Assignability">assignment-compatible</a>, or
only structurally equal.
The respective <a href="#Type_unification_rules">type unification rules</a>
are spelled out in detail in the <a href="#Appendix">Appendix</a>.
</p>

<p>
For an equation of the form <code>X ≡<sub>A</sub> Y</code>,
where <code>X</code> and <code>Y</code> are types involved
in an assignment (including parameter passing and return statements),
the top-level type structures may unify loosely but element types
must unify exactly, matching the rules for assignments.
</p>

<p>
For an equation of the form <code>P ≡<sub>C</sub> C</code>,
where <code>P</code> is a type parameter and <code>C</code>
its corresponding constraint, the unification rules are bit
more complicated:
</p>

<ul>
<li>
	If <code>C</code> has a <a href="#Core_types">core type</a>
	<code>core(C)</code>
	and <code>P</code> has a known type argument <code>A</code>,
	<code>core(C)</code> and <code>A</code> must unify loosely.
	If <code>P</code> does not have a known type argument
	and <code>C</code> contains exactly one type term <code>T</code>
	that is not an underlying (tilde) type, unification adds the
	mapping <code>P ➞ T</code> to the map.
</li>
<li>
	If <code>C</code> does not have a core type
	and <code>P</code> has a known type argument <code>A</code>,
	<code>A</code> must have all methods of <code>C</code>, if any,
	and corresponding method types must unify exactly.
</li>
</ul>

<p>
When solving type equations from type constraints,
solving one equation may infer additional type arguments,
which in turn may enable solving other equations that depend
on those type arguments.
Type inference repeats type unification as long as new type
arguments are inferred.
</p>

<h3 id="Operators">Operators</h3>

<p>
Operators combine operands into expressions.
</p>

<pre class="ebnf">
Expression = UnaryExpr | Expression binary_op Expression .
UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .

binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
add_op     = "+" | "-" | "|" | "^" .
mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .

unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
</pre>

<p>
Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
For operations involving constants only, see the section on
<a href="#Constant_expressions">constant expressions</a>.
</p>

<p>
Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
and the other operand is not, the constant is implicitly <a href="#Conversions">converted</a>
to the type of the other operand.
</p>

<p>
The right operand in a shift expression must have <a href="#Numeric_types">integer type</a>
or be an untyped constant <a href="#Representability">representable</a> by a
value of type <code>uint</code>.
If the left operand of a non-constant shift expression is an untyped constant,
it is first implicitly converted to the type it would assume if the shift expression were
replaced by its left operand alone.
</p>

<pre>
var a [1024]byte
var s uint = 33

// The results of the following examples are given for 64-bit ints.
var i = 1&lt;&lt;s                   // 1 has type int
var j int32 = 1&lt;&lt;s             // 1 has type int32; j == 0
var k = uint64(1&lt;&lt;s)           // 1 has type uint64; k == 1&lt;&lt;33
var m int = 1.0&lt;&lt;s             // 1.0 has type int; m == 1&lt;&lt;33
var n = 1.0&lt;&lt;s == j            // 1.0 has type int32; n == true
var o = 1&lt;&lt;s == 2&lt;&lt;s           // 1 and 2 have type int; o == false
var p = 1&lt;&lt;s == 1&lt;&lt;33          // 1 has type int; p == true
var u = 1.0&lt;&lt;s                 // illegal: 1.0 has type float64, cannot shift
var u1 = 1.0&lt;&lt;s != 0           // illegal: 1.0 has type float64, cannot shift
var u2 = 1&lt;&lt;s != 1.0           // illegal: 1 has type float64, cannot shift
var v1 float32 = 1&lt;&lt;s          // illegal: 1 has type float32, cannot shift
var v2 = string(1&lt;&lt;s)          // illegal: 1 is converted to a string, cannot shift
var w int64 = 1.0&lt;&lt;33          // 1.0&lt;&lt;33 is a constant shift expression; w == 1&lt;&lt;33
var x = a[1.0&lt;&lt;s]              // panics: 1.0 has type int, but 1&lt;&lt;33 overflows array bounds
var b = make([]byte, 1.0&lt;&lt;s)   // 1.0 has type int; len(b) == 1&lt;&lt;33

// The results of the following examples are given for 32-bit ints,
// which means the shifts will overflow.
var mm int = 1.0&lt;&lt;s            // 1.0 has type int; mm == 0
var oo = 1&lt;&lt;s == 2&lt;&lt;s          // 1 and 2 have type int; oo == true
var pp = 1&lt;&lt;s == 1&lt;&lt;33         // illegal: 1 has type int, but 1&lt;&lt;33 overflows int
var xx = a[1.0&lt;&lt;s]             // 1.0 has type int; xx == a[0]
var bb = make([]byte, 1.0&lt;&lt;s)  // 1.0 has type int; len(bb) == 0
</pre>

<h4 id="Operator_precedence">Operator precedence</h4>
<p>
Unary operators have the highest precedence.
As the  <code>++</code> and <code>--</code> operators form
statements, not expressions, they fall
outside the operator hierarchy.
As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
<p>
There are five precedence levels for binary operators.
Multiplication operators bind strongest, followed by addition
operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
and finally <code>||</code> (logical OR):
</p>

<pre class="grammar">
Precedence    Operator
    5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
    4             +  -  |  ^
    3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
    2             &amp;&amp;
    1             ||
</pre>

<p>
Binary operators of the same precedence associate from left to right.
For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
</p>

<pre>
+x
23 + 3*x[i]
x &lt;= f()
^a &gt;&gt; b
f() || g()
x == y+1 &amp;&amp; &lt;-chanInt &gt; 0
</pre>


<h3 id="Arithmetic_operators">Arithmetic operators</h3>
<p>
Arithmetic operators apply to numeric values and yield a result of the same
type as the first operand. The four standard arithmetic operators (<code>+</code>,
<code>-</code>, <code>*</code>, <code>/</code>) apply to
<a href="#Numeric_types">integer</a>, <a href="#Numeric_types">floating-point</a>, and
<a href="#Numeric_types">complex</a> types; <code>+</code> also applies to <a href="#String_types">strings</a>.
The bitwise logical and shift operators apply to integers only.
</p>

<pre class="grammar">
+    sum                    integers, floats, complex values, strings
-    difference             integers, floats, complex values
*    product                integers, floats, complex values
/    quotient               integers, floats, complex values
%    remainder              integers

&amp;    bitwise AND            integers
|    bitwise OR             integers
^    bitwise XOR            integers
&amp;^   bit clear (AND NOT)    integers

&lt;&lt;   left shift             integer &lt;&lt; integer &gt;= 0
&gt;&gt;   right shift            integer &gt;&gt; integer &gt;= 0
</pre>

<p>
If the operand type is a <a href="#Type_parameter_declarations">type parameter</a>,
the operator must apply to each type in that type set.
The operands are represented as values of the type argument that the type parameter
is <a href="#Instantiations">instantiated</a> with, and the operation is computed
with the precision of that type argument. For example, given the function:
</p>

<pre>
func dotProduct[F ~float32|~float64](v1, v2 []F) F {
	var s F
	for i, x := range v1 {
		y := v2[i]
		s += x * y
	}
	return s
}
</pre>

<p>
the product <code>x * y</code> and the addition <code>s += x * y</code>
are computed with <code>float32</code> or <code>float64</code> precision,
respectively, depending on the type argument for <code>F</code>.
</p>

<h4 id="Integer_operators">Integer operators</h4>

<p>
For two integer values <code>x</code> and <code>y</code>, the integer quotient
<code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
relationships:
</p>

<pre>
x = q*y + r  and  |r| &lt; |y|
</pre>

<p>
with <code>x / y</code> truncated towards zero
(<a href="https://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
</p>

<pre>
 x     y     x / y     x % y
 5     3       1         2
-5     3      -1        -2
 5    -3      -1         2
-5    -3       1        -2
</pre>

<p>
The one exception to this rule is that if the dividend <code>x</code> is
the most negative value for the int type of <code>x</code>, the quotient
<code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>)
due to two's-complement <a href="#Integer_overflow">integer overflow</a>:
</p>

<pre>
                         x, q
int8                     -128
int16                  -32768
int32             -2147483648
int64    -9223372036854775808
</pre>

<p>
If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
If the dividend is non-negative and the divisor is a constant power of 2,
the division may be replaced by a right shift, and computing the remainder may
be replaced by a bitwise AND operation:
</p>

<pre>
 x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
 11      2         3         2          3
-11     -2        -3        -3          1
</pre>

<p>
The shift operators shift the left operand by the shift count specified by the
right operand, which must be non-negative. If the shift count is negative at run time,
a <a href="#Run_time_panics">run-time panic</a> occurs.
The shift operators implement arithmetic shifts if the left operand is a signed
integer and logical shifts if it is an unsigned integer.
There is no upper limit on the shift count. Shifts behave
as if the left operand is shifted <code>n</code> times by 1 for a shift
count of <code>n</code>.
As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
and <code>x &gt;&gt; 1</code> is the same as
<code>x/2</code> but truncated towards negative infinity.
</p>

<p>
For integer operands, the unary operators
<code>+</code>, <code>-</code>, and <code>^</code> are defined as
follows:
</p>

<pre class="grammar">
+x                          is 0 + x
-x    negation              is 0 - x
^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
                                      and  m = -1 for signed x
</pre>


<h4 id="Integer_overflow">Integer overflow</h4>

<p>
For <a href="#Numeric_types">unsigned integer</a> values, the operations <code>+</code>,
<code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
the unsigned integer's type.
Loosely speaking, these unsigned integer operations
discard high bits upon overflow, and programs may rely on "wrap around".
</p>

<p>
For signed integers, the operations <code>+</code>,
<code>-</code>, <code>*</code>, <code>/</code>, and <code>&lt;&lt;</code> may legally
overflow and the resulting value exists and is deterministically defined
by the signed integer representation, the operation, and its operands.
Overflow does not cause a <a href="#Run_time_panics">run-time panic</a>.
A compiler may not optimize code under the assumption that overflow does
not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
</p>

<h4 id="Floating_point_operators">Floating-point operators</h4>

<p>
For floating-point and complex numbers,
<code>+x</code> is the same as <code>x</code>,
while <code>-x</code> is the negation of <code>x</code>.
The result of a floating-point or complex division by zero is not specified beyond the
IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
occurs is implementation-specific.
</p>

<p>
An implementation may combine multiple floating-point operations into a single
fused operation, possibly across statements, and produce a result that differs
from the value obtained by executing and rounding the instructions individually.
An explicit <a href="#Numeric_types">floating-point type</a> <a href="#Conversions">conversion</a> rounds to
the precision of the target type, preventing fusion that would discard that rounding.
</p>

<p>
For instance, some architectures provide a "fused multiply and add" (FMA) instruction
that computes <code>x*y + z</code> without rounding the intermediate result <code>x*y</code>.
These examples show when a Go implementation can use that instruction:
</p>

<pre>
// FMA allowed for computing r, because x*y is not explicitly rounded:
r  = x*y + z
r  = z;   r += x*y
t  = x*y; r = t + z
*p = x*y; r = *p + z
r  = x*y + float64(z)

// FMA disallowed for computing r, because it would omit rounding of x*y:
r  = float64(x*y) + z
r  = z; r += float64(x*y)
t  = float64(x*y); r = t + z
</pre>

<h4 id="String_concatenation">String concatenation</h4>

<p>
Strings can be concatenated using the <code>+</code> operator
or the <code>+=</code> assignment operator:
</p>

<pre>
s := "hi" + string(c)
s += " and good bye"
</pre>

<p>
String addition creates a new string by concatenating the operands.
</p>

<h3 id="Comparison_operators">Comparison operators</h3>

<p>
Comparison operators compare two operands and yield an untyped boolean value.
</p>

<pre class="grammar">
==    equal
!=    not equal
&lt;     less
&lt;=    less or equal
&gt;     greater
&gt;=    greater or equal
</pre>

<p>
In any comparison, the first operand
must be <a href="#Assignability">assignable</a>
to the type of the second operand, or vice versa.
</p>
<p>
The equality operators <code>==</code> and <code>!=</code> apply
to operands of <i>comparable</i> types.
The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
apply to operands of <i>ordered</i> types.
These terms and the result of the comparisons are defined as follows:
</p>

<ul>
	<li>
	Boolean types are comparable.
	Two boolean values are equal if they are either both
	<code>true</code> or both <code>false</code>.
	</li>

	<li>
	Integer types are comparable and ordered.
	Two integer values are compared in the usual way.
	</li>

	<li>
	Floating-point types are comparable and ordered.
	Two floating-point values are compared as defined by the IEEE-754 standard.
	</li>

	<li>
	Complex types are comparable.
	Two complex values <code>u</code> and <code>v</code> are
	equal if both <code>real(u) == real(v)</code> and
	<code>imag(u) == imag(v)</code>.
	</li>

	<li>
	String types are comparable and ordered.
	Two string values are compared lexically byte-wise.
	</li>

	<li>
	Pointer types are comparable.
	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
	</li>

	<li>
	Channel types are comparable.
	Two channel values are equal if they were created by the same call to
	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
	or if both have value <code>nil</code>.
	</li>

	<li>
	Interface types that are not type parameters are comparable.
	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
	and equal dynamic values or if both have value <code>nil</code>.
	</li>

	<li>
	A value <code>x</code> of non-interface type <code>X</code> and
	a value <code>t</code> of interface type <code>T</code> can be compared
	if type <code>X</code> is comparable and
	<code>X</code> <a href="#Implementing_an_interface">implements</a> <code>T</code>.
	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
	and <code>t</code>'s dynamic value is equal to <code>x</code>.
	</li>

	<li>
	Struct types are comparable if all their field types are comparable.
	Two struct values are equal if their corresponding
	non-<a href="#Blank_identifier">blank</a> field values are equal.
	The fields are compared in source order, and comparison stops as
	soon as two field values differ (or all fields have been compared).
	</li>

	<li>
	Array types are comparable if their array element types are comparable.
	Two array values are equal if their corresponding element values are equal.
	The elements are compared in ascending index order, and comparison stops
	as soon as two element values differ (or all elements have been compared).
	</li>

	<li>
	Type parameters are comparable if they are strictly comparable (see below).
	</li>
</ul>

<p>
A comparison of two interface values with identical dynamic types
causes a <a href="#Run_time_panics">run-time panic</a> if that type
is not comparable.  This behavior applies not only to direct interface
value comparisons but also when comparing arrays of interface values
or structs with interface-valued fields.
</p>

<p>
Slice, map, and function types are not comparable.
However, as a special case, a slice, map, or function value may
be compared to the predeclared identifier <code>nil</code>.
Comparison of pointer, channel, and interface values to <code>nil</code>
is also allowed and follows from the general rules above.
</p>

<pre>
const c = 3 &lt; 4            // c is the untyped boolean constant true

type MyBool bool
var x, y int
var (
	// The result of a comparison is an untyped boolean.
	// The usual assignment rules apply.
	b3        = x == y // b3 has type bool
	b4 bool   = x == y // b4 has type bool
	b5 MyBool = x == y // b5 has type MyBool
)
</pre>

<p>
A type is <i>strictly comparable</i> if it is comparable and not an interface
type nor composed of interface types.
Specifically:
</p>

<ul>
	<li>
	Boolean, numeric, string, pointer, and channel types are strictly comparable.
	</li>

	<li>
	Struct types are strictly comparable if all their field types are strictly comparable.
	</li>

	<li>
	Array types are strictly comparable if their array element types are strictly comparable.
	</li>

	<li>
	Type parameters are strictly comparable if all types in their type set are strictly comparable.
	</li>
</ul>

<h3 id="Logical_operators">Logical operators</h3>

<p>
Logical operators apply to <a href="#Boolean_types">boolean</a> values
and yield a result of the same type as the operands.
The right operand is evaluated conditionally.
</p>

<pre class="grammar">
&amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
||    conditional OR     p || q  is  "if p then true else q"
!     NOT                !p      is  "not p"
</pre>


<h3 id="Address_operators">Address operators</h3>

<p>
For an operand <code>x</code> of type <code>T</code>, the address operation
<code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
The operand must be <i>addressable</i>,
that is, either a variable, pointer indirection, or slice indexing
operation; or a field selector of an addressable struct operand;
or an array indexing operation of an addressable array.
As an exception to the addressability requirement, <code>x</code> may also be a
(possibly parenthesized)
<a href="#Composite_literals">composite literal</a>.
If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
then the evaluation of <code>&amp;x</code> does too.
</p>

<p>
For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
to by <code>x</code>.
If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
will cause a <a href="#Run_time_panics">run-time panic</a>.
</p>

<pre>
&amp;x
&amp;a[f(2)]
&amp;Point{2, 3}
*p
*pf(x)

var x *int = nil
*x   // causes a run-time panic
&amp;*x  // causes a run-time panic
</pre>


<h3 id="Receive_operator">Receive operator</h3>

<p>
For an operand <code>ch</code> whose <a href="#Core_types">core type</a> is a
<a href="#Channel_types">channel</a>,
the value of the receive operation <code>&lt;-ch</code> is the value received
from the channel <code>ch</code>. The channel direction must permit receive operations,
and the type of the receive operation is the element type of the channel.
The expression blocks until a value is available.
Receiving from a <code>nil</code> channel blocks forever.
A receive operation on a <a href="#Close">closed</a> channel can always proceed
immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
after any previously sent values have been received.
</p>

<pre>
v1 := &lt;-ch
v2 = &lt;-ch
f(&lt;-ch)
&lt;-strobe  // wait until clock pulse and discard received value
</pre>

<p>
A receive expression used in an <a href="#Assignment_statements">assignment statement</a> or initialization of the special form
</p>

<pre>
x, ok = &lt;-ch
x, ok := &lt;-ch
var x, ok = &lt;-ch
var x, ok T = &lt;-ch
</pre>

<p>
yields an additional untyped boolean result reporting whether the
communication succeeded. The value of <code>ok</code> is <code>true</code>
if the value received was delivered by a successful send operation to the
channel, or <code>false</code> if it is a zero value generated because the
channel is closed and empty.
</p>


<h3 id="Conversions">Conversions</h3>

<p>
A conversion changes the <a href="#Types">type</a> of an expression
to the type specified by the conversion.
A conversion may appear literally in the source, or it may be <i>implied</i>
by the context in which an expression appears.
</p>

<p>
An <i>explicit</i> conversion is an expression of the form <code>T(x)</code>
where <code>T</code> is a type and <code>x</code> is an expression
that can be converted to type <code>T</code>.
</p>

<pre class="ebnf">
Conversion = Type "(" Expression [ "," ] ")" .
</pre>

<p>
If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
or if the type starts with the keyword <code>func</code>
and has no result list, it must be parenthesized when
necessary to avoid ambiguity:
</p>

<pre>
*Point(p)        // same as *(Point(p))
(*Point)(p)      // p is converted to *Point
&lt;-chan int(c)    // same as &lt;-(chan int(c))
(&lt;-chan int)(c)  // c is converted to &lt;-chan int
func()(x)        // function signature func() x
(func())(x)      // x is converted to func()
(func() int)(x)  // x is converted to func() int
func() int(x)    // x is converted to func() int (unambiguous)
</pre>

<p>
A <a href="#Constants">constant</a> value <code>x</code> can be converted to
type <code>T</code> if <code>x</code> is <a href="#Representability">representable</a>
by a value of <code>T</code>.
As a special case, an integer constant <code>x</code> can be explicitly converted to a
<a href="#String_types">string type</a> using the
<a href="#Conversions_to_and_from_a_string_type">same rule</a>
as for non-constant <code>x</code>.
</p>

<p>
Converting a constant to a type that is not a <a href="#Type_parameter_declarations">type parameter</a>
yields a typed constant.
</p>

<pre>
uint(iota)               // iota value of type uint
float32(2.718281828)     // 2.718281828 of type float32
complex128(1)            // 1.0 + 0.0i of type complex128
float32(0.49999999)      // 0.5 of type float32
float64(-1e-1000)        // 0.0 of type float64
string('x')              // "x" of type string
string(0x266c)           // "♬" of type string
myString("foo" + "bar")  // "foobar" of type myString
string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
(*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
int(1.2)                 // illegal: 1.2 cannot be represented as an int
string(65.0)             // illegal: 65.0 is not an integer constant
</pre>

<p>
Converting a constant to a type parameter yields a <i>non-constant</i> value of that type,
with the value represented as a value of the type argument that the type parameter
is <a href="#Instantiations">instantiated</a> with.
For example, given the function:
</p>

<pre>
func f[P ~float32|~float64]() {
	… P(1.1) …
}
</pre>

<p>
the conversion <code>P(1.1)</code> results in a non-constant value of type <code>P</code>
and the value <code>1.1</code> is represented as a <code>float32</code> or a <code>float64</code>
depending on the type argument for <code>f</code>.
Accordingly, if <code>f</code> is instantiated with a <code>float32</code> type,
the numeric value of the expression <code>P(1.1) + 1.2</code> will be computed
with the same precision as the corresponding non-constant <code>float32</code>
addition.
</p>

<p>
A non-constant value <code>x</code> can be converted to type <code>T</code>
in any of these cases:
</p>

<ul>
	<li>
	<code>x</code> is <a href="#Assignability">assignable</a>
	to <code>T</code>.
	</li>
	<li>
	ignoring struct tags (see below),
	<code>x</code>'s type and <code>T</code> are not
	<a href="#Type_parameter_declarations">type parameters</a> but have
	<a href="#Type_identity">identical</a> <a href="#Underlying_types">underlying types</a>.
	</li>
	<li>
	ignoring struct tags (see below),
	<code>x</code>'s type and <code>T</code> are pointer types
	that are not <a href="#Types">named types</a>,
	and their pointer base types are not type parameters but
	have identical underlying types.
	</li>
	<li>
	<code>x</code>'s type and <code>T</code> are both integer or floating
	point types.
	</li>
	<li>
	<code>x</code>'s type and <code>T</code> are both complex types.
	</li>
	<li>
	<code>x</code> is an integer or a slice of bytes or runes
	and <code>T</code> is a string type.
	</li>
	<li>
	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
	</li>
	<li>
	<code>x</code> is a slice, <code>T</code> is an array or a pointer to an array,
	and the slice and array types have <a href="#Type_identity">identical</a> element types.
	</li>
</ul>

<p>
Additionally, if <code>T</code> or <code>x</code>'s type <code>V</code> are type
parameters, <code>x</code>
can also be converted to type <code>T</code> if one of the following conditions applies:
</p>

<ul>
<li>
Both <code>V</code> and <code>T</code> are type parameters and a value of each
type in <code>V</code>'s type set can be converted to each type in <code>T</code>'s
type set.
</li>
<li>
Only <code>V</code> is a type parameter and a value of each
type in <code>V</code>'s type set can be converted to <code>T</code>.
</li>
<li>
Only <code>T</code> is a type parameter and <code>x</code> can be converted to each
type in <code>T</code>'s type set.
</li>
</ul>

<p>
<a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
for identity for the purpose of conversion:
</p>

<pre>
type Person struct {
	Name    string
	Address *struct {
		Street string
		City   string
	}
}

var data *struct {
	Name    string `json:"name"`
	Address *struct {
		Street string `json:"street"`
		City   string `json:"city"`
	} `json:"address"`
}

var person = (*Person)(data)  // ignoring tags, the underlying types are identical
</pre>

<p>
Specific rules apply to (non-constant) conversions between numeric types or
to and from a string type.
These conversions may change the representation of <code>x</code>
and incur a run-time cost.
All other conversions only change the type but not the representation
of <code>x</code>.
</p>

<p>
There is no linguistic mechanism to convert between pointers and integers.
The package <a href="#Package_unsafe"><code>unsafe</code></a>
implements this functionality under restricted circumstances.
</p>

<h4>Conversions between numeric types</h4>

<p>
For the conversion of non-constant numeric values, the following rules apply:
</p>

<ol>
<li>
When converting between <a href="#Numeric_types">integer types</a>, if the value is a signed integer, it is
sign extended to implicit infinite precision; otherwise it is zero extended.
It is then truncated to fit in the result type's size.
For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
The conversion always yields a valid value; there is no indication of overflow.
</li>
<li>
When converting a <a href="#Numeric_types">floating-point number</a> to an integer, the fraction is discarded
(truncation towards zero).
</li>
<li>
When converting an integer or floating-point number to a floating-point type,
or a <a href="#Numeric_types">complex number</a> to another complex type, the result value is rounded
to the precision specified by the destination type.
For instance, the value of a variable <code>x</code> of type <code>float32</code>
may be stored using additional precision beyond that of an IEEE-754 32-bit number,
but float32(x) represents the result of rounding <code>x</code>'s value to
32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
of precision, but <code>float32(x + 0.1)</code> does not.
</li>
</ol>

<p>
In all non-constant conversions involving floating-point or complex values,
if the result type cannot represent the value the conversion
succeeds but the result value is implementation-dependent.
</p>

<h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>

<ol>
<li>
Converting a slice of bytes to a string type yields
a string whose successive bytes are the elements of the slice.

<pre>
string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
string([]byte{})                                     // ""
string([]byte(nil))                                  // ""

type bytes []byte
string(bytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})    // "hellø"

type myByte byte
string([]myByte{'w', 'o', 'r', 'l', 'd', '!'})       // "world!"
myString([]myByte{'\xf0', '\x9f', '\x8c', '\x8d'})   // "🌍"
</pre>
</li>

<li>
Converting a slice of runes to a string type yields
a string that is the concatenation of the individual rune values
converted to strings.

<pre>
string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
string([]rune{})                         // ""
string([]rune(nil))                      // ""

type runes []rune
string(runes{0x767d, 0x9d6c, 0x7fd4})    // "\u767d\u9d6c\u7fd4" == "白鵬翔"

type myRune rune
string([]myRune{0x266b, 0x266c})         // "\u266b\u266c" == "♫♬"
myString([]myRune{0x1f30e})              // "\U0001f30e" == "🌎"
</pre>
</li>

<li>
Converting a value of a string type to a slice of bytes type
yields a slice whose successive elements are the bytes of the string.

<pre>
[]byte("hellø")             // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
[]byte("")                  // []byte{}

bytes("hellø")              // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}

[]myByte("world!")          // []myByte{'w', 'o', 'r', 'l', 'd', '!'}
[]myByte(myString("🌏"))    // []myByte{'\xf0', '\x9f', '\x8c', '\x8f'}
</pre>
</li>

<li>
Converting a value of a string type to a slice of runes type
yields a slice containing the individual Unicode code points of the string.

<pre>
[]rune(myString("白鵬翔"))   // []rune{0x767d, 0x9d6c, 0x7fd4}
[]rune("")                  // []rune{}

runes("白鵬翔")              // []rune{0x767d, 0x9d6c, 0x7fd4}

[]myRune("♫♬")              // []myRune{0x266b, 0x266c}
[]myRune(myString("🌐"))    // []myRune{0x1f310}
</pre>
</li>

<li>
Finally, for historical reasons, an integer value may be converted to a string type.
This form of conversion yields a string containing the (possibly multi-byte) UTF-8
representation of the Unicode code point with the given integer value.
Values outside the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.

<pre>
string('a')          // "a"
string(65)           // "A"
string('\xf8')       // "\u00f8" == "ø" == "\xc3\xb8"
string(-1)           // "\ufffd" == "\xef\xbf\xbd"

type myString string
myString('\u65e5')   // "\u65e5" == "日" == "\xe6\x97\xa5"
</pre>

Note: This form of conversion may eventually be removed from the language.
The <a href="/pkg/cmd/vet"><code>go vet</code></a> tool flags certain
integer-to-string conversions as potential errors.
Library functions such as
<a href="/pkg/unicode/utf8#AppendRune"><code>utf8.AppendRune</code></a> or
<a href="/pkg/unicode/utf8#EncodeRune"><code>utf8.EncodeRune</code></a>
should be used instead.
</li>
</ol>

<h4 id="Conversions_from_slice_to_array_or_array_pointer">Conversions from slice to array or array pointer</h4>

<p>
Converting a slice to an array yields an array containing the elements of the underlying array of the slice.
Similarly, converting a slice to an array pointer yields a pointer to the underlying array of the slice.
In both cases, if the <a href="#Length_and_capacity">length</a> of the slice is less than the length of the array,
a <a href="#Run_time_panics">run-time panic</a> occurs.
</p>

<pre>
s := make([]byte, 2, 4)

a0 := [0]byte(s)
a1 := [1]byte(s[1:])     // a1[0] == s[1]
a2 := [2]byte(s)         // a2[0] == s[0]
a4 := [4]byte(s)         // panics: len([4]byte) > len(s)

s0 := (*[0]byte)(s)      // s0 != nil
s1 := (*[1]byte)(s[1:])  // &amp;s1[0] == &amp;s[1]
s2 := (*[2]byte)(s)      // &amp;s2[0] == &amp;s[0]
s4 := (*[4]byte)(s)      // panics: len([4]byte) > len(s)

var t []string
t0 := [0]string(t)       // ok for nil slice t
t1 := (*[0]string)(t)    // t1 == nil
t2 := (*[1]string)(t)    // panics: len([1]string) > len(t)

u := make([]byte, 0)
u0 := (*[0]byte)(u)      // u0 != nil
</pre>

<h3 id="Constant_expressions">Constant expressions</h3>

<p>
Constant expressions may contain only <a href="#Constants">constant</a>
operands and are evaluated at compile time.
</p>

<p>
Untyped boolean, numeric, and string constants may be used as operands
wherever it is legal to use an operand of boolean, numeric, or string type,
respectively.
</p>

<p>
A constant <a href="#Comparison_operators">comparison</a> always yields
an untyped boolean constant.  If the left operand of a constant
<a href="#Operators">shift expression</a> is an untyped constant, the
result is an integer constant; otherwise it is a constant of the same
type as the left operand, which must be of
<a href="#Numeric_types">integer type</a>.
</p>

<p>
Any other operation on untyped constants results in an untyped constant of the
same kind; that is, a boolean, integer, floating-point, complex, or string
constant.
If the untyped operands of a binary operation (other than a shift) are of
different kinds, the result is of the operand's kind that appears later in this
list: integer, rune, floating-point, complex.
For example, an untyped integer constant divided by an
untyped complex constant yields an untyped complex constant.
</p>

<pre>
const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
const b = 15 / 4           // b == 3     (untyped integer constant)
const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
const j = true             // j == true  (untyped boolean constant)
const k = 'w' + 1          // k == 'x'   (untyped rune constant)
const l = "hi"             // l == "hi"  (untyped string constant)
const m = string(k)        // m == "x"   (type string)
const Σ = 1 - 0.707i       //            (untyped complex constant)
const Δ = Σ + 2.0e-4       //            (untyped complex constant)
const Φ = iota*1i - 1/1i   //            (untyped complex constant)
</pre>

<p>
Applying the built-in function <code>complex</code> to untyped
integer, rune, or floating-point constants yields
an untyped complex constant.
</p>

<pre>
const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
</pre>

<p>
Constant expressions are always evaluated exactly; intermediate values and the
constants themselves may require precision significantly larger than supported
by any predeclared type in the language. The following are legal declarations:
</p>

<pre>
const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
</pre>

<p>
The divisor of a constant division or remainder operation must not be zero:
</p>

<pre>
3.14 / 0.0   // illegal: division by zero
</pre>

<p>
The values of <i>typed</i> constants must always be accurately
<a href="#Representability">representable</a> by values
of the constant type. The following constant expressions are illegal:
</p>

<pre>
uint(-1)     // -1 cannot be represented as a uint
int(3.14)    // 3.14 cannot be represented as an int
int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
Four * 100   // product 400 cannot be represented as an int8 (type of Four)
</pre>

<p>
The mask used by the unary bitwise complement operator <code>^</code> matches
the rule for non-constants: the mask is all 1s for unsigned constants
and -1 for signed and untyped constants.
</p>

<pre>
^1         // untyped integer constant, equal to -2
uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
int8(^1)   // same as int8(-2)
^int8(1)   // same as -1 ^ int8(1) = -2
</pre>

<p>
Implementation restriction: A compiler may use rounding while
computing untyped floating-point or complex constant expressions; see
the implementation restriction in the section
on <a href="#Constants">constants</a>.  This rounding may cause a
floating-point constant expression to be invalid in an integer
context, even if it would be integral when calculated using infinite
precision, and vice versa.
</p>


<h3 id="Order_of_evaluation">Order of evaluation</h3>

<p>
At package level, <a href="#Package_initialization">initialization dependencies</a>
determine the evaluation order of individual initialization expressions in
<a href="#Variable_declarations">variable declarations</a>.
Otherwise, when evaluating the <a href="#Operands">operands</a> of an
expression, assignment, or
<a href="#Return_statements">return statement</a>,
all function calls, method calls, and
communication operations are evaluated in lexical left-to-right
order.
</p>

<p>
For example, in the (function-local) assignment
</p>
<pre>
y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
</pre>
<p>
the function calls and communication happen in the order
<code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
<code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
However, the order of those events compared to the evaluation
and indexing of <code>x</code> and the evaluation
of <code>y</code> is not specified.
</p>

<pre>
a := 1
f := func() int { a++; return a }
x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
</pre>

<p>
At package level, initialization dependencies override the left-to-right rule
for individual initialization expressions, but not for operands within each
expression:
</p>

<pre>
var a, b, c = f() + v(), g(), sqr(u()) + v()

func f() int        { return c }
func g() int        { return a }
func sqr(x int) int { return x*x }

// functions u and v are independent of all other variables and functions
</pre>

<p>
The function calls happen in the order
<code>u()</code>, <code>sqr()</code>, <code>v()</code>,
<code>f()</code>, <code>v()</code>, and <code>g()</code>.
</p>

<p>
Floating-point operations within a single expression are evaluated according to
the associativity of the operators.  Explicit parentheses affect the evaluation
by overriding the default associativity.
In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
is performed before adding <code>x</code>.
</p>

<h2 id="Statements">Statements</h2>

<p>
Statements control execution.
</p>

<pre class="ebnf">
Statement =
	Declaration | LabeledStmt | SimpleStmt |
	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
	DeferStmt .

SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
</pre>

<h3 id="Terminating_statements">Terminating statements</h3>

<p>
A <i>terminating statement</i> interrupts the regular flow of control in
a <a href="#Blocks">block</a>. The following statements are terminating:
</p>

<ol>
<li>
	A <a href="#Return_statements">"return"</a> or
    	<a href="#Goto_statements">"goto"</a> statement.
	<!-- ul below only for regular layout -->
	<ul> </ul>
</li>

<li>
	A call to the built-in function
	<a href="#Handling_panics"><code>panic</code></a>.
	<!-- ul below only for regular layout -->
	<ul> </ul>
</li>

<li>
	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
	<!-- ul below only for regular layout -->
	<ul> </ul>
</li>

<li>
	An <a href="#If_statements">"if" statement</a> in which:
	<ul>
	<li>the "else" branch is present, and</li>
	<li>both branches are terminating statements.</li>
	</ul>
</li>

<li>
	A <a href="#For_statements">"for" statement</a> in which:
	<ul>
	<li>there are no "break" statements referring to the "for" statement, and</li>
	<li>the loop condition is absent, and</li>
	<li>the "for" statement does not use a range clause.</li>
	</ul>
</li>

<li>
	A <a href="#Switch_statements">"switch" statement</a> in which:
	<ul>
	<li>there are no "break" statements referring to the "switch" statement,</li>
	<li>there is a default case, and</li>
	<li>the statement lists in each case, including the default, end in a terminating
	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
	    statement</a>.</li>
	</ul>
</li>

<li>
	A <a href="#Select_statements">"select" statement</a> in which:
	<ul>
	<li>there are no "break" statements referring to the "select" statement, and</li>
	<li>the statement lists in each case, including the default if present,
	    end in a terminating statement.</li>
	</ul>
</li>

<li>
	A <a href="#Labeled_statements">labeled statement</a> labeling
	a terminating statement.
</li>
</ol>

<p>
All other statements are not terminating.
</p>

<p>
A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
is not empty and its final non-empty statement is terminating.
</p>


<h3 id="Empty_statements">Empty statements</h3>

<p>
The empty statement does nothing.
</p>

<pre class="ebnf">
EmptyStmt = .
</pre>


<h3 id="Labeled_statements">Labeled statements</h3>

<p>
A labeled statement may be the target of a <code>goto</code>,
<code>break</code> or <code>continue</code> statement.
</p>

<pre class="ebnf">
LabeledStmt = Label ":" Statement .
Label       = identifier .
</pre>

<pre>
Error: log.Panic("error encountered")
</pre>


<h3 id="Expression_statements">Expression statements</h3>

<p>
With the exception of specific built-in functions,
function and method <a href="#Calls">calls</a> and
<a href="#Receive_operator">receive operations</a>
can appear in statement context. Such statements may be parenthesized.
</p>

<pre class="ebnf">
ExpressionStmt = Expression .
</pre>

<p>
The following built-in functions are not permitted in statement context:
</p>

<pre>
append cap complex imag len make new real
unsafe.Add unsafe.Alignof unsafe.Offsetof unsafe.Sizeof unsafe.Slice unsafe.SliceData unsafe.String unsafe.StringData
</pre>

<pre>
h(x+y)
f.Close()
&lt;-ch
(&lt;-ch)
len("foo")  // illegal if len is the built-in function
</pre>


<h3 id="Send_statements">Send statements</h3>

<p>
A send statement sends a value on a channel.
The channel expression's <a href="#Core_types">core type</a>
must be a <a href="#Channel_types">channel</a>,
the channel direction must permit send operations,
and the type of the value to be sent must be <a href="#Assignability">assignable</a>
to the channel's element type.
</p>

<pre class="ebnf">
SendStmt = Channel "&lt;-" Expression .
Channel  = Expression .
</pre>

<p>
Both the channel and the value expression are evaluated before communication
begins. Communication blocks until the send can proceed.
A send on an unbuffered channel can proceed if a receiver is ready.
A send on a buffered channel can proceed if there is room in the buffer.
A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
A send on a <code>nil</code> channel blocks forever.
</p>

<pre>
ch &lt;- 3  // send value 3 to channel ch
</pre>


<h3 id="IncDec_statements">IncDec statements</h3>

<p>
The "++" and "--" statements increment or decrement their operands
by the untyped <a href="#Constants">constant</a> <code>1</code>.
As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
or a map index expression.
</p>

<pre class="ebnf">
IncDecStmt = Expression ( "++" | "--" ) .
</pre>

<p>
The following <a href="#Assignment_statements">assignment statements</a> are semantically
equivalent:
</p>

<pre class="grammar">
IncDec statement    Assignment
x++                 x += 1
x--                 x -= 1
</pre>


<h3 id="Assignment_statements">Assignment statements</h3>

<p>
An <i>assignment</i> replaces the current value stored in a <a href="#Variables">variable</a>
with a new value specified by an <a href="#Expressions">expression</a>.
An assignment statement may assign a single value to a single variable, or multiple values to a
matching number of variables.
</p>

<pre class="ebnf">
Assignment = ExpressionList assign_op ExpressionList .

assign_op = [ add_op | mul_op ] "=" .
</pre>

<p>
Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
a map index expression, or (for <code>=</code> assignments only) the
<a href="#Blank_identifier">blank identifier</a>.
Operands may be parenthesized.
</p>

<pre>
x = 1
*p = f()
a[i] = 23
(k) = &lt;-ch  // same as: k = &lt;-ch
</pre>

<p>
An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
<code>y</code> where <i>op</i> is a binary <a href="#Arithmetic_operators">arithmetic operator</a>
is equivalent to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
<code>(y)</code> but evaluates <code>x</code>
only once.  The <i>op</i><code>=</code> construct is a single token.
In assignment operations, both the left- and right-hand expression lists
must contain exactly one single-valued expression, and the left-hand
expression must not be the blank identifier.
</p>

<pre>
a[i] &lt;&lt;= 2
i &amp;^= 1&lt;&lt;n
</pre>

<p>
A tuple assignment assigns the individual elements of a multi-valued
operation to a list of variables.  There are two forms.  In the
first, the right hand operand is a single multi-valued expression
such as a function call, a <a href="#Channel_types">channel</a> or
<a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
The number of operands on the left
hand side must match the number of values.  For instance, if
<code>f</code> is a function returning two values,
</p>

<pre>
x, y = f()
</pre>

<p>
assigns the first value to <code>x</code> and the second to <code>y</code>.
In the second form, the number of operands on the left must equal the number
of expressions on the right, each of which must be single-valued, and the
<i>n</i>th expression on the right is assigned to the <i>n</i>th
operand on the left:
</p>

<pre>
one, two, three = '一', '二', '三'
</pre>

<p>
The <a href="#Blank_identifier">blank identifier</a> provides a way to
ignore right-hand side values in an assignment:
</p>

<pre>
_ = x       // evaluate x but ignore it
x, _ = f()  // evaluate f() but ignore second result value
</pre>

<p>
The assignment proceeds in two phases.
First, the operands of <a href="#Index_expressions">index expressions</a>
and <a href="#Address_operators">pointer indirections</a>
(including implicit pointer indirections in <a href="#Selectors">selectors</a>)
on the left and the expressions on the right are all
<a href="#Order_of_evaluation">evaluated in the usual order</a>.
Second, the assignments are carried out in left-to-right order.
</p>

<pre>
a, b = b, a  // exchange a and b

x := []int{1, 2, 3}
i := 0
i, x[i] = 1, 2  // set i = 1, x[0] = 2

i = 0
x[i], i = 2, 1  // set x[0] = 2, i = 1

x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)

x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.

type Point struct { x, y int }
var p *Point
x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7

i = 2
x = []int{3, 5, 7}
for i, x[i] = range x {  // set i, x[2] = 0, x[0]
	break
}
// after this loop, i == 0 and x is []int{3, 5, 3}
</pre>

<p>
In assignments, each value must be <a href="#Assignability">assignable</a>
to the type of the operand to which it is assigned, with the following special cases:
</p>

<ol>
<li>
	Any typed value may be assigned to the blank identifier.
</li>

<li>
	If an untyped constant
	is assigned to a variable of interface type or the blank identifier,
	the constant is first implicitly <a href="#Conversions">converted</a> to its
	 <a href="#Constants">default type</a>.
</li>

<li>
	If an untyped boolean value is assigned to a variable of interface type or
	the blank identifier, it is first implicitly converted to type <code>bool</code>.
</li>
</ol>

<h3 id="If_statements">If statements</h3>

<p>
"If" statements specify the conditional execution of two branches
according to the value of a boolean expression.  If the expression
evaluates to true, the "if" branch is executed, otherwise, if
present, the "else" branch is executed.
</p>

<pre class="ebnf">
IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
</pre>

<pre>
if x &gt; max {
	x = max
}
</pre>

<p>
The expression may be preceded by a simple statement, which
executes before the expression is evaluated.
</p>

<pre>
if x := f(); x &lt; y {
	return x
} else if x &gt; z {
	return z
} else {
	return y
}
</pre>


<h3 id="Switch_statements">Switch statements</h3>

<p>
"Switch" statements provide multi-way execution.
An expression or type is compared to the "cases"
inside the "switch" to determine which branch
to execute.
</p>

<pre class="ebnf">
SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
</pre>

<p>
There are two forms: expression switches and type switches.
In an expression switch, the cases contain expressions that are compared
against the value of the switch expression.
In a type switch, the cases contain types that are compared against the
type of a specially annotated switch expression.
The switch expression is evaluated exactly once in a switch statement.
</p>

<h4 id="Expression_switches">Expression switches</h4>

<p>
In an expression switch,
the switch expression is evaluated and
the case expressions, which need not be constants,
are evaluated left-to-right and top-to-bottom; the first one that equals the
switch expression
triggers execution of the statements of the associated case;
the other cases are skipped.
If no case matches and there is a "default" case,
its statements are executed.
There can be at most one default case and it may appear anywhere in the
"switch" statement.
A missing switch expression is equivalent to the boolean value
<code>true</code>.
</p>

<pre class="ebnf">
ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
ExprCaseClause = ExprSwitchCase ":" StatementList .
ExprSwitchCase = "case" ExpressionList | "default" .
</pre>

<p>
If the switch expression evaluates to an untyped constant, it is first implicitly
<a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>.
The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
The switch expression type must be <a href="#Comparison_operators">comparable</a>.
</p>

<p>
If a case expression is untyped, it is first implicitly <a href="#Conversions">converted</a>
to the type of the switch expression.
For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
</p>

<p>
In other words, the switch expression is treated as if it were used to declare and
initialize a temporary variable <code>t</code> without explicit type; it is that
value of <code>t</code> against which each case expression <code>x</code> is tested
for equality.
</p>

<p>
In a case or default clause, the last non-empty statement
may be a (possibly <a href="#Labeled_statements">labeled</a>)
<a href="#Fallthrough_statements">"fallthrough" statement</a> to
indicate that control should flow from the end of this clause to
the first statement of the next clause.
Otherwise control flows to the end of the "switch" statement.
A "fallthrough" statement may appear as the last statement of all
but the last clause of an expression switch.
</p>

<p>
The switch expression may be preceded by a simple statement, which
executes before the expression is evaluated.
</p>

<pre>
switch tag {
default: s3()
case 0, 1, 2, 3: s1()
case 4, 5, 6, 7: s2()
}

switch x := f(); {  // missing switch expression means "true"
case x &lt; 0: return -x
default: return x
}

switch {
case x &lt; y: f1()
case x &lt; z: f2()
case x == 4: f3()
}
</pre>

<p>
Implementation restriction: A compiler may disallow multiple case
expressions evaluating to the same constant.
For instance, the current compilers disallow duplicate integer,
floating point, or string constants in case expressions.
</p>

<h4 id="Type_switches">Type switches</h4>

<p>
A type switch compares types rather than values. It is otherwise similar
to an expression switch. It is marked by a special switch expression that
has the form of a <a href="#Type_assertions">type assertion</a>
using the keyword <code>type</code> rather than an actual type:
</p>

<pre>
switch x.(type) {
// cases
}
</pre>

<p>
Cases then match actual types <code>T</code> against the dynamic type of the
expression <code>x</code>. As with type assertions, <code>x</code> must be of
<a href="#Interface_types">interface type</a>, but not a
<a href="#Type_parameter_declarations">type parameter</a>, and each non-interface type
<code>T</code> listed in a case must implement the type of <code>x</code>.
The types listed in the cases of a type switch must all be
<a href="#Type_identity">different</a>.
</p>

<pre class="ebnf">
TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
TypeCaseClause  = TypeSwitchCase ":" StatementList .
TypeSwitchCase  = "case" TypeList | "default" .
</pre>

<p>
The TypeSwitchGuard may include a
<a href="#Short_variable_declarations">short variable declaration</a>.
When that form is used, the variable is declared at the end of the
TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
In clauses with a case listing exactly one type, the variable
has that type; otherwise, the variable has the type of the expression
in the TypeSwitchGuard.
</p>

<p>
Instead of a type, a case may use the predeclared identifier
<a href="#Predeclared_identifiers"><code>nil</code></a>;
that case is selected when the expression in the TypeSwitchGuard
is a <code>nil</code> interface value.
There may be at most one <code>nil</code> case.
</p>

<p>
Given an expression <code>x</code> of type <code>interface{}</code>,
the following type switch:
</p>

<pre>
switch i := x.(type) {
case nil:
	printString("x is nil")                // type of i is type of x (interface{})
case int:
	printInt(i)                            // type of i is int
case float64:
	printFloat64(i)                        // type of i is float64
case func(int) float64:
	printFunction(i)                       // type of i is func(int) float64
case bool, string:
	printString("type is bool or string")  // type of i is type of x (interface{})
default:
	printString("don't know the type")     // type of i is type of x (interface{})
}
</pre>

<p>
could be rewritten:
</p>

<pre>
v := x  // x is evaluated exactly once
if v == nil {
	i := v                                 // type of i is type of x (interface{})
	printString("x is nil")
} else if i, isInt := v.(int); isInt {
	printInt(i)                            // type of i is int
} else if i, isFloat64 := v.(float64); isFloat64 {
	printFloat64(i)                        // type of i is float64
} else if i, isFunc := v.(func(int) float64); isFunc {
	printFunction(i)                       // type of i is func(int) float64
} else {
	_, isBool := v.(bool)
	_, isString := v.(string)
	if isBool || isString {
		i := v                         // type of i is type of x (interface{})
		printString("type is bool or string")
	} else {
		i := v                         // type of i is type of x (interface{})
		printString("don't know the type")
	}
}
</pre>

<p>
A <a href="#Type_parameter_declarations">type parameter</a> or a <a href="#Type_declarations">generic type</a>
may be used as a type in a case. If upon <a href="#Instantiations">instantiation</a> that type turns
out to duplicate another entry in the switch, the first matching case is chosen.
</p>

<pre>
func f[P any](x any) int {
	switch x.(type) {
	case P:
		return 0
	case string:
		return 1
	case []P:
		return 2
	case []byte:
		return 3
	default:
		return 4
	}
}

var v1 = f[string]("foo")   // v1 == 0
var v2 = f[byte]([]byte{})  // v2 == 2
</pre>

<p>
The type switch guard may be preceded by a simple statement, which
executes before the guard is evaluated.
</p>

<p>
The "fallthrough" statement is not permitted in a type switch.
</p>

<h3 id="For_statements">For statements</h3>

<p>
A "for" statement specifies repeated execution of a block. There are three forms:
The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
</p>

<pre class="ebnf">
ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
Condition = Expression .
</pre>

<h4 id="For_condition">For statements with single condition</h4>

<p>
In its simplest form, a "for" statement specifies the repeated execution of
a block as long as a boolean condition evaluates to true.
The condition is evaluated before each iteration.
If the condition is absent, it is equivalent to the boolean value
<code>true</code>.
</p>

<pre>
for a &lt; b {
	a *= 2
}
</pre>

<h4 id="For_clause">For statements with <code>for</code> clause</h4>

<p>
A "for" statement with a ForClause is also controlled by its condition, but
additionally it may specify an <i>init</i>
and a <i>post</i> statement, such as an assignment,
an increment or decrement statement. The init statement may be a
<a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
Variables declared by the init statement are re-used in each iteration.
</p>

<pre class="ebnf">
ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
InitStmt = SimpleStmt .
PostStmt = SimpleStmt .
</pre>

<pre>
for i := 0; i &lt; 10; i++ {
	f(i)
}
</pre>

<p>
If non-empty, the init statement is executed once before evaluating the
condition for the first iteration;
the post statement is executed after each execution of the block (and
only if the block was executed).
Any element of the ForClause may be empty but the
<a href="#Semicolons">semicolons</a> are
required unless there is only a condition.
If the condition is absent, it is equivalent to the boolean value
<code>true</code>.
</p>

<pre>
for cond { S() }    is the same as    for ; cond ; { S() }
for      { S() }    is the same as    for true     { S() }
</pre>

<h4 id="For_range">For statements with <code>range</code> clause</h4>

<p>
A "for" statement with a "range" clause
iterates through all entries of an array, slice, string or map,
or values received on a channel. For each entry it assigns <i>iteration values</i>
to corresponding <i>iteration variables</i> if present and then executes the block.
</p>

<pre class="ebnf">
RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
</pre>

<p>
The expression on the right in the "range" clause is called the <i>range expression</i>,
its <a href="#Core_types">core type</a> must be
an array, pointer to an array, slice, string, map, or channel permitting
<a href="#Receive_operator">receive operations</a>.
As with an assignment, if present the operands on the left must be
<a href="#Address_operators">addressable</a> or map index expressions; they
denote the iteration variables. If the range expression is a channel, at most
one iteration variable is permitted, otherwise there may be up to two.
If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
the range clause is equivalent to the same clause without that identifier.
</p>

<p>
The range expression <code>x</code> is evaluated once before beginning the loop,
with one exception: if at most one iteration variable is present and
<code>len(x)</code> is <a href="#Length_and_capacity">constant</a>,
the range expression is not evaluated.
</p>

<p>
Function calls on the left are evaluated once per iteration.
For each iteration, iteration values are produced as follows
if the respective iteration variables are present:
</p>

<pre class="grammar">
Range expression                          1st value          2nd value

array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
string          s  string type            index    i  int    see below  rune
map             m  map[K]V                key      k  K      m[k]       V
channel         c  chan E, &lt;-chan E       element  e  E
</pre>

<ol>
<li>
For an array, pointer to array, or slice value <code>a</code>, the index iteration
values are produced in increasing order, starting at element index 0.
If at most one iteration variable is present, the range loop produces
iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
</li>

<li>
For a string value, the "range" clause iterates over the Unicode code points
in the string starting at byte index 0.  On successive iterations, the index value will be the
index of the first byte of successive UTF-8-encoded code points in the string,
and the second value, of type <code>rune</code>, will be the value of
the corresponding code point. If the iteration encounters an invalid
UTF-8 sequence, the second value will be <code>0xFFFD</code>,
the Unicode replacement character, and the next iteration will advance
a single byte in the string.
</li>

<li>
The iteration order over maps is not specified
and is not guaranteed to be the same from one iteration to the next.
If a map entry that has not yet been reached is removed during iteration,
the corresponding iteration value will not be produced. If a map entry is
created during iteration, that entry may be produced during the iteration or
may be skipped. The choice may vary for each entry created and from one
iteration to the next.
If the map is <code>nil</code>, the number of iterations is 0.
</li>

<li>
For channels, the iteration values produced are the successive values sent on
the channel until the channel is <a href="#Close">closed</a>. If the channel
is <code>nil</code>, the range expression blocks forever.
</li>
</ol>

<p>
The iteration values are assigned to the respective
iteration variables as in an <a href="#Assignment_statements">assignment statement</a>.
</p>

<p>
The iteration variables may be declared by the "range" clause using a form of
<a href="#Short_variable_declarations">short variable declaration</a>
(<code>:=</code>).
In this case their types are set to the types of the respective iteration values
and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
statement; they are re-used in each iteration.
If the iteration variables are declared outside the "for" statement,
after execution their values will be those of the last iteration.
</p>

<pre>
var testdata *struct {
	a *[7]int
}
for i, _ := range testdata.a {
	// testdata.a is never evaluated; len(testdata.a) is constant
	// i ranges from 0 to 6
	f(i)
}

var a [10]string
for i, s := range a {
	// type of i is int
	// type of s is string
	// s == a[i]
	g(i, s)
}

var key string
var val interface{}  // element type of m is assignable to val
m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
for key, val = range m {
	h(key, val)
}
// key == last map key encountered in iteration
// val == map[key]

var ch chan Work = producer()
for w := range ch {
	doWork(w)
}

// empty a channel
for range ch {}
</pre>


<h3 id="Go_statements">Go statements</h3>

<p>
A "go" statement starts the execution of a function call
as an independent concurrent thread of control, or <i>goroutine</i>,
within the same address space.
</p>

<pre class="ebnf">
GoStmt = "go" Expression .
</pre>

<p>
The expression must be a function or method call; it cannot be parenthesized.
Calls of built-in functions are restricted as for
<a href="#Expression_statements">expression statements</a>.
</p>

<p>
The function value and parameters are
<a href="#Calls">evaluated as usual</a>
in the calling goroutine, but
unlike with a regular call, program execution does not wait
for the invoked function to complete.
Instead, the function begins executing independently
in a new goroutine.
When the function terminates, its goroutine also terminates.
If the function has any return values, they are discarded when the
function completes.
</p>

<pre>
go Server()
go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true }} (c)
</pre>


<h3 id="Select_statements">Select statements</h3>

<p>
A "select" statement chooses which of a set of possible
<a href="#Send_statements">send</a> or
<a href="#Receive_operator">receive</a>
operations will proceed.
It looks similar to a
<a href="#Switch_statements">"switch"</a> statement but with the
cases all referring to communication operations.
</p>

<pre class="ebnf">
SelectStmt = "select" "{" { CommClause } "}" .
CommClause = CommCase ":" StatementList .
CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
RecvExpr   = Expression .
</pre>

<p>
A case with a RecvStmt may assign the result of a RecvExpr to one or
two variables, which may be declared using a
<a href="#Short_variable_declarations">short variable declaration</a>.
The RecvExpr must be a (possibly parenthesized) receive operation.
There can be at most one default case and it may appear anywhere
in the list of cases.
</p>

<p>
Execution of a "select" statement proceeds in several steps:
</p>

<ol>
<li>
For all the cases in the statement, the channel operands of receive operations
and the channel and right-hand-side expressions of send statements are
evaluated exactly once, in source order, upon entering the "select" statement.
The result is a set of channels to receive from or send to,
and the corresponding values to send.
Any side effects in that evaluation will occur irrespective of which (if any)
communication operation is selected to proceed.
Expressions on the left-hand side of a RecvStmt with a short variable declaration
or assignment are not yet evaluated.
</li>

<li>
If one or more of the communications can proceed,
a single one that can proceed is chosen via a uniform pseudo-random selection.
Otherwise, if there is a default case, that case is chosen.
If there is no default case, the "select" statement blocks until
at least one of the communications can proceed.
</li>

<li>
Unless the selected case is the default case, the respective communication
operation is executed.
</li>

<li>
If the selected case is a RecvStmt with a short variable declaration or
an assignment, the left-hand side expressions are evaluated and the
received value (or values) are assigned.
</li>

<li>
The statement list of the selected case is executed.
</li>
</ol>

<p>
Since communication on <code>nil</code> channels can never proceed,
a select with only <code>nil</code> channels and no default case blocks forever.
</p>

<pre>
var a []int
var c, c1, c2, c3, c4 chan int
var i1, i2 int
select {
case i1 = &lt;-c1:
	print("received ", i1, " from c1\n")
case c2 &lt;- i2:
	print("sent ", i2, " to c2\n")
case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
	if ok {
		print("received ", i3, " from c3\n")
	} else {
		print("c3 is closed\n")
	}
case a[f()] = &lt;-c4:
	// same as:
	// case t := &lt;-c4
	//	a[f()] = t
default:
	print("no communication\n")
}

for {  // send random sequence of bits to c
	select {
	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
	case c &lt;- 1:
	}
}

select {}  // block forever
</pre>


<h3 id="Return_statements">Return statements</h3>

<p>
A "return" statement in a function <code>F</code> terminates the execution
of <code>F</code>, and optionally provides one or more result values.
Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
are executed before <code>F</code> returns to its caller.
</p>

<pre class="ebnf">
ReturnStmt = "return" [ ExpressionList ] .
</pre>

<p>
In a function without a result type, a "return" statement must not
specify any result values.
</p>
<pre>
func noResult() {
	return
}
</pre>

<p>
There are three ways to return values from a function with a result
type:
</p>

<ol>
	<li>The return value or values may be explicitly listed
		in the "return" statement. Each expression must be single-valued
		and <a href="#Assignability">assignable</a>
		to the corresponding element of the function's result type.
<pre>
func simpleF() int {
	return 2
}

func complexF1() (re float64, im float64) {
	return -7.0, -4.0
}
</pre>
	</li>
	<li>The expression list in the "return" statement may be a single
		call to a multi-valued function. The effect is as if each value
		returned from that function were assigned to a temporary
		variable with the type of the respective value, followed by a
		"return" statement listing these variables, at which point the
		rules of the previous case apply.
<pre>
func complexF2() (re float64, im float64) {
	return complexF1()
}
</pre>
	</li>
	<li>The expression list may be empty if the function's result
		type specifies names for its <a href="#Function_types">result parameters</a>.
		The result parameters act as ordinary local variables
		and the function may assign values to them as necessary.
		The "return" statement returns the values of these variables.
<pre>
func complexF3() (re float64, im float64) {
	re = 7.0
	im = 4.0
	return
}

func (devnull) Write(p []byte) (n int, _ error) {
	n = len(p)
	return
}
</pre>
	</li>
</ol>

<p>
Regardless of how they are declared, all the result values are initialized to
the <a href="#The_zero_value">zero values</a> for their type upon entry to the
function. A "return" statement that specifies results sets the result parameters before
any deferred functions are executed.
</p>

<p>
Implementation restriction: A compiler may disallow an empty expression list
in a "return" statement if a different entity (constant, type, or variable)
with the same name as a result parameter is in
<a href="#Declarations_and_scope">scope</a> at the place of the return.
</p>

<pre>
func f(n int) (res int, err error) {
	if _, err := f(n-1); err != nil {
		return  // invalid return statement: err is shadowed
	}
	return
}
</pre>

<h3 id="Break_statements">Break statements</h3>

<p>
A "break" statement terminates execution of the innermost
<a href="#For_statements">"for"</a>,
<a href="#Switch_statements">"switch"</a>, or
<a href="#Select_statements">"select"</a> statement
within the same function.
</p>

<pre class="ebnf">
BreakStmt = "break" [ Label ] .
</pre>

<p>
If there is a label, it must be that of an enclosing
"for", "switch", or "select" statement,
and that is the one whose execution terminates.
</p>

<pre>
OuterLoop:
	for i = 0; i &lt; n; i++ {
		for j = 0; j &lt; m; j++ {
			switch a[i][j] {
			case nil:
				state = Error
				break OuterLoop
			case item:
				state = Found
				break OuterLoop
			}
		}
	}
</pre>

<h3 id="Continue_statements">Continue statements</h3>

<p>
A "continue" statement begins the next iteration of the
innermost enclosing <a href="#For_statements">"for" loop</a>
by advancing control to the end of the loop block.
The "for" loop must be within the same function.
</p>

<pre class="ebnf">
ContinueStmt = "continue" [ Label ] .
</pre>

<p>
If there is a label, it must be that of an enclosing
"for" statement, and that is the one whose execution
advances.
</p>

<pre>
RowLoop:
	for y, row := range rows {
		for x, data := range row {
			if data == endOfRow {
				continue RowLoop
			}
			row[x] = data + bias(x, y)
		}
	}
</pre>

<h3 id="Goto_statements">Goto statements</h3>

<p>
A "goto" statement transfers control to the statement with the corresponding label
within the same function.
</p>

<pre class="ebnf">
GotoStmt = "goto" Label .
</pre>

<pre>
goto Error
</pre>

<p>
Executing the "goto" statement must not cause any variables to come into
<a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
For instance, this example:
</p>

<pre>
	goto L  // BAD
	v := 3
L:
</pre>

<p>
is erroneous because the jump to label <code>L</code> skips
the creation of <code>v</code>.
</p>

<p>
A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
For instance, this example:
</p>

<pre>
if n%2 == 1 {
	goto L1
}
for n &gt; 0 {
	f()
	n--
L1:
	f()
	n--
}
</pre>

<p>
is erroneous because the label <code>L1</code> is inside
the "for" statement's block but the <code>goto</code> is not.
</p>

<h3 id="Fallthrough_statements">Fallthrough statements</h3>

<p>
A "fallthrough" statement transfers control to the first statement of the
next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
It may be used only as the final non-empty statement in such a clause.
</p>

<pre class="ebnf">
FallthroughStmt = "fallthrough" .
</pre>


<h3 id="Defer_statements">Defer statements</h3>

<p>
A "defer" statement invokes a function whose execution is deferred
to the moment the surrounding function returns, either because the
surrounding function executed a <a href="#Return_statements">return statement</a>,
reached the end of its <a href="#Function_declarations">function body</a>,
or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
</p>

<pre class="ebnf">
DeferStmt = "defer" Expression .
</pre>

<p>
The expression must be a function or method call; it cannot be parenthesized.
Calls of built-in functions are restricted as for
<a href="#Expression_statements">expression statements</a>.
</p>

<p>
Each time a "defer" statement
executes, the function value and parameters to the call are
<a href="#Calls">evaluated as usual</a>
and saved anew but the actual function is not invoked.
Instead, deferred functions are invoked immediately before
the surrounding function returns, in the reverse order
they were deferred. That is, if the surrounding function
returns through an explicit <a href="#Return_statements">return statement</a>,
deferred functions are executed <i>after</i> any result parameters are set
by that return statement but <i>before</i> the function returns to its caller.
If a deferred function value evaluates
to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
when the function is invoked, not when the "defer" statement is executed.
</p>

<p>
For instance, if the deferred function is
a <a href="#Function_literals">function literal</a> and the surrounding
function has <a href="#Function_types">named result parameters</a> that
are in scope within the literal, the deferred function may access and modify
the result parameters before they are returned.
If the deferred function has any return values, they are discarded when
the function completes.
(See also the section on <a href="#Handling_panics">handling panics</a>.)
</p>

<pre>
lock(l)
defer unlock(l)  // unlocking happens before surrounding function returns

// prints 3 2 1 0 before surrounding function returns
for i := 0; i &lt;= 3; i++ {
	defer fmt.Print(i)
}

// f returns 42
func f() (result int) {
	defer func() {
		// result is accessed after it was set to 6 by the return statement
		result *= 7
	}()
	return 6
}
</pre>

<h2 id="Built-in_functions">Built-in functions</h2>

<p>
Built-in functions are
<a href="#Predeclared_identifiers">predeclared</a>.
They are called like any other function but some of them
accept a type instead of an expression as the first argument.
</p>

<p>
The built-in functions do not have standard Go types,
so they can only appear in <a href="#Calls">call expressions</a>;
they cannot be used as function values.
</p>


<h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>

<p>
The built-in functions <code>append</code> and <code>copy</code> assist in
common slice operations.
For both functions, the result is independent of whether the memory referenced
by the arguments overlaps.
</p>

<p>
The <a href="#Function_types">variadic</a> function <code>append</code>
appends zero or more values <code>x</code> to a slice <code>s</code>
and returns the resulting slice of the same type as <code>s</code>.
The <a href="#Core_types">core type</a> of <code>s</code> must be a slice
of type <code>[]E</code>.
The values <code>x</code> are passed to a parameter of type <code>...E</code>
and the respective <a href="#Passing_arguments_to_..._parameters">parameter
passing rules</a> apply.
As a special case, if the core type of <code>s</code> is <code>[]byte</code>,
<code>append</code> also accepts a second argument with core type
<a href="#Core_types"><code>bytestring</code></a> followed by <code>...</code>.
This form appends the bytes of the byte slice or string.
</p>

<pre class="grammar">
append(s S, x ...E) S  // core type of S is []E
</pre>

<p>
If the capacity of <code>s</code> is not large enough to fit the additional
values, <code>append</code> <a href="#Allocation">allocates</a> a new, sufficiently large underlying
array that fits both the existing slice elements and the additional values.
Otherwise, <code>append</code> re-uses the underlying array.
</p>

<pre>
s0 := []int{0, 0}
s1 := append(s0, 2)                // append a single element     s1 is []int{0, 0, 2}
s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 is []int{0, 0, 2, 3, 5, 7}
s3 := append(s2, s0...)            // append a slice              s3 is []int{0, 0, 2, 3, 5, 7, 0, 0}
s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 is []int{3, 5, 7, 2, 3, 5, 7, 0, 0}

var t []interface{}
t = append(t, 42, 3.1415, "foo")   //                             t is []interface{}{42, 3.1415, "foo"}

var b []byte
b = append(b, "bar"...)            // append string contents      b is []byte{'b', 'a', 'r' }
</pre>

<p>
The function <code>copy</code> copies slice elements from
a source <code>src</code> to a destination <code>dst</code> and returns the
number of elements copied.
The <a href="#Core_types">core types</a> of both arguments must be slices
with <a href="#Type_identity">identical</a> element type.
The number of elements copied is the minimum of
<code>len(src)</code> and <code>len(dst)</code>.
As a special case, if the destination's core type is <code>[]byte</code>,
<code>copy</code> also accepts a source argument with core type
</a> <a href="#Core_types"><code>bytestring</code></a>.
This form copies the bytes from the byte slice or string into the byte slice.
</p>

<pre class="grammar">
copy(dst, src []T) int
copy(dst []byte, src string) int
</pre>

<p>
Examples:
</p>

<pre>
var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
var s = make([]int, 6)
var b = make([]byte, 5)
n1 := copy(s, a[0:])            // n1 == 6, s is []int{0, 1, 2, 3, 4, 5}
n2 := copy(s, s[2:])            // n2 == 4, s is []int{2, 3, 4, 5, 4, 5}
n3 := copy(b, "Hello, World!")  // n3 == 5, b is []byte("Hello")
</pre>


<h3 id="Clear">Clear</h3>

<p>
The built-in function <code>clear</code> takes an argument of <a href="#Map_types">map</a>,
<a href="#Slice_types">slice</a>, or <a href="#Type_parameter_declarations">type parameter</a> type,
and deletes or zeroes out all elements.
</p>

<pre class="grammar">
Call        Argument type     Result

clear(m)    map[K]T           deletes all entries, resulting in an
                              empty map (len(m) == 0)

clear(s)    []T               sets all elements up to the length of
                              <code>s</code> to the zero value of T

clear(t)    type parameter    see below
</pre>

<p>
If the type of the argument to <code>clear</code> is a
<a href="#Type_parameter_declarations">type parameter</a>,
all types in its type set must be maps or slices, and <code>clear</code>
performs the operation corresponding to the actual type argument.
</p>

<p>
If the map or slice is <code>nil</code>, <code>clear</code> is a no-op.
</p>


<h3 id="Close">Close</h3>

<p>
For an argument <code>ch</code> with a <a href="#Core_types">core type</a>
that is a <a href="#Channel_types">channel</a>, the built-in function <code>close</code>
records that no more values will be sent on the channel.
It is an error if <code>ch</code> is a receive-only channel.
Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
After calling <code>close</code>, and after any previously
sent values have been received, receive operations will return
the zero value for the channel's type without blocking.
The multi-valued <a href="#Receive_operator">receive operation</a>
returns a received value along with an indication of whether the channel is closed.
</p>


<h3 id="Complex_numbers">Manipulating complex numbers</h3>

<p>
Three functions assemble and disassemble complex numbers.
The built-in function <code>complex</code> constructs a complex
value from a floating-point real and imaginary part, while
<code>real</code> and <code>imag</code>
extract the real and imaginary parts of a complex value.
</p>

<pre class="grammar">
complex(realPart, imaginaryPart floatT) complexT
real(complexT) floatT
imag(complexT) floatT
</pre>

<p>
The type of the arguments and return value correspond.
For <code>complex</code>, the two arguments must be of the same
<a href="#Numeric_types">floating-point type</a> and the return type is the
<a href="#Numeric_types">complex type</a>
with the corresponding floating-point constituents:
<code>complex64</code> for <code>float32</code> arguments, and
<code>complex128</code> for <code>float64</code> arguments.
If one of the arguments evaluates to an untyped constant, it is first implicitly
<a href="#Conversions">converted</a> to the type of the other argument.
If both arguments evaluate to untyped constants, they must be non-complex
numbers or their imaginary parts must be zero, and the return value of
the function is an untyped complex constant.
</p>

<p>
For <code>real</code> and <code>imag</code>, the argument must be
of complex type, and the return type is the corresponding floating-point
type: <code>float32</code> for a <code>complex64</code> argument, and
<code>float64</code> for a <code>complex128</code> argument.
If the argument evaluates to an untyped constant, it must be a number,
and the return value of the function is an untyped floating-point constant.
</p>

<p>
The <code>real</code> and <code>imag</code> functions together form the inverse of
<code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
<code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
</p>

<p>
If the operands of these functions are all constants, the return
value is a constant.
</p>

<pre>
var a = complex(2, -2)             // complex128
const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
x := float32(math.Cos(math.Pi/2))  // float32
var c64 = complex(5, -x)           // complex64
var s int = complex(1, 0)          // untyped complex constant 1 + 0i can be converted to int
_ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
var rl = real(c64)                 // float32
var im = imag(a)                   // float64
const c = imag(b)                  // untyped constant -1.4
_ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
</pre>

<p>
Arguments of type parameter type are not permitted.
</p>


<h3 id="Deletion_of_map_elements">Deletion of map elements</h3>

<p>
The built-in function <code>delete</code> removes the element with key
<code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
value <code>k</code> must be <a href="#Assignability">assignable</a>
to the key type of <code>m</code>.
</p>

<pre class="grammar">
delete(m, k)  // remove element m[k] from map m
</pre>

<p>
If the type of <code>m</code> is a <a href="#Type_parameter_declarations">type parameter</a>,
all types in that type set must be maps, and they must all have identical key types.
</p>

<p>
If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
does not exist, <code>delete</code> is a no-op.
</p>


<h3 id="Length_and_capacity">Length and capacity</h3>

<p>
The built-in functions <code>len</code> and <code>cap</code> take arguments
of various types and return a result of type <code>int</code>.
The implementation guarantees that the result always fits into an <code>int</code>.
</p>

<pre class="grammar">
Call      Argument type    Result

len(s)    string type      string length in bytes
          [n]T, *[n]T      array length (== n)
          []T              slice length
          map[K]T          map length (number of defined keys)
          chan T           number of elements queued in channel buffer
          type parameter   see below

cap(s)    [n]T, *[n]T      array length (== n)
          []T              slice capacity
          chan T           channel buffer capacity
          type parameter   see below
</pre>

<p>
If the argument type is a <a href="#Type_parameter_declarations">type parameter</a> <code>P</code>,
the call <code>len(e)</code> (or <code>cap(e)</code> respectively) must be valid for
each type in <code>P</code>'s type set.
The result is the length (or capacity, respectively) of the argument whose type
corresponds to the type argument with which <code>P</code> was
<a href="#Instantiations">instantiated</a>.
</p>

<p>
The capacity of a slice is the number of elements for which there is
space allocated in the underlying array.
At any time the following relationship holds:
</p>

<pre>
0 &lt;= len(s) &lt;= cap(s)
</pre>

<p>
The length of a <code>nil</code> slice, map or channel is 0.
The capacity of a <code>nil</code> slice or channel is 0.
</p>

<p>
The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
<code>s</code> is a string constant. The expressions <code>len(s)</code> and
<code>cap(s)</code> are constants if the type of <code>s</code> is an array
or pointer to an array and the expression <code>s</code> does not contain
<a href="#Receive_operator">channel receives</a> or (non-constant)
<a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
Otherwise, invocations of <code>len</code> and <code>cap</code> are not
constant and <code>s</code> is evaluated.
</p>

<pre>
const (
	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
)
var z complex128
</pre>


<h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>

<p>
The built-in function <code>make</code> takes a type <code>T</code>,
optionally followed by a type-specific list of expressions.
The <a href="#Core_types">core type</a> of <code>T</code> must
be a slice, map or channel.
It returns a value of type <code>T</code> (not <code>*T</code>).
The memory is initialized as described in the section on
<a href="#The_zero_value">initial values</a>.
</p>

<pre class="grammar">
Call             Core type    Result

make(T, n)       slice        slice of type T with length n and capacity n
make(T, n, m)    slice        slice of type T with length n and capacity m

make(T)          map          map of type T
make(T, n)       map          map of type T with initial space for approximately n elements

make(T)          channel      unbuffered channel of type T
make(T, n)       channel      buffered channel of type T, buffer size n
</pre>

<p>
Each of the size arguments <code>n</code> and <code>m</code> must be of <a href="#Numeric_types">integer type</a>,
have a <a href="#Interface_types">type set</a> containing only integer types,
or be an untyped <a href="#Constants">constant</a>.
A constant size argument must be non-negative and <a href="#Representability">representable</a>
by a value of type <code>int</code>; if it is an untyped constant it is given type <code>int</code>.
If both <code>n</code> and <code>m</code> are provided and are constant, then
<code>n</code> must be no larger than <code>m</code>.
For slices and channels, if <code>n</code> is negative or larger than <code>m</code> at run time,
a <a href="#Run_time_panics">run-time panic</a> occurs.
</p>

<pre>
s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
c := make(chan int, 10)         // channel with a buffer size of 10
m := make(map[string]int, 100)  // map with initial space for approximately 100 elements
</pre>

<p>
Calling <code>make</code> with a map type and size hint <code>n</code> will
create a map with initial space to hold <code>n</code> map elements.
The precise behavior is implementation-dependent.
</p>


<h3 id="Min_and_max">Min and max</h3>

<p>
The built-in functions <code>min</code> and <code>max</code> compute the
smallest&mdash;or largest, respectively&mdash;value of a fixed number of
arguments of <a href="#Comparison_operators">ordered types</a>.
There must be at least one argument.
</p>

<p>
The same type rules as for <a href="#Operators">operators</a> apply:
for <a href="#Comparison_operators">ordered</a> arguments <code>x</code> and
<code>y</code>, <code>min(x, y)</code> is valid if <code>x + y</code> is valid,
and the type of <code>min(x, y)</code> is the type of <code>x + y</code>
(and similarly for <code>max</code>).
If all arguments are constant, the result is constant.
</p>

<pre>
var x, y int
m := min(x)                 // m == x
m := min(x, y)              // m is the smaller of x and y
m := max(x, y, 10)          // m is the larger of x and y but at least 10
c := max(1, 2.0, 10)        // c == 10.0 (floating-point kind)
f := max(0, float32(x))     // type of f is float32
var s []string
_ = min(s...)               // invalid: slice arguments are not permitted
t := max("", "foo", "bar")  // t == "foo" (string kind)
</pre>

<p>
For numeric arguments, assuming all NaNs are equal, <code>min</code> and <code>max</code> are
commutative and associative:
</p>

<pre>
min(x, y)    == min(y, x)
min(x, y, z) == min(min(x, y), z) == min(x, min(y, z))
</pre>

<p>
For floating-point arguments negative zero, NaN, and infinity the following rules apply:
</p>

<pre>
   x        y    min(x, y)    max(x, y)

  -0.0    0.0         -0.0          0.0    // negative zero is smaller than (non-negative) zero
  -Inf      y         -Inf            y    // negative infinity is smaller than any other number
  +Inf      y            y         +Inf    // positive infinity is larger than any other number
   NaN      y          NaN          NaN    // if any argument is a NaN, the result is a NaN
</pre>

<p>
For string arguments the result for <code>min</code> is the first argument
with the smallest (or for <code>max</code>, largest) value,
compared lexically byte-wise:
</p>

<pre>
min(x, y)    == if x <= y then x else y
min(x, y, z) == min(min(x, y), z)
</pre>

<h3 id="Allocation">Allocation</h3>

<p>
The built-in function <code>new</code> takes a type <code>T</code>,
allocates storage for a <a href="#Variables">variable</a> of that type
at run time, and returns a value of type <code>*T</code>
<a href="#Pointer_types">pointing</a> to it.
The variable is initialized as described in the section on
<a href="#The_zero_value">initial values</a>.
</p>

<pre class="grammar">
new(T)
</pre>

<p>
For instance
</p>

<pre>
type S struct { a int; b float64 }
new(S)
</pre>

<p>
allocates storage for a variable of type <code>S</code>,
initializes it (<code>a=0</code>, <code>b=0.0</code>),
and returns a value of type <code>*S</code> containing the address
of the location.
</p>


<h3 id="Handling_panics">Handling panics</h3>

<p> Two built-in functions, <code>panic</code> and <code>recover</code>,
assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
and program-defined error conditions.
</p>

<pre class="grammar">
func panic(interface{})
func recover() interface{}
</pre>

<p>
While executing a function <code>F</code>,
an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
terminates the execution of <code>F</code>.
Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
are then executed as usual.
Next, any deferred functions run by <code>F</code>'s caller are run,
and so on up to any deferred by the top-level function in the executing goroutine.
At that point, the program is terminated and the error
condition is reported, including the value of the argument to <code>panic</code>.
This termination sequence is called <i>panicking</i>.
</p>

<pre>
panic(42)
panic("unreachable")
panic(Error("cannot parse"))
</pre>

<p>
The <code>recover</code> function allows a program to manage behavior
of a panicking goroutine.
Suppose a function <code>G</code> defers a function <code>D</code> that calls
<code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
is executing.
When the running of deferred functions reaches <code>D</code>,
the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
If <code>D</code> returns normally, without starting a new
<code>panic</code>, the panicking sequence stops. In that case,
the state of functions called between <code>G</code> and the call to <code>panic</code>
is discarded, and normal execution resumes.
Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
execution terminates by returning to its caller.
</p>

<p>
The return value of <code>recover</code> is <code>nil</code> when the
goroutine is not panicking or <code>recover</code> was not called directly by a deferred function.
Conversely, if a goroutine is panicking and <code>recover</code> was called directly by a deferred function,
the return value of <code>recover</code> is guaranteed not to be <code>nil</code>.
To ensure this, calling <code>panic</code> with a <code>nil</code> interface value (or an untyped <code>nil</code>)
causes a <a href="#Run_time_panics">run-time panic</a>.
</p>

<p>
The <code>protect</code> function in the example below invokes
the function argument <code>g</code> and protects callers from
run-time panics raised by <code>g</code>.
</p>

<pre>
func protect(g func()) {
	defer func() {
		log.Println("done")  // Println executes normally even if there is a panic
		if x := recover(); x != nil {
			log.Printf("run time panic: %v", x)
		}
	}()
	log.Println("start")
	g()
}
</pre>


<h3 id="Bootstrapping">Bootstrapping</h3>

<p>
Current implementations provide several built-in functions useful during
bootstrapping. These functions are documented for completeness but are not
guaranteed to stay in the language. They do not return a result.
</p>

<pre class="grammar">
Function   Behavior

print      prints all arguments; formatting of arguments is implementation-specific
println    like print but prints spaces between arguments and a newline at the end
</pre>

<p>
Implementation restriction: <code>print</code> and <code>println</code> need not
accept arbitrary argument types, but printing of boolean, numeric, and string
<a href="#Types">types</a> must be supported.
</p>


<h2 id="Packages">Packages</h2>

<p>
Go programs are constructed by linking together <i>packages</i>.
A package in turn is constructed from one or more source files
that together declare constants, types, variables and functions
belonging to the package and which are accessible in all files
of the same package. Those elements may be
<a href="#Exported_identifiers">exported</a> and used in another package.
</p>

<h3 id="Source_file_organization">Source file organization</h3>

<p>
Each source file consists of a package clause defining the package
to which it belongs, followed by a possibly empty set of import
declarations that declare packages whose contents it wishes to use,
followed by a possibly empty set of declarations of functions,
types, variables, and constants.
</p>

<pre class="ebnf">
SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
</pre>

<h3 id="Package_clause">Package clause</h3>

<p>
A package clause begins each source file and defines the package
to which the file belongs.
</p>

<pre class="ebnf">
PackageClause  = "package" PackageName .
PackageName    = identifier .
</pre>

<p>
The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
</p>

<pre>
package math
</pre>

<p>
A set of files sharing the same PackageName form the implementation of a package.
An implementation may require that all source files for a package inhabit the same directory.
</p>

<h3 id="Import_declarations">Import declarations</h3>

<p>
An import declaration states that the source file containing the declaration
depends on functionality of the <i>imported</i> package
(<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
and enables access to <a href="#Exported_identifiers">exported</a> identifiers
of that package.
The import names an identifier (PackageName) to be used for access and an ImportPath
that specifies the package to be imported.
</p>

<pre class="ebnf">
ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
ImportSpec       = [ "." | PackageName ] ImportPath .
ImportPath       = string_lit .
</pre>

<p>
The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
to access exported identifiers of the package within the importing source file.
It is declared in the <a href="#Blocks">file block</a>.
If the PackageName is omitted, it defaults to the identifier specified in the
<a href="#Package_clause">package clause</a> of the imported package.
If an explicit period (<code>.</code>) appears instead of a name, all the
package's exported identifiers declared in that package's
<a href="#Blocks">package block</a> will be declared in the importing source
file's file block and must be accessed without a qualifier.
</p>

<p>
The interpretation of the ImportPath is implementation-dependent but
it is typically a substring of the full file name of the compiled
package and may be relative to a repository of installed packages.
</p>

<p>
Implementation restriction: A compiler may restrict ImportPaths to
non-empty strings using only characters belonging to
<a href="https://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
L, M, N, P, and S general categories (the Graphic characters without
spaces) and may also exclude the characters
<code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
and the Unicode replacement character U+FFFD.
</p>

<p>
Consider a compiled a package containing the package clause
<code>package math</code>, which exports function <code>Sin</code>, and
installed the compiled package in the file identified by
<code>"lib/math"</code>.
This table illustrates how <code>Sin</code> is accessed in files
that import the package after the
various types of import declaration.
</p>

<pre class="grammar">
Import declaration          Local name of Sin

import   "lib/math"         math.Sin
import m "lib/math"         m.Sin
import . "lib/math"         Sin
</pre>

<p>
An import declaration declares a dependency relation between
the importing and imported package.
It is illegal for a package to import itself, directly or indirectly,
or to directly import a package without
referring to any of its exported identifiers. To import a package solely for
its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
identifier as explicit package name:
</p>

<pre>
import _ "lib/math"
</pre>


<h3 id="An_example_package">An example package</h3>

<p>
Here is a complete Go package that implements a concurrent prime sieve.
</p>

<pre>
package main

import "fmt"

// Send the sequence 2, 3, 4, … to channel 'ch'.
func generate(ch chan&lt;- int) {
	for i := 2; ; i++ {
		ch &lt;- i  // Send 'i' to channel 'ch'.
	}
}

// Copy the values from channel 'src' to channel 'dst',
// removing those divisible by 'prime'.
func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
	for i := range src {  // Loop over values received from 'src'.
		if i%prime != 0 {
			dst &lt;- i  // Send 'i' to channel 'dst'.
		}
	}
}

// The prime sieve: Daisy-chain filter processes together.
func sieve() {
	ch := make(chan int)  // Create a new channel.
	go generate(ch)       // Start generate() as a subprocess.
	for {
		prime := &lt;-ch
		fmt.Print(prime, "\n")
		ch1 := make(chan int)
		go filter(ch, ch1, prime)
		ch = ch1
	}
}

func main() {
	sieve()
}
</pre>

<h2 id="Program_initialization_and_execution">Program initialization and execution</h2>

<h3 id="The_zero_value">The zero value</h3>
<p>
When storage is allocated for a <a href="#Variables">variable</a>,
either through a declaration or a call of <code>new</code>, or when
a new value is created, either through a composite literal or a call
of <code>make</code>,
and no explicit initialization is provided, the variable or value is
given a default value.  Each element of such a variable or value is
set to the <i>zero value</i> for its type: <code>false</code> for booleans,
<code>0</code> for numeric types, <code>""</code>
for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
This initialization is done recursively, so for instance each element of an
array of structs will have its fields zeroed if no value is specified.
</p>
<p>
These two simple declarations are equivalent:
</p>

<pre>
var i int
var i int = 0
</pre>

<p>
After
</p>

<pre>
type T struct { i int; f float64; next *T }
t := new(T)
</pre>

<p>
the following holds:
</p>

<pre>
t.i == 0
t.f == 0.0
t.next == nil
</pre>

<p>
The same would also be true after
</p>

<pre>
var t T
</pre>

<h3 id="Package_initialization">Package initialization</h3>

<p>
Within a package, package-level variable initialization proceeds stepwise,
with each step selecting the variable earliest in <i>declaration order</i>
which has no dependencies on uninitialized variables.
</p>

<p>
More precisely, a package-level variable is considered <i>ready for
initialization</i> if it is not yet initialized and either has
no <a href="#Variable_declarations">initialization expression</a> or
its initialization expression has no <i>dependencies</i> on uninitialized variables.
Initialization proceeds by repeatedly initializing the next package-level
variable that is earliest in declaration order and ready for initialization,
until there are no variables ready for initialization.
</p>

<p>
If any variables are still uninitialized when this
process ends, those variables are part of one or more initialization cycles,
and the program is not valid.
</p>

<p>
Multiple variables on the left-hand side of a variable declaration initialized
by single (multi-valued) expression on the right-hand side are initialized
together: If any of the variables on the left-hand side is initialized, all
those variables are initialized in the same step.
</p>

<pre>
var x = a
var a, b = f() // a and b are initialized together, before x is initialized
</pre>

<p>
For the purpose of package initialization, <a href="#Blank_identifier">blank</a>
variables are treated like any other variables in declarations.
</p>

<p>
The declaration order of variables declared in multiple files is determined
by the order in which the files are presented to the compiler: Variables
declared in the first file are declared before any of the variables declared
in the second file, and so on.
To ensure reproducible initialization behavior, build systems are encouraged
to present multiple files belonging to the same package in lexical file name
order to a compiler.
</p>

<p>
Dependency analysis does not rely on the actual values of the
variables, only on lexical <i>references</i> to them in the source,
analyzed transitively. For instance, if a variable <code>x</code>'s
initialization expression refers to a function whose body refers to
variable <code>y</code> then <code>x</code> depends on <code>y</code>.
Specifically:
</p>

<ul>
<li>
A reference to a variable or function is an identifier denoting that
variable or function.
</li>

<li>
A reference to a method <code>m</code> is a
<a href="#Method_values">method value</a> or
<a href="#Method_expressions">method expression</a> of the form
<code>t.m</code>, where the (static) type of <code>t</code> is
not an interface type, and the method <code>m</code> is in the
<a href="#Method_sets">method set</a> of <code>t</code>.
It is immaterial whether the resulting function value
<code>t.m</code> is invoked.
</li>

<li>
A variable, function, or method <code>x</code> depends on a variable
<code>y</code> if <code>x</code>'s initialization expression or body
(for functions and methods) contains a reference to <code>y</code>
or to a function or method that depends on <code>y</code>.
</li>
</ul>

<p>
For example, given the declarations
</p>

<pre>
var (
	a = c + b  // == 9
	b = f()    // == 4
	c = f()    // == 5
	d = 3      // == 5 after initialization has finished
)

func f() int {
	d++
	return d
}
</pre>

<p>
the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
Note that the order of subexpressions in initialization expressions is irrelevant:
<code>a = c + b</code> and <code>a = b + c</code> result in the same initialization
order in this example.
</p>

<p>
Dependency analysis is performed per package; only references referring
to variables, functions, and (non-interface) methods declared in the current
package are considered. If other, hidden, data dependencies exists between
variables, the initialization order between those variables is unspecified.
</p>

<p>
For instance, given the declarations
</p>

<pre>
var x = I(T{}).ab()   // x has an undetected, hidden dependency on a and b
var _ = sideEffect()  // unrelated to x, a, or b
var a = b
var b = 42

type I interface      { ab() []int }
type T struct{}
func (T) ab() []int   { return []int{a, b} }
</pre>

<p>
the variable <code>a</code> will be initialized after <code>b</code> but
whether <code>x</code> is initialized before <code>b</code>, between
<code>b</code> and <code>a</code>, or after <code>a</code>, and
thus also the moment at which <code>sideEffect()</code> is called (before
or after <code>x</code> is initialized) is not specified.
</p>

<p>
Variables may also be initialized using functions named <code>init</code>
declared in the package block, with no arguments and no result parameters.
</p>

<pre>
func init() { … }
</pre>

<p>
Multiple such functions may be defined per package, even within a single
source file. In the package block, the <code>init</code> identifier can
be used only to declare <code>init</code> functions, yet the identifier
itself is not <a href="#Declarations_and_scope">declared</a>. Thus
<code>init</code> functions cannot be referred to from anywhere
in a program.
</p>

<p>
The entire package is initialized by assigning initial values
to all its package-level variables followed by calling
all <code>init</code> functions in the order they appear
in the source, possibly in multiple files, as presented
to the compiler.
</p>

<h3 id="Program_initialization">Program initialization</h3>

<p>
The packages of a complete program are initialized stepwise, one package at a time.
If a package has imports, the imported packages are initialized
before initializing the package itself. If multiple packages import
a package, the imported package will be initialized only once.
The importing of packages, by construction, guarantees that there
can be no cyclic initialization dependencies.
More precisely:
</p>

<p>
Given the list of all packages, sorted by import path, in each step the first
uninitialized package in the list for which all imported packages (if any) are
already initialized is <a href="#Package_initialization">initialized</a>.
This step is repeated until all packages are initialized.
</p>

<p>
Package initialization&mdash;variable initialization and the invocation of
<code>init</code> functions&mdash;happens in a single goroutine,
sequentially, one package at a time.
An <code>init</code> function may launch other goroutines, which can run
concurrently with the initialization code. However, initialization
always sequences
the <code>init</code> functions: it will not invoke the next one
until the previous one has returned.
</p>

<h3 id="Program_execution">Program execution</h3>
<p>
A complete program is created by linking a single, unimported package
called the <i>main package</i> with all the packages it imports, transitively.
The main package must
have package name <code>main</code> and
declare a function <code>main</code> that takes no
arguments and returns no value.
</p>

<pre>
func main() { … }
</pre>

<p>
Program execution begins by <a href="#Program_initialization">initializing the program</a>
and then invoking the function <code>main</code> in package <code>main</code>.
When that function invocation returns, the program exits.
It does not wait for other (non-<code>main</code>) goroutines to complete.
</p>

<h2 id="Errors">Errors</h2>

<p>
The predeclared type <code>error</code> is defined as
</p>

<pre>
type error interface {
	Error() string
}
</pre>

<p>
It is the conventional interface for representing an error condition,
with the nil value representing no error.
For instance, a function to read data from a file might be defined:
</p>

<pre>
func Read(f *File, b []byte) (n int, err error)
</pre>

<h2 id="Run_time_panics">Run-time panics</h2>

<p>
Execution errors such as attempting to index an array out
of bounds trigger a <i>run-time panic</i> equivalent to a call of
the built-in function <a href="#Handling_panics"><code>panic</code></a>
with a value of the implementation-defined interface type <code>runtime.Error</code>.
That type satisfies the predeclared interface type
<a href="#Errors"><code>error</code></a>.
The exact error values that
represent distinct run-time error conditions are unspecified.
</p>

<pre>
package runtime

type Error interface {
	error
	// and perhaps other methods
}
</pre>

<h2 id="System_considerations">System considerations</h2>

<h3 id="Package_unsafe">Package <code>unsafe</code></h3>

<p>
The built-in package <code>unsafe</code>, known to the compiler
and accessible through the <a href="#Import_declarations">import path</a> <code>"unsafe"</code>,
provides facilities for low-level programming including operations
that violate the type system. A package using <code>unsafe</code>
must be vetted manually for type safety and may not be portable.
The package provides the following interface:
</p>

<pre class="grammar">
package unsafe

type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
type Pointer *ArbitraryType

func Alignof(variable ArbitraryType) uintptr
func Offsetof(selector ArbitraryType) uintptr
func Sizeof(variable ArbitraryType) uintptr

type IntegerType int  // shorthand for an integer type; it is not a real type
func Add(ptr Pointer, len IntegerType) Pointer
func Slice(ptr *ArbitraryType, len IntegerType) []ArbitraryType
func SliceData(slice []ArbitraryType) *ArbitraryType
func String(ptr *byte, len IntegerType) string
func StringData(str string) *byte
</pre>

<!--
These conversions also apply to type parameters with suitable core types.
Determine if we can simply use core type instead of underlying type here,
of if the general conversion rules take care of this.
-->

<p>
A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
value may not be <a href="#Address_operators">dereferenced</a>.
Any pointer or value of <a href="#Underlying_types">underlying type</a> <code>uintptr</code> can be
<a href="#Conversions">converted</a> to a type of underlying type <code>Pointer</code> and vice versa.
The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
</p>

<pre>
var f float64
bits = *(*uint64)(unsafe.Pointer(&amp;f))

type ptr unsafe.Pointer
bits = *(*uint64)(ptr(&amp;f))

var p ptr = nil
</pre>

<p>
The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
as if <code>v</code> was declared via <code>var v = x</code>.
</p>
<p>
The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
<code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
without pointer indirections through fields of the struct.
For a struct <code>s</code> with field <code>f</code>:
</p>

<pre>
uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
</pre>

<p>
Computer architectures may require memory addresses to be <i>aligned</i>;
that is, for addresses of a variable to be a multiple of a factor,
the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
takes an expression denoting a variable of any type and returns the
alignment of the (type of the) variable in bytes.  For a variable
<code>x</code>:
</p>

<pre>
uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
</pre>

<p>
A (variable of) type <code>T</code> has <i>variable size</i> if <code>T</code>
is a <a href="#Type_parameter_declarations">type parameter</a>, or if it is an
array or struct type containing elements
or fields of variable size. Otherwise the size is <i>constant</i>.
Calls to <code>Alignof</code>, <code>Offsetof</code>, and <code>Sizeof</code>
are compile-time <a href="#Constant_expressions">constant expressions</a> of
type <code>uintptr</code> if their arguments (or the struct <code>s</code> in
the selector expression <code>s.f</code> for <code>Offsetof</code>) are types
of constant size.
</p>

<p>
The function <code>Add</code> adds <code>len</code> to <code>ptr</code>
and returns the updated pointer <code>unsafe.Pointer(uintptr(ptr) + uintptr(len))</code>.
The <code>len</code> argument must be of <a href="#Numeric_types">integer type</a> or an untyped <a href="#Constants">constant</a>.
A constant <code>len</code> argument must be <a href="#Representability">representable</a> by a value of type <code>int</code>;
if it is an untyped constant it is given type <code>int</code>.
The rules for <a href="/pkg/unsafe#Pointer">valid uses</a> of <code>Pointer</code> still apply.
</p>

<p>
The function <code>Slice</code> returns a slice whose underlying array starts at <code>ptr</code>
and whose length and capacity are <code>len</code>.
<code>Slice(ptr, len)</code> is equivalent to
</p>

<pre>
(*[len]ArbitraryType)(unsafe.Pointer(ptr))[:]
</pre>

<p>
except that, as a special case, if <code>ptr</code>
is <code>nil</code> and <code>len</code> is zero,
<code>Slice</code> returns <code>nil</code>.
</p>

<p>
The <code>len</code> argument must be of <a href="#Numeric_types">integer type</a> or an untyped <a href="#Constants">constant</a>.
A constant <code>len</code> argument must be non-negative and <a href="#Representability">representable</a> by a value of type <code>int</code>;
if it is an untyped constant it is given type <code>int</code>.
At run time, if <code>len</code> is negative,
or if <code>ptr</code> is <code>nil</code> and <code>len</code> is not zero,
a <a href="#Run_time_panics">run-time panic</a> occurs.
</p>

<p>
The function <code>SliceData</code> returns a pointer to the underlying array of the <code>slice</code> argument.
If the slice's capacity <code>cap(slice)</code> is not zero, that pointer is <code>&slice[:1][0]</code>.
If <code>slice</code> is <code>nil</code>, the result is <code>nil</code>.
Otherwise it  is a non-<code>nil</code> pointer to an unspecified memory address.
</p>

<p>
The function <code>String</code> returns a <code>string</code> value whose underlying bytes start at
<code>ptr</code> and whose length is <code>len</code>.
The same requirements apply to the <code>ptr</code> and <code>len</code> argument as in the function
<code>Slice</code>. If <code>len</code> is zero, the result is the empty string <code>""</code>.
Since Go strings are immutable, the bytes passed to <code>String</code> must not be modified afterwards.
</p>

<p>
The function <code>StringData</code> returns a pointer to the underlying bytes of the <code>str</code> argument.
For an empty string the return value is unspecified, and may be <code>nil</code>.
Since Go strings are immutable, the bytes returned by <code>StringData</code> must not be modified.
</p>

<h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>

<p>
For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
</p>

<pre class="grammar">
type                                 size in bytes

byte, uint8, int8                     1
uint16, int16                         2
uint32, int32, float32                4
uint64, int64, float64, complex64     8
complex128                           16
</pre>

<p>
The following minimal alignment properties are guaranteed:
</p>
<ol>
<li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
</li>

<li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
   all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
</li>

<li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
	the alignment of a variable of the array's element type.
</li>
</ol>

<p>
A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
</p>

<h2 id="Appendix">Appendix</h2>

<h3 id="Type_unification_rules">Type unification rules</h3>

<p>
The type unification rules describe if and how two types unify.
The precise details are relevant for Go implementations,
affect the specifics of error messages (such as whether
a compiler reports a type inference or other error),
and may explain why type inference fails in unusual code situations.
But by and large these rules can be ignored when writing Go code:
type inference is designed to mostly "work as expected",
and the unification rules are fine-tuned accordingly.
</p>

<p>
Type unification is controlled by a <i>matching mode</i>, which may
be <i>exact</i> or <i>loose</i>.
As unification recursively descends a composite type structure,
the matching mode used for elements of the type, the <i>element matching mode</i>,
remains the same as the matching mode except when two types are unified for
<a href="#Assignability">assignability</a> (<code><sub>A</sub></code>):
in this case, the matching mode is <i>loose</i> at the top level but
then changes to <i>exact</i> for element types, reflecting the fact
that types don't have to be identical to be assignable.
</p>

<p>
Two types that are not bound type parameters unify exactly if any of
following conditions is true:
</p>

<ul>
<li>
	Both types are <a href="#Type_identity">identical</a>.
</li>
<li>
	Both types have identical structure and their element types
	unify exactly.
</li>
<li>
	Exactly one type is an <a href="#Type_inference">unbound</a>
	type parameter with a <a href="#Core_types">core type</a>,
	and that core type unifies with the other type per the
	unification rules for <code><sub>A</sub></code>
	(loose unification at the top level and exact unification
	for element types).
</li>
</ul>

<p>
If both types are bound type parameters, they unify per the given
matching modes if:
</p>

<ul>
<li>
	Both type parameters are identical.
</li>
<li>
	At most one of the type parameters has a known type argument.
	In this case, the type parameters are <i>joined</i>:
	they both stand for the same type argument.
	If neither type parameter has a known type argument yet,
	a future type argument inferred for one the type parameters
	is simultaneously inferred for both of them.
</li>
<li>
	Both type parameters have a known type argument
	and the type arguments unify per the given matching modes.
</li>
</ul>

<p>
A single bound type parameter <code>P</code> and another type <code>T</code> unify
per the given matching modes if:
</p>

<ul>
<li>
	<code>P</code> doesn't have a known type argument.
	In this case, <code>T</code> is inferred as the type argument for <code>P</code>.
</li>
<li>
	<code>P</code> does have a known type argument <code>A</code>,
	<code>A</code> and <code>T</code> unify per the given matching modes,
	and one of the following conditions is true:
	<ul>
	<li>
		Both <code>A</code> and <code>T</code> are interface types:
		In this case, if both <code>A</code> and <code>T</code> are
		also <a href="#Type_definitions">defined</a> types,
		they must be <a href="#Type_identity">identical</a>.
		Otherwise, if neither of them is a defined type, they must
		have the same number of methods
		(unification of <code>A</code> and <code>T</code> already
		established that the methods match).
	</li>
	<li>
		Neither <code>A</code> nor <code>T</code> are interface types:
		In this case, if <code>T</code> is a defined type, <code>T</code>
		replaces <code>A</code> as the inferred type argument for <code>P</code>.
	</li>
	</ul>
</li>
</ul>

<p>
Finally, two types that are not bound type parameters unify loosely
(and per the element matching mode) if:
</p>

<ul>
<li>
	Both types unify exactly.
</li>
<li>
	One type is a <a href="#Type_definitions">defined type</a>,
	the other type is a type literal, but not an interface,
	and their underlying types unify per the element matching mode.
</li>
<li>
	Both types are interfaces (but not type parameters) with
	identical <a href="#Interface_types">type terms</a>,
	both or neither embed the predeclared type
	<a href="#Predeclared_identifiers">comparable</a>,
	corresponding method types unify per the element matching mode,
	and the method set of one of the interfaces is a subset of
	the method set of the other interface.
</li>
<li>
	Only one type is an interface (but not a type parameter),
	corresponding methods of the two types unify per the element matching mode,
	and the method set of the interface is a subset of
	the method set of the other type.
</li>
<li>
	Both types have the same structure and their element types
	unify per the element matching mode.
</li>
</ul>