summaryrefslogtreecommitdiffstats
path: root/src/math/cmplx/sin.go
blob: 51cf40566dc6129279ac3c454ce3563731f1242f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package cmplx

import "math"

// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8:  June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
//    Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
//   The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
//   Stephen L. Moshier
//   moshier@na-net.ornl.gov

// Complex circular sine
//
// DESCRIPTION:
//
// If
//     z = x + iy,
//
// then
//
//     w = sin x  cosh y  +  i cos x sinh y.
//
// csin(z) = -i csinh(iz).
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    DEC       -10,+10      8400       5.3e-17     1.3e-17
//    IEEE      -10,+10     30000       3.8e-16     1.0e-16
// Also tested by csin(casin(z)) = z.

// Sin returns the sine of x.
func Sin(x complex128) complex128 {
	switch re, im := real(x), imag(x); {
	case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)):
		return complex(math.NaN(), im)
	case math.IsInf(im, 0):
		switch {
		case re == 0:
			return x
		case math.IsInf(re, 0) || math.IsNaN(re):
			return complex(math.NaN(), im)
		}
	case re == 0 && math.IsNaN(im):
		return x
	}
	s, c := math.Sincos(real(x))
	sh, ch := sinhcosh(imag(x))
	return complex(s*ch, c*sh)
}

// Complex hyperbolic sine
//
// DESCRIPTION:
//
// csinh z = (cexp(z) - cexp(-z))/2
//         = sinh x * cos y  +  i cosh x * sin y .
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    IEEE      -10,+10     30000       3.1e-16     8.2e-17

// Sinh returns the hyperbolic sine of x.
func Sinh(x complex128) complex128 {
	switch re, im := real(x), imag(x); {
	case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)):
		return complex(re, math.NaN())
	case math.IsInf(re, 0):
		switch {
		case im == 0:
			return complex(re, im)
		case math.IsInf(im, 0) || math.IsNaN(im):
			return complex(re, math.NaN())
		}
	case im == 0 && math.IsNaN(re):
		return complex(math.NaN(), im)
	}
	s, c := math.Sincos(imag(x))
	sh, ch := sinhcosh(real(x))
	return complex(c*sh, s*ch)
}

// Complex circular cosine
//
// DESCRIPTION:
//
// If
//     z = x + iy,
//
// then
//
//     w = cos x  cosh y  -  i sin x sinh y.
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    DEC       -10,+10      8400       4.5e-17     1.3e-17
//    IEEE      -10,+10     30000       3.8e-16     1.0e-16

// Cos returns the cosine of x.
func Cos(x complex128) complex128 {
	switch re, im := real(x), imag(x); {
	case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)):
		return complex(math.NaN(), -im*math.Copysign(0, re))
	case math.IsInf(im, 0):
		switch {
		case re == 0:
			return complex(math.Inf(1), -re*math.Copysign(0, im))
		case math.IsInf(re, 0) || math.IsNaN(re):
			return complex(math.Inf(1), math.NaN())
		}
	case re == 0 && math.IsNaN(im):
		return complex(math.NaN(), 0)
	}
	s, c := math.Sincos(real(x))
	sh, ch := sinhcosh(imag(x))
	return complex(c*ch, -s*sh)
}

// Complex hyperbolic cosine
//
// DESCRIPTION:
//
// ccosh(z) = cosh x  cos y + i sinh x sin y .
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    IEEE      -10,+10     30000       2.9e-16     8.1e-17

// Cosh returns the hyperbolic cosine of x.
func Cosh(x complex128) complex128 {
	switch re, im := real(x), imag(x); {
	case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)):
		return complex(math.NaN(), re*math.Copysign(0, im))
	case math.IsInf(re, 0):
		switch {
		case im == 0:
			return complex(math.Inf(1), im*math.Copysign(0, re))
		case math.IsInf(im, 0) || math.IsNaN(im):
			return complex(math.Inf(1), math.NaN())
		}
	case im == 0 && math.IsNaN(re):
		return complex(math.NaN(), im)
	}
	s, c := math.Sincos(imag(x))
	sh, ch := sinhcosh(real(x))
	return complex(c*ch, s*sh)
}

// calculate sinh and cosh.
func sinhcosh(x float64) (sh, ch float64) {
	if math.Abs(x) <= 0.5 {
		return math.Sinh(x), math.Cosh(x)
	}
	e := math.Exp(x)
	ei := 0.5 / e
	e *= 0.5
	return e - ei, e + ei
}