summaryrefslogtreecommitdiffstats
path: root/src/regexp/backtrack.go
blob: 0739f5ff58866d333a24f5628c087765f669519c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// backtrack is a regular expression search with submatch
// tracking for small regular expressions and texts. It allocates
// a bit vector with (length of input) * (length of prog) bits,
// to make sure it never explores the same (character position, instruction)
// state multiple times. This limits the search to run in time linear in
// the length of the test.
//
// backtrack is a fast replacement for the NFA code on small
// regexps when onepass cannot be used.

package regexp

import (
	"regexp/syntax"
	"sync"
)

// A job is an entry on the backtracker's job stack. It holds
// the instruction pc and the position in the input.
type job struct {
	pc  uint32
	arg bool
	pos int
}

const (
	visitedBits        = 32
	maxBacktrackProg   = 500        // len(prog.Inst) <= max
	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
)

// bitState holds state for the backtracker.
type bitState struct {
	end      int
	cap      []int
	matchcap []int
	jobs     []job
	visited  []uint32

	inputs inputs
}

var bitStatePool sync.Pool

func newBitState() *bitState {
	b, ok := bitStatePool.Get().(*bitState)
	if !ok {
		b = new(bitState)
	}
	return b
}

func freeBitState(b *bitState) {
	b.inputs.clear()
	bitStatePool.Put(b)
}

// maxBitStateLen returns the maximum length of a string to search with
// the backtracker using prog.
func maxBitStateLen(prog *syntax.Prog) int {
	if !shouldBacktrack(prog) {
		return 0
	}
	return maxBacktrackVector / len(prog.Inst)
}

// shouldBacktrack reports whether the program is too
// long for the backtracker to run.
func shouldBacktrack(prog *syntax.Prog) bool {
	return len(prog.Inst) <= maxBacktrackProg
}

// reset resets the state of the backtracker.
// end is the end position in the input.
// ncap is the number of captures.
func (b *bitState) reset(prog *syntax.Prog, end int, ncap int) {
	b.end = end

	if cap(b.jobs) == 0 {
		b.jobs = make([]job, 0, 256)
	} else {
		b.jobs = b.jobs[:0]
	}

	visitedSize := (len(prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
	if cap(b.visited) < visitedSize {
		b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
	} else {
		b.visited = b.visited[:visitedSize]
		for i := range b.visited {
			b.visited[i] = 0
		}
	}

	if cap(b.cap) < ncap {
		b.cap = make([]int, ncap)
	} else {
		b.cap = b.cap[:ncap]
	}
	for i := range b.cap {
		b.cap[i] = -1
	}

	if cap(b.matchcap) < ncap {
		b.matchcap = make([]int, ncap)
	} else {
		b.matchcap = b.matchcap[:ncap]
	}
	for i := range b.matchcap {
		b.matchcap[i] = -1
	}
}

// shouldVisit reports whether the combination of (pc, pos) has not
// been visited yet.
func (b *bitState) shouldVisit(pc uint32, pos int) bool {
	n := uint(int(pc)*(b.end+1) + pos)
	if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
		return false
	}
	b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
	return true
}

// push pushes (pc, pos, arg) onto the job stack if it should be
// visited.
func (b *bitState) push(re *Regexp, pc uint32, pos int, arg bool) {
	// Only check shouldVisit when arg is false.
	// When arg is true, we are continuing a previous visit.
	if re.prog.Inst[pc].Op != syntax.InstFail && (arg || b.shouldVisit(pc, pos)) {
		b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
	}
}

// tryBacktrack runs a backtracking search starting at pos.
func (re *Regexp) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
	longest := re.longest

	b.push(re, pc, pos, false)
	for len(b.jobs) > 0 {
		l := len(b.jobs) - 1
		// Pop job off the stack.
		pc := b.jobs[l].pc
		pos := b.jobs[l].pos
		arg := b.jobs[l].arg
		b.jobs = b.jobs[:l]

		// Optimization: rather than push and pop,
		// code that is going to Push and continue
		// the loop simply updates ip, p, and arg
		// and jumps to CheckAndLoop. We have to
		// do the ShouldVisit check that Push
		// would have, but we avoid the stack
		// manipulation.
		goto Skip
	CheckAndLoop:
		if !b.shouldVisit(pc, pos) {
			continue
		}
	Skip:

		inst := &re.prog.Inst[pc]

		switch inst.Op {
		default:
			panic("bad inst")
		case syntax.InstFail:
			panic("unexpected InstFail")
		case syntax.InstAlt:
			// Cannot just
			//   b.push(inst.Out, pos, false)
			//   b.push(inst.Arg, pos, false)
			// If during the processing of inst.Out, we encounter
			// inst.Arg via another path, we want to process it then.
			// Pushing it here will inhibit that. Instead, re-push
			// inst with arg==true as a reminder to push inst.Arg out
			// later.
			if arg {
				// Finished inst.Out; try inst.Arg.
				arg = false
				pc = inst.Arg
				goto CheckAndLoop
			} else {
				b.push(re, pc, pos, true)
				pc = inst.Out
				goto CheckAndLoop
			}

		case syntax.InstAltMatch:
			// One opcode consumes runes; the other leads to match.
			switch re.prog.Inst[inst.Out].Op {
			case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
				// inst.Arg is the match.
				b.push(re, inst.Arg, pos, false)
				pc = inst.Arg
				pos = b.end
				goto CheckAndLoop
			}
			// inst.Out is the match - non-greedy
			b.push(re, inst.Out, b.end, false)
			pc = inst.Out
			goto CheckAndLoop

		case syntax.InstRune:
			r, width := i.step(pos)
			if !inst.MatchRune(r) {
				continue
			}
			pos += width
			pc = inst.Out
			goto CheckAndLoop

		case syntax.InstRune1:
			r, width := i.step(pos)
			if r != inst.Rune[0] {
				continue
			}
			pos += width
			pc = inst.Out
			goto CheckAndLoop

		case syntax.InstRuneAnyNotNL:
			r, width := i.step(pos)
			if r == '\n' || r == endOfText {
				continue
			}
			pos += width
			pc = inst.Out
			goto CheckAndLoop

		case syntax.InstRuneAny:
			r, width := i.step(pos)
			if r == endOfText {
				continue
			}
			pos += width
			pc = inst.Out
			goto CheckAndLoop

		case syntax.InstCapture:
			if arg {
				// Finished inst.Out; restore the old value.
				b.cap[inst.Arg] = pos
				continue
			} else {
				if inst.Arg < uint32(len(b.cap)) {
					// Capture pos to register, but save old value.
					b.push(re, pc, b.cap[inst.Arg], true) // come back when we're done.
					b.cap[inst.Arg] = pos
				}
				pc = inst.Out
				goto CheckAndLoop
			}

		case syntax.InstEmptyWidth:
			flag := i.context(pos)
			if !flag.match(syntax.EmptyOp(inst.Arg)) {
				continue
			}
			pc = inst.Out
			goto CheckAndLoop

		case syntax.InstNop:
			pc = inst.Out
			goto CheckAndLoop

		case syntax.InstMatch:
			// We found a match. If the caller doesn't care
			// where the match is, no point going further.
			if len(b.cap) == 0 {
				return true
			}

			// Record best match so far.
			// Only need to check end point, because this entire
			// call is only considering one start position.
			if len(b.cap) > 1 {
				b.cap[1] = pos
			}
			if old := b.matchcap[1]; old == -1 || (longest && pos > 0 && pos > old) {
				copy(b.matchcap, b.cap)
			}

			// If going for first match, we're done.
			if !longest {
				return true
			}

			// If we used the entire text, no longer match is possible.
			if pos == b.end {
				return true
			}

			// Otherwise, continue on in hope of a longer match.
			continue
		}
	}

	return longest && len(b.matchcap) > 1 && b.matchcap[1] >= 0
}

// backtrack runs a backtracking search of prog on the input starting at pos.
func (re *Regexp) backtrack(ib []byte, is string, pos int, ncap int, dstCap []int) []int {
	startCond := re.cond
	if startCond == ^syntax.EmptyOp(0) { // impossible
		return nil
	}
	if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
		// Anchored match, past beginning of text.
		return nil
	}

	b := newBitState()
	i, end := b.inputs.init(nil, ib, is)
	b.reset(re.prog, end, ncap)

	// Anchored search must start at the beginning of the input
	if startCond&syntax.EmptyBeginText != 0 {
		if len(b.cap) > 0 {
			b.cap[0] = pos
		}
		if !re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
			freeBitState(b)
			return nil
		}
	} else {

		// Unanchored search, starting from each possible text position.
		// Notice that we have to try the empty string at the end of
		// the text, so the loop condition is pos <= end, not pos < end.
		// This looks like it's quadratic in the size of the text,
		// but we are not clearing visited between calls to TrySearch,
		// so no work is duplicated and it ends up still being linear.
		width := -1
		for ; pos <= end && width != 0; pos += width {
			if len(re.prefix) > 0 {
				// Match requires literal prefix; fast search for it.
				advance := i.index(re, pos)
				if advance < 0 {
					freeBitState(b)
					return nil
				}
				pos += advance
			}

			if len(b.cap) > 0 {
				b.cap[0] = pos
			}
			if re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
				// Match must be leftmost; done.
				goto Match
			}
			_, width = i.step(pos)
		}
		freeBitState(b)
		return nil
	}

Match:
	dstCap = append(dstCap, b.matchcap...)
	freeBitState(b)
	return dstCap
}