summaryrefslogtreecommitdiffstats
path: root/src/regexp/syntax/parse.go
blob: accee9ab089edc1c78a9b7ed3eb00d6a0cc4167b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package syntax

import (
	"sort"
	"strings"
	"unicode"
	"unicode/utf8"
)

// An Error describes a failure to parse a regular expression
// and gives the offending expression.
type Error struct {
	Code ErrorCode
	Expr string
}

func (e *Error) Error() string {
	return "error parsing regexp: " + e.Code.String() + ": `" + e.Expr + "`"
}

// An ErrorCode describes a failure to parse a regular expression.
type ErrorCode string

const (
	// Unexpected error
	ErrInternalError ErrorCode = "regexp/syntax: internal error"

	// Parse errors
	ErrInvalidCharClass      ErrorCode = "invalid character class"
	ErrInvalidCharRange      ErrorCode = "invalid character class range"
	ErrInvalidEscape         ErrorCode = "invalid escape sequence"
	ErrInvalidNamedCapture   ErrorCode = "invalid named capture"
	ErrInvalidPerlOp         ErrorCode = "invalid or unsupported Perl syntax"
	ErrInvalidRepeatOp       ErrorCode = "invalid nested repetition operator"
	ErrInvalidRepeatSize     ErrorCode = "invalid repeat count"
	ErrInvalidUTF8           ErrorCode = "invalid UTF-8"
	ErrMissingBracket        ErrorCode = "missing closing ]"
	ErrMissingParen          ErrorCode = "missing closing )"
	ErrMissingRepeatArgument ErrorCode = "missing argument to repetition operator"
	ErrTrailingBackslash     ErrorCode = "trailing backslash at end of expression"
	ErrUnexpectedParen       ErrorCode = "unexpected )"
	ErrNestingDepth          ErrorCode = "expression nests too deeply"
	ErrLarge                 ErrorCode = "expression too large"
)

func (e ErrorCode) String() string {
	return string(e)
}

// Flags control the behavior of the parser and record information about regexp context.
type Flags uint16

const (
	FoldCase      Flags = 1 << iota // case-insensitive match
	Literal                         // treat pattern as literal string
	ClassNL                         // allow character classes like [^a-z] and [[:space:]] to match newline
	DotNL                           // allow . to match newline
	OneLine                         // treat ^ and $ as only matching at beginning and end of text
	NonGreedy                       // make repetition operators default to non-greedy
	PerlX                           // allow Perl extensions
	UnicodeGroups                   // allow \p{Han}, \P{Han} for Unicode group and negation
	WasDollar                       // regexp OpEndText was $, not \z
	Simple                          // regexp contains no counted repetition

	MatchNL = ClassNL | DotNL

	Perl        = ClassNL | OneLine | PerlX | UnicodeGroups // as close to Perl as possible
	POSIX Flags = 0                                         // POSIX syntax
)

// Pseudo-ops for parsing stack.
const (
	opLeftParen = opPseudo + iota
	opVerticalBar
)

// maxHeight is the maximum height of a regexp parse tree.
// It is somewhat arbitrarily chosen, but the idea is to be large enough
// that no one will actually hit in real use but at the same time small enough
// that recursion on the Regexp tree will not hit the 1GB Go stack limit.
// The maximum amount of stack for a single recursive frame is probably
// closer to 1kB, so this could potentially be raised, but it seems unlikely
// that people have regexps nested even this deeply.
// We ran a test on Google's C++ code base and turned up only
// a single use case with depth > 100; it had depth 128.
// Using depth 1000 should be plenty of margin.
// As an optimization, we don't even bother calculating heights
// until we've allocated at least maxHeight Regexp structures.
const maxHeight = 1000

// maxSize is the maximum size of a compiled regexp in Insts.
// It too is somewhat arbitrarily chosen, but the idea is to be large enough
// to allow significant regexps while at the same time small enough that
// the compiled form will not take up too much memory.
// 128 MB is enough for a 3.3 million Inst structures, which roughly
// corresponds to a 3.3 MB regexp.
const (
	maxSize  = 128 << 20 / instSize
	instSize = 5 * 8 // byte, 2 uint32, slice is 5 64-bit words
)

// maxRunes is the maximum number of runes allowed in a regexp tree
// counting the runes in all the nodes.
// Ignoring character classes p.numRunes is always less than the length of the regexp.
// Character classes can make it much larger: each \pL adds 1292 runes.
// 128 MB is enough for 32M runes, which is over 26k \pL instances.
// Note that repetitions do not make copies of the rune slices,
// so \pL{1000} is only one rune slice, not 1000.
// We could keep a cache of character classes we've seen,
// so that all the \pL we see use the same rune list,
// but that doesn't remove the problem entirely:
// consider something like [\pL01234][\pL01235][\pL01236]...[\pL^&*()].
// And because the Rune slice is exposed directly in the Regexp,
// there is not an opportunity to change the representation to allow
// partial sharing between different character classes.
// So the limit is the best we can do.
const (
	maxRunes = 128 << 20 / runeSize
	runeSize = 4 // rune is int32
)

type parser struct {
	flags       Flags     // parse mode flags
	stack       []*Regexp // stack of parsed expressions
	free        *Regexp
	numCap      int // number of capturing groups seen
	wholeRegexp string
	tmpClass    []rune            // temporary char class work space
	numRegexp   int               // number of regexps allocated
	numRunes    int               // number of runes in char classes
	repeats     int64             // product of all repetitions seen
	height      map[*Regexp]int   // regexp height, for height limit check
	size        map[*Regexp]int64 // regexp compiled size, for size limit check
}

func (p *parser) newRegexp(op Op) *Regexp {
	re := p.free
	if re != nil {
		p.free = re.Sub0[0]
		*re = Regexp{}
	} else {
		re = new(Regexp)
		p.numRegexp++
	}
	re.Op = op
	return re
}

func (p *parser) reuse(re *Regexp) {
	if p.height != nil {
		delete(p.height, re)
	}
	re.Sub0[0] = p.free
	p.free = re
}

func (p *parser) checkLimits(re *Regexp) {
	if p.numRunes > maxRunes {
		panic(ErrLarge)
	}
	p.checkSize(re)
	p.checkHeight(re)
}

func (p *parser) checkSize(re *Regexp) {
	if p.size == nil {
		// We haven't started tracking size yet.
		// Do a relatively cheap check to see if we need to start.
		// Maintain the product of all the repeats we've seen
		// and don't track if the total number of regexp nodes
		// we've seen times the repeat product is in budget.
		if p.repeats == 0 {
			p.repeats = 1
		}
		if re.Op == OpRepeat {
			n := re.Max
			if n == -1 {
				n = re.Min
			}
			if n <= 0 {
				n = 1
			}
			if int64(n) > maxSize/p.repeats {
				p.repeats = maxSize
			} else {
				p.repeats *= int64(n)
			}
		}
		if int64(p.numRegexp) < maxSize/p.repeats {
			return
		}

		// We need to start tracking size.
		// Make the map and belatedly populate it
		// with info about everything we've constructed so far.
		p.size = make(map[*Regexp]int64)
		for _, re := range p.stack {
			p.checkSize(re)
		}
	}

	if p.calcSize(re, true) > maxSize {
		panic(ErrLarge)
	}
}

func (p *parser) calcSize(re *Regexp, force bool) int64 {
	if !force {
		if size, ok := p.size[re]; ok {
			return size
		}
	}

	var size int64
	switch re.Op {
	case OpLiteral:
		size = int64(len(re.Rune))
	case OpCapture, OpStar:
		// star can be 1+ or 2+; assume 2 pessimistically
		size = 2 + p.calcSize(re.Sub[0], false)
	case OpPlus, OpQuest:
		size = 1 + p.calcSize(re.Sub[0], false)
	case OpConcat:
		for _, sub := range re.Sub {
			size += p.calcSize(sub, false)
		}
	case OpAlternate:
		for _, sub := range re.Sub {
			size += p.calcSize(sub, false)
		}
		if len(re.Sub) > 1 {
			size += int64(len(re.Sub)) - 1
		}
	case OpRepeat:
		sub := p.calcSize(re.Sub[0], false)
		if re.Max == -1 {
			if re.Min == 0 {
				size = 2 + sub // x*
			} else {
				size = 1 + int64(re.Min)*sub // xxx+
			}
			break
		}
		// x{2,5} = xx(x(x(x)?)?)?
		size = int64(re.Max)*sub + int64(re.Max-re.Min)
	}

	if size < 1 {
		size = 1
	}
	p.size[re] = size
	return size
}

func (p *parser) checkHeight(re *Regexp) {
	if p.numRegexp < maxHeight {
		return
	}
	if p.height == nil {
		p.height = make(map[*Regexp]int)
		for _, re := range p.stack {
			p.checkHeight(re)
		}
	}
	if p.calcHeight(re, true) > maxHeight {
		panic(ErrNestingDepth)
	}
}

func (p *parser) calcHeight(re *Regexp, force bool) int {
	if !force {
		if h, ok := p.height[re]; ok {
			return h
		}
	}
	h := 1
	for _, sub := range re.Sub {
		hsub := p.calcHeight(sub, false)
		if h < 1+hsub {
			h = 1 + hsub
		}
	}
	p.height[re] = h
	return h
}

// Parse stack manipulation.

// push pushes the regexp re onto the parse stack and returns the regexp.
func (p *parser) push(re *Regexp) *Regexp {
	p.numRunes += len(re.Rune)
	if re.Op == OpCharClass && len(re.Rune) == 2 && re.Rune[0] == re.Rune[1] {
		// Single rune.
		if p.maybeConcat(re.Rune[0], p.flags&^FoldCase) {
			return nil
		}
		re.Op = OpLiteral
		re.Rune = re.Rune[:1]
		re.Flags = p.flags &^ FoldCase
	} else if re.Op == OpCharClass && len(re.Rune) == 4 &&
		re.Rune[0] == re.Rune[1] && re.Rune[2] == re.Rune[3] &&
		unicode.SimpleFold(re.Rune[0]) == re.Rune[2] &&
		unicode.SimpleFold(re.Rune[2]) == re.Rune[0] ||
		re.Op == OpCharClass && len(re.Rune) == 2 &&
			re.Rune[0]+1 == re.Rune[1] &&
			unicode.SimpleFold(re.Rune[0]) == re.Rune[1] &&
			unicode.SimpleFold(re.Rune[1]) == re.Rune[0] {
		// Case-insensitive rune like [Aa] or [Δδ].
		if p.maybeConcat(re.Rune[0], p.flags|FoldCase) {
			return nil
		}

		// Rewrite as (case-insensitive) literal.
		re.Op = OpLiteral
		re.Rune = re.Rune[:1]
		re.Flags = p.flags | FoldCase
	} else {
		// Incremental concatenation.
		p.maybeConcat(-1, 0)
	}

	p.stack = append(p.stack, re)
	p.checkLimits(re)
	return re
}

// maybeConcat implements incremental concatenation
// of literal runes into string nodes. The parser calls this
// before each push, so only the top fragment of the stack
// might need processing. Since this is called before a push,
// the topmost literal is no longer subject to operators like *
// (Otherwise ab* would turn into (ab)*.)
// If r >= 0 and there's a node left over, maybeConcat uses it
// to push r with the given flags.
// maybeConcat reports whether r was pushed.
func (p *parser) maybeConcat(r rune, flags Flags) bool {
	n := len(p.stack)
	if n < 2 {
		return false
	}

	re1 := p.stack[n-1]
	re2 := p.stack[n-2]
	if re1.Op != OpLiteral || re2.Op != OpLiteral || re1.Flags&FoldCase != re2.Flags&FoldCase {
		return false
	}

	// Push re1 into re2.
	re2.Rune = append(re2.Rune, re1.Rune...)

	// Reuse re1 if possible.
	if r >= 0 {
		re1.Rune = re1.Rune0[:1]
		re1.Rune[0] = r
		re1.Flags = flags
		return true
	}

	p.stack = p.stack[:n-1]
	p.reuse(re1)
	return false // did not push r
}

// literal pushes a literal regexp for the rune r on the stack.
func (p *parser) literal(r rune) {
	re := p.newRegexp(OpLiteral)
	re.Flags = p.flags
	if p.flags&FoldCase != 0 {
		r = minFoldRune(r)
	}
	re.Rune0[0] = r
	re.Rune = re.Rune0[:1]
	p.push(re)
}

// minFoldRune returns the minimum rune fold-equivalent to r.
func minFoldRune(r rune) rune {
	if r < minFold || r > maxFold {
		return r
	}
	min := r
	r0 := r
	for r = unicode.SimpleFold(r); r != r0; r = unicode.SimpleFold(r) {
		if min > r {
			min = r
		}
	}
	return min
}

// op pushes a regexp with the given op onto the stack
// and returns that regexp.
func (p *parser) op(op Op) *Regexp {
	re := p.newRegexp(op)
	re.Flags = p.flags
	return p.push(re)
}

// repeat replaces the top stack element with itself repeated according to op, min, max.
// before is the regexp suffix starting at the repetition operator.
// after is the regexp suffix following after the repetition operator.
// repeat returns an updated 'after' and an error, if any.
func (p *parser) repeat(op Op, min, max int, before, after, lastRepeat string) (string, error) {
	flags := p.flags
	if p.flags&PerlX != 0 {
		if len(after) > 0 && after[0] == '?' {
			after = after[1:]
			flags ^= NonGreedy
		}
		if lastRepeat != "" {
			// In Perl it is not allowed to stack repetition operators:
			// a** is a syntax error, not a doubled star, and a++ means
			// something else entirely, which we don't support!
			return "", &Error{ErrInvalidRepeatOp, lastRepeat[:len(lastRepeat)-len(after)]}
		}
	}
	n := len(p.stack)
	if n == 0 {
		return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]}
	}
	sub := p.stack[n-1]
	if sub.Op >= opPseudo {
		return "", &Error{ErrMissingRepeatArgument, before[:len(before)-len(after)]}
	}

	re := p.newRegexp(op)
	re.Min = min
	re.Max = max
	re.Flags = flags
	re.Sub = re.Sub0[:1]
	re.Sub[0] = sub
	p.stack[n-1] = re
	p.checkLimits(re)

	if op == OpRepeat && (min >= 2 || max >= 2) && !repeatIsValid(re, 1000) {
		return "", &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]}
	}

	return after, nil
}

// repeatIsValid reports whether the repetition re is valid.
// Valid means that the combination of the top-level repetition
// and any inner repetitions does not exceed n copies of the
// innermost thing.
// This function rewalks the regexp tree and is called for every repetition,
// so we have to worry about inducing quadratic behavior in the parser.
// We avoid this by only calling repeatIsValid when min or max >= 2.
// In that case the depth of any >= 2 nesting can only get to 9 without
// triggering a parse error, so each subtree can only be rewalked 9 times.
func repeatIsValid(re *Regexp, n int) bool {
	if re.Op == OpRepeat {
		m := re.Max
		if m == 0 {
			return true
		}
		if m < 0 {
			m = re.Min
		}
		if m > n {
			return false
		}
		if m > 0 {
			n /= m
		}
	}
	for _, sub := range re.Sub {
		if !repeatIsValid(sub, n) {
			return false
		}
	}
	return true
}

// concat replaces the top of the stack (above the topmost '|' or '(') with its concatenation.
func (p *parser) concat() *Regexp {
	p.maybeConcat(-1, 0)

	// Scan down to find pseudo-operator | or (.
	i := len(p.stack)
	for i > 0 && p.stack[i-1].Op < opPseudo {
		i--
	}
	subs := p.stack[i:]
	p.stack = p.stack[:i]

	// Empty concatenation is special case.
	if len(subs) == 0 {
		return p.push(p.newRegexp(OpEmptyMatch))
	}

	return p.push(p.collapse(subs, OpConcat))
}

// alternate replaces the top of the stack (above the topmost '(') with its alternation.
func (p *parser) alternate() *Regexp {
	// Scan down to find pseudo-operator (.
	// There are no | above (.
	i := len(p.stack)
	for i > 0 && p.stack[i-1].Op < opPseudo {
		i--
	}
	subs := p.stack[i:]
	p.stack = p.stack[:i]

	// Make sure top class is clean.
	// All the others already are (see swapVerticalBar).
	if len(subs) > 0 {
		cleanAlt(subs[len(subs)-1])
	}

	// Empty alternate is special case
	// (shouldn't happen but easy to handle).
	if len(subs) == 0 {
		return p.push(p.newRegexp(OpNoMatch))
	}

	return p.push(p.collapse(subs, OpAlternate))
}

// cleanAlt cleans re for eventual inclusion in an alternation.
func cleanAlt(re *Regexp) {
	switch re.Op {
	case OpCharClass:
		re.Rune = cleanClass(&re.Rune)
		if len(re.Rune) == 2 && re.Rune[0] == 0 && re.Rune[1] == unicode.MaxRune {
			re.Rune = nil
			re.Op = OpAnyChar
			return
		}
		if len(re.Rune) == 4 && re.Rune[0] == 0 && re.Rune[1] == '\n'-1 && re.Rune[2] == '\n'+1 && re.Rune[3] == unicode.MaxRune {
			re.Rune = nil
			re.Op = OpAnyCharNotNL
			return
		}
		if cap(re.Rune)-len(re.Rune) > 100 {
			// re.Rune will not grow any more.
			// Make a copy or inline to reclaim storage.
			re.Rune = append(re.Rune0[:0], re.Rune...)
		}
	}
}

// collapse returns the result of applying op to sub.
// If sub contains op nodes, they all get hoisted up
// so that there is never a concat of a concat or an
// alternate of an alternate.
func (p *parser) collapse(subs []*Regexp, op Op) *Regexp {
	if len(subs) == 1 {
		return subs[0]
	}
	re := p.newRegexp(op)
	re.Sub = re.Sub0[:0]
	for _, sub := range subs {
		if sub.Op == op {
			re.Sub = append(re.Sub, sub.Sub...)
			p.reuse(sub)
		} else {
			re.Sub = append(re.Sub, sub)
		}
	}
	if op == OpAlternate {
		re.Sub = p.factor(re.Sub)
		if len(re.Sub) == 1 {
			old := re
			re = re.Sub[0]
			p.reuse(old)
		}
	}
	return re
}

// factor factors common prefixes from the alternation list sub.
// It returns a replacement list that reuses the same storage and
// frees (passes to p.reuse) any removed *Regexps.
//
// For example,
//
//	ABC|ABD|AEF|BCX|BCY
//
// simplifies by literal prefix extraction to
//
//	A(B(C|D)|EF)|BC(X|Y)
//
// which simplifies by character class introduction to
//
//	A(B[CD]|EF)|BC[XY]
func (p *parser) factor(sub []*Regexp) []*Regexp {
	if len(sub) < 2 {
		return sub
	}

	// Round 1: Factor out common literal prefixes.
	var str []rune
	var strflags Flags
	start := 0
	out := sub[:0]
	for i := 0; i <= len(sub); i++ {
		// Invariant: the Regexps that were in sub[0:start] have been
		// used or marked for reuse, and the slice space has been reused
		// for out (len(out) <= start).
		//
		// Invariant: sub[start:i] consists of regexps that all begin
		// with str as modified by strflags.
		var istr []rune
		var iflags Flags
		if i < len(sub) {
			istr, iflags = p.leadingString(sub[i])
			if iflags == strflags {
				same := 0
				for same < len(str) && same < len(istr) && str[same] == istr[same] {
					same++
				}
				if same > 0 {
					// Matches at least one rune in current range.
					// Keep going around.
					str = str[:same]
					continue
				}
			}
		}

		// Found end of a run with common leading literal string:
		// sub[start:i] all begin with str[0:len(str)], but sub[i]
		// does not even begin with str[0].
		//
		// Factor out common string and append factored expression to out.
		if i == start {
			// Nothing to do - run of length 0.
		} else if i == start+1 {
			// Just one: don't bother factoring.
			out = append(out, sub[start])
		} else {
			// Construct factored form: prefix(suffix1|suffix2|...)
			prefix := p.newRegexp(OpLiteral)
			prefix.Flags = strflags
			prefix.Rune = append(prefix.Rune[:0], str...)

			for j := start; j < i; j++ {
				sub[j] = p.removeLeadingString(sub[j], len(str))
				p.checkLimits(sub[j])
			}
			suffix := p.collapse(sub[start:i], OpAlternate) // recurse

			re := p.newRegexp(OpConcat)
			re.Sub = append(re.Sub[:0], prefix, suffix)
			out = append(out, re)
		}

		// Prepare for next iteration.
		start = i
		str = istr
		strflags = iflags
	}
	sub = out

	// Round 2: Factor out common simple prefixes,
	// just the first piece of each concatenation.
	// This will be good enough a lot of the time.
	//
	// Complex subexpressions (e.g. involving quantifiers)
	// are not safe to factor because that collapses their
	// distinct paths through the automaton, which affects
	// correctness in some cases.
	start = 0
	out = sub[:0]
	var first *Regexp
	for i := 0; i <= len(sub); i++ {
		// Invariant: the Regexps that were in sub[0:start] have been
		// used or marked for reuse, and the slice space has been reused
		// for out (len(out) <= start).
		//
		// Invariant: sub[start:i] consists of regexps that all begin with ifirst.
		var ifirst *Regexp
		if i < len(sub) {
			ifirst = p.leadingRegexp(sub[i])
			if first != nil && first.Equal(ifirst) &&
				// first must be a character class OR a fixed repeat of a character class.
				(isCharClass(first) || (first.Op == OpRepeat && first.Min == first.Max && isCharClass(first.Sub[0]))) {
				continue
			}
		}

		// Found end of a run with common leading regexp:
		// sub[start:i] all begin with first but sub[i] does not.
		//
		// Factor out common regexp and append factored expression to out.
		if i == start {
			// Nothing to do - run of length 0.
		} else if i == start+1 {
			// Just one: don't bother factoring.
			out = append(out, sub[start])
		} else {
			// Construct factored form: prefix(suffix1|suffix2|...)
			prefix := first
			for j := start; j < i; j++ {
				reuse := j != start // prefix came from sub[start]
				sub[j] = p.removeLeadingRegexp(sub[j], reuse)
				p.checkLimits(sub[j])
			}
			suffix := p.collapse(sub[start:i], OpAlternate) // recurse

			re := p.newRegexp(OpConcat)
			re.Sub = append(re.Sub[:0], prefix, suffix)
			out = append(out, re)
		}

		// Prepare for next iteration.
		start = i
		first = ifirst
	}
	sub = out

	// Round 3: Collapse runs of single literals into character classes.
	start = 0
	out = sub[:0]
	for i := 0; i <= len(sub); i++ {
		// Invariant: the Regexps that were in sub[0:start] have been
		// used or marked for reuse, and the slice space has been reused
		// for out (len(out) <= start).
		//
		// Invariant: sub[start:i] consists of regexps that are either
		// literal runes or character classes.
		if i < len(sub) && isCharClass(sub[i]) {
			continue
		}

		// sub[i] is not a char or char class;
		// emit char class for sub[start:i]...
		if i == start {
			// Nothing to do - run of length 0.
		} else if i == start+1 {
			out = append(out, sub[start])
		} else {
			// Make new char class.
			// Start with most complex regexp in sub[start].
			max := start
			for j := start + 1; j < i; j++ {
				if sub[max].Op < sub[j].Op || sub[max].Op == sub[j].Op && len(sub[max].Rune) < len(sub[j].Rune) {
					max = j
				}
			}
			sub[start], sub[max] = sub[max], sub[start]

			for j := start + 1; j < i; j++ {
				mergeCharClass(sub[start], sub[j])
				p.reuse(sub[j])
			}
			cleanAlt(sub[start])
			out = append(out, sub[start])
		}

		// ... and then emit sub[i].
		if i < len(sub) {
			out = append(out, sub[i])
		}
		start = i + 1
	}
	sub = out

	// Round 4: Collapse runs of empty matches into a single empty match.
	start = 0
	out = sub[:0]
	for i := range sub {
		if i+1 < len(sub) && sub[i].Op == OpEmptyMatch && sub[i+1].Op == OpEmptyMatch {
			continue
		}
		out = append(out, sub[i])
	}
	sub = out

	return sub
}

// leadingString returns the leading literal string that re begins with.
// The string refers to storage in re or its children.
func (p *parser) leadingString(re *Regexp) ([]rune, Flags) {
	if re.Op == OpConcat && len(re.Sub) > 0 {
		re = re.Sub[0]
	}
	if re.Op != OpLiteral {
		return nil, 0
	}
	return re.Rune, re.Flags & FoldCase
}

// removeLeadingString removes the first n leading runes
// from the beginning of re. It returns the replacement for re.
func (p *parser) removeLeadingString(re *Regexp, n int) *Regexp {
	if re.Op == OpConcat && len(re.Sub) > 0 {
		// Removing a leading string in a concatenation
		// might simplify the concatenation.
		sub := re.Sub[0]
		sub = p.removeLeadingString(sub, n)
		re.Sub[0] = sub
		if sub.Op == OpEmptyMatch {
			p.reuse(sub)
			switch len(re.Sub) {
			case 0, 1:
				// Impossible but handle.
				re.Op = OpEmptyMatch
				re.Sub = nil
			case 2:
				old := re
				re = re.Sub[1]
				p.reuse(old)
			default:
				copy(re.Sub, re.Sub[1:])
				re.Sub = re.Sub[:len(re.Sub)-1]
			}
		}
		return re
	}

	if re.Op == OpLiteral {
		re.Rune = re.Rune[:copy(re.Rune, re.Rune[n:])]
		if len(re.Rune) == 0 {
			re.Op = OpEmptyMatch
		}
	}
	return re
}

// leadingRegexp returns the leading regexp that re begins with.
// The regexp refers to storage in re or its children.
func (p *parser) leadingRegexp(re *Regexp) *Regexp {
	if re.Op == OpEmptyMatch {
		return nil
	}
	if re.Op == OpConcat && len(re.Sub) > 0 {
		sub := re.Sub[0]
		if sub.Op == OpEmptyMatch {
			return nil
		}
		return sub
	}
	return re
}

// removeLeadingRegexp removes the leading regexp in re.
// It returns the replacement for re.
// If reuse is true, it passes the removed regexp (if no longer needed) to p.reuse.
func (p *parser) removeLeadingRegexp(re *Regexp, reuse bool) *Regexp {
	if re.Op == OpConcat && len(re.Sub) > 0 {
		if reuse {
			p.reuse(re.Sub[0])
		}
		re.Sub = re.Sub[:copy(re.Sub, re.Sub[1:])]
		switch len(re.Sub) {
		case 0:
			re.Op = OpEmptyMatch
			re.Sub = nil
		case 1:
			old := re
			re = re.Sub[0]
			p.reuse(old)
		}
		return re
	}
	if reuse {
		p.reuse(re)
	}
	return p.newRegexp(OpEmptyMatch)
}

func literalRegexp(s string, flags Flags) *Regexp {
	re := &Regexp{Op: OpLiteral}
	re.Flags = flags
	re.Rune = re.Rune0[:0] // use local storage for small strings
	for _, c := range s {
		if len(re.Rune) >= cap(re.Rune) {
			// string is too long to fit in Rune0.  let Go handle it
			re.Rune = []rune(s)
			break
		}
		re.Rune = append(re.Rune, c)
	}
	return re
}

// Parsing.

// Parse parses a regular expression string s, controlled by the specified
// Flags, and returns a regular expression parse tree. The syntax is
// described in the top-level comment.
func Parse(s string, flags Flags) (*Regexp, error) {
	return parse(s, flags)
}

func parse(s string, flags Flags) (_ *Regexp, err error) {
	defer func() {
		switch r := recover(); r {
		default:
			panic(r)
		case nil:
			// ok
		case ErrLarge: // too big
			err = &Error{Code: ErrLarge, Expr: s}
		case ErrNestingDepth:
			err = &Error{Code: ErrNestingDepth, Expr: s}
		}
	}()

	if flags&Literal != 0 {
		// Trivial parser for literal string.
		if err := checkUTF8(s); err != nil {
			return nil, err
		}
		return literalRegexp(s, flags), nil
	}

	// Otherwise, must do real work.
	var (
		p          parser
		c          rune
		op         Op
		lastRepeat string
	)
	p.flags = flags
	p.wholeRegexp = s
	t := s
	for t != "" {
		repeat := ""
	BigSwitch:
		switch t[0] {
		default:
			if c, t, err = nextRune(t); err != nil {
				return nil, err
			}
			p.literal(c)

		case '(':
			if p.flags&PerlX != 0 && len(t) >= 2 && t[1] == '?' {
				// Flag changes and non-capturing groups.
				if t, err = p.parsePerlFlags(t); err != nil {
					return nil, err
				}
				break
			}
			p.numCap++
			p.op(opLeftParen).Cap = p.numCap
			t = t[1:]
		case '|':
			if err = p.parseVerticalBar(); err != nil {
				return nil, err
			}
			t = t[1:]
		case ')':
			if err = p.parseRightParen(); err != nil {
				return nil, err
			}
			t = t[1:]
		case '^':
			if p.flags&OneLine != 0 {
				p.op(OpBeginText)
			} else {
				p.op(OpBeginLine)
			}
			t = t[1:]
		case '$':
			if p.flags&OneLine != 0 {
				p.op(OpEndText).Flags |= WasDollar
			} else {
				p.op(OpEndLine)
			}
			t = t[1:]
		case '.':
			if p.flags&DotNL != 0 {
				p.op(OpAnyChar)
			} else {
				p.op(OpAnyCharNotNL)
			}
			t = t[1:]
		case '[':
			if t, err = p.parseClass(t); err != nil {
				return nil, err
			}
		case '*', '+', '?':
			before := t
			switch t[0] {
			case '*':
				op = OpStar
			case '+':
				op = OpPlus
			case '?':
				op = OpQuest
			}
			after := t[1:]
			if after, err = p.repeat(op, 0, 0, before, after, lastRepeat); err != nil {
				return nil, err
			}
			repeat = before
			t = after
		case '{':
			op = OpRepeat
			before := t
			min, max, after, ok := p.parseRepeat(t)
			if !ok {
				// If the repeat cannot be parsed, { is a literal.
				p.literal('{')
				t = t[1:]
				break
			}
			if min < 0 || min > 1000 || max > 1000 || max >= 0 && min > max {
				// Numbers were too big, or max is present and min > max.
				return nil, &Error{ErrInvalidRepeatSize, before[:len(before)-len(after)]}
			}
			if after, err = p.repeat(op, min, max, before, after, lastRepeat); err != nil {
				return nil, err
			}
			repeat = before
			t = after
		case '\\':
			if p.flags&PerlX != 0 && len(t) >= 2 {
				switch t[1] {
				case 'A':
					p.op(OpBeginText)
					t = t[2:]
					break BigSwitch
				case 'b':
					p.op(OpWordBoundary)
					t = t[2:]
					break BigSwitch
				case 'B':
					p.op(OpNoWordBoundary)
					t = t[2:]
					break BigSwitch
				case 'C':
					// any byte; not supported
					return nil, &Error{ErrInvalidEscape, t[:2]}
				case 'Q':
					// \Q ... \E: the ... is always literals
					var lit string
					lit, t, _ = strings.Cut(t[2:], `\E`)
					for lit != "" {
						c, rest, err := nextRune(lit)
						if err != nil {
							return nil, err
						}
						p.literal(c)
						lit = rest
					}
					break BigSwitch
				case 'z':
					p.op(OpEndText)
					t = t[2:]
					break BigSwitch
				}
			}

			re := p.newRegexp(OpCharClass)
			re.Flags = p.flags

			// Look for Unicode character group like \p{Han}
			if len(t) >= 2 && (t[1] == 'p' || t[1] == 'P') {
				r, rest, err := p.parseUnicodeClass(t, re.Rune0[:0])
				if err != nil {
					return nil, err
				}
				if r != nil {
					re.Rune = r
					t = rest
					p.push(re)
					break BigSwitch
				}
			}

			// Perl character class escape.
			if r, rest := p.parsePerlClassEscape(t, re.Rune0[:0]); r != nil {
				re.Rune = r
				t = rest
				p.push(re)
				break BigSwitch
			}
			p.reuse(re)

			// Ordinary single-character escape.
			if c, t, err = p.parseEscape(t); err != nil {
				return nil, err
			}
			p.literal(c)
		}
		lastRepeat = repeat
	}

	p.concat()
	if p.swapVerticalBar() {
		// pop vertical bar
		p.stack = p.stack[:len(p.stack)-1]
	}
	p.alternate()

	n := len(p.stack)
	if n != 1 {
		return nil, &Error{ErrMissingParen, s}
	}
	return p.stack[0], nil
}

// parseRepeat parses {min} (max=min) or {min,} (max=-1) or {min,max}.
// If s is not of that form, it returns ok == false.
// If s has the right form but the values are too big, it returns min == -1, ok == true.
func (p *parser) parseRepeat(s string) (min, max int, rest string, ok bool) {
	if s == "" || s[0] != '{' {
		return
	}
	s = s[1:]
	var ok1 bool
	if min, s, ok1 = p.parseInt(s); !ok1 {
		return
	}
	if s == "" {
		return
	}
	if s[0] != ',' {
		max = min
	} else {
		s = s[1:]
		if s == "" {
			return
		}
		if s[0] == '}' {
			max = -1
		} else if max, s, ok1 = p.parseInt(s); !ok1 {
			return
		} else if max < 0 {
			// parseInt found too big a number
			min = -1
		}
	}
	if s == "" || s[0] != '}' {
		return
	}
	rest = s[1:]
	ok = true
	return
}

// parsePerlFlags parses a Perl flag setting or non-capturing group or both,
// like (?i) or (?: or (?i:.  It removes the prefix from s and updates the parse state.
// The caller must have ensured that s begins with "(?".
func (p *parser) parsePerlFlags(s string) (rest string, err error) {
	t := s

	// Check for named captures, first introduced in Python's regexp library.
	// As usual, there are three slightly different syntaxes:
	//
	//   (?P<name>expr)   the original, introduced by Python
	//   (?<name>expr)    the .NET alteration, adopted by Perl 5.10
	//   (?'name'expr)    another .NET alteration, adopted by Perl 5.10
	//
	// Perl 5.10 gave in and implemented the Python version too,
	// but they claim that the last two are the preferred forms.
	// PCRE and languages based on it (specifically, PHP and Ruby)
	// support all three as well. EcmaScript 4 uses only the Python form.
	//
	// In both the open source world (via Code Search) and the
	// Google source tree, (?P<expr>name) is the dominant form,
	// so that's the one we implement. One is enough.
	if len(t) > 4 && t[2] == 'P' && t[3] == '<' {
		// Pull out name.
		end := strings.IndexRune(t, '>')
		if end < 0 {
			if err = checkUTF8(t); err != nil {
				return "", err
			}
			return "", &Error{ErrInvalidNamedCapture, s}
		}

		capture := t[:end+1] // "(?P<name>"
		name := t[4:end]     // "name"
		if err = checkUTF8(name); err != nil {
			return "", err
		}
		if !isValidCaptureName(name) {
			return "", &Error{ErrInvalidNamedCapture, capture}
		}

		// Like ordinary capture, but named.
		p.numCap++
		re := p.op(opLeftParen)
		re.Cap = p.numCap
		re.Name = name
		return t[end+1:], nil
	}

	// Non-capturing group. Might also twiddle Perl flags.
	var c rune
	t = t[2:] // skip (?
	flags := p.flags
	sign := +1
	sawFlag := false
Loop:
	for t != "" {
		if c, t, err = nextRune(t); err != nil {
			return "", err
		}
		switch c {
		default:
			break Loop

		// Flags.
		case 'i':
			flags |= FoldCase
			sawFlag = true
		case 'm':
			flags &^= OneLine
			sawFlag = true
		case 's':
			flags |= DotNL
			sawFlag = true
		case 'U':
			flags |= NonGreedy
			sawFlag = true

		// Switch to negation.
		case '-':
			if sign < 0 {
				break Loop
			}
			sign = -1
			// Invert flags so that | above turn into &^ and vice versa.
			// We'll invert flags again before using it below.
			flags = ^flags
			sawFlag = false

		// End of flags, starting group or not.
		case ':', ')':
			if sign < 0 {
				if !sawFlag {
					break Loop
				}
				flags = ^flags
			}
			if c == ':' {
				// Open new group
				p.op(opLeftParen)
			}
			p.flags = flags
			return t, nil
		}
	}

	return "", &Error{ErrInvalidPerlOp, s[:len(s)-len(t)]}
}

// isValidCaptureName reports whether name
// is a valid capture name: [A-Za-z0-9_]+.
// PCRE limits names to 32 bytes.
// Python rejects names starting with digits.
// We don't enforce either of those.
func isValidCaptureName(name string) bool {
	if name == "" {
		return false
	}
	for _, c := range name {
		if c != '_' && !isalnum(c) {
			return false
		}
	}
	return true
}

// parseInt parses a decimal integer.
func (p *parser) parseInt(s string) (n int, rest string, ok bool) {
	if s == "" || s[0] < '0' || '9' < s[0] {
		return
	}
	// Disallow leading zeros.
	if len(s) >= 2 && s[0] == '0' && '0' <= s[1] && s[1] <= '9' {
		return
	}
	t := s
	for s != "" && '0' <= s[0] && s[0] <= '9' {
		s = s[1:]
	}
	rest = s
	ok = true
	// Have digits, compute value.
	t = t[:len(t)-len(s)]
	for i := 0; i < len(t); i++ {
		// Avoid overflow.
		if n >= 1e8 {
			n = -1
			break
		}
		n = n*10 + int(t[i]) - '0'
	}
	return
}

// can this be represented as a character class?
// single-rune literal string, char class, ., and .|\n.
func isCharClass(re *Regexp) bool {
	return re.Op == OpLiteral && len(re.Rune) == 1 ||
		re.Op == OpCharClass ||
		re.Op == OpAnyCharNotNL ||
		re.Op == OpAnyChar
}

// does re match r?
func matchRune(re *Regexp, r rune) bool {
	switch re.Op {
	case OpLiteral:
		return len(re.Rune) == 1 && re.Rune[0] == r
	case OpCharClass:
		for i := 0; i < len(re.Rune); i += 2 {
			if re.Rune[i] <= r && r <= re.Rune[i+1] {
				return true
			}
		}
		return false
	case OpAnyCharNotNL:
		return r != '\n'
	case OpAnyChar:
		return true
	}
	return false
}

// parseVerticalBar handles a | in the input.
func (p *parser) parseVerticalBar() error {
	p.concat()

	// The concatenation we just parsed is on top of the stack.
	// If it sits above an opVerticalBar, swap it below
	// (things below an opVerticalBar become an alternation).
	// Otherwise, push a new vertical bar.
	if !p.swapVerticalBar() {
		p.op(opVerticalBar)
	}

	return nil
}

// mergeCharClass makes dst = dst|src.
// The caller must ensure that dst.Op >= src.Op,
// to reduce the amount of copying.
func mergeCharClass(dst, src *Regexp) {
	switch dst.Op {
	case OpAnyChar:
		// src doesn't add anything.
	case OpAnyCharNotNL:
		// src might add \n
		if matchRune(src, '\n') {
			dst.Op = OpAnyChar
		}
	case OpCharClass:
		// src is simpler, so either literal or char class
		if src.Op == OpLiteral {
			dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags)
		} else {
			dst.Rune = appendClass(dst.Rune, src.Rune)
		}
	case OpLiteral:
		// both literal
		if src.Rune[0] == dst.Rune[0] && src.Flags == dst.Flags {
			break
		}
		dst.Op = OpCharClass
		dst.Rune = appendLiteral(dst.Rune[:0], dst.Rune[0], dst.Flags)
		dst.Rune = appendLiteral(dst.Rune, src.Rune[0], src.Flags)
	}
}

// If the top of the stack is an element followed by an opVerticalBar
// swapVerticalBar swaps the two and returns true.
// Otherwise it returns false.
func (p *parser) swapVerticalBar() bool {
	// If above and below vertical bar are literal or char class,
	// can merge into a single char class.
	n := len(p.stack)
	if n >= 3 && p.stack[n-2].Op == opVerticalBar && isCharClass(p.stack[n-1]) && isCharClass(p.stack[n-3]) {
		re1 := p.stack[n-1]
		re3 := p.stack[n-3]
		// Make re3 the more complex of the two.
		if re1.Op > re3.Op {
			re1, re3 = re3, re1
			p.stack[n-3] = re3
		}
		mergeCharClass(re3, re1)
		p.reuse(re1)
		p.stack = p.stack[:n-1]
		return true
	}

	if n >= 2 {
		re1 := p.stack[n-1]
		re2 := p.stack[n-2]
		if re2.Op == opVerticalBar {
			if n >= 3 {
				// Now out of reach.
				// Clean opportunistically.
				cleanAlt(p.stack[n-3])
			}
			p.stack[n-2] = re1
			p.stack[n-1] = re2
			return true
		}
	}
	return false
}

// parseRightParen handles a ) in the input.
func (p *parser) parseRightParen() error {
	p.concat()
	if p.swapVerticalBar() {
		// pop vertical bar
		p.stack = p.stack[:len(p.stack)-1]
	}
	p.alternate()

	n := len(p.stack)
	if n < 2 {
		return &Error{ErrUnexpectedParen, p.wholeRegexp}
	}
	re1 := p.stack[n-1]
	re2 := p.stack[n-2]
	p.stack = p.stack[:n-2]
	if re2.Op != opLeftParen {
		return &Error{ErrUnexpectedParen, p.wholeRegexp}
	}
	// Restore flags at time of paren.
	p.flags = re2.Flags
	if re2.Cap == 0 {
		// Just for grouping.
		p.push(re1)
	} else {
		re2.Op = OpCapture
		re2.Sub = re2.Sub0[:1]
		re2.Sub[0] = re1
		p.push(re2)
	}
	return nil
}

// parseEscape parses an escape sequence at the beginning of s
// and returns the rune.
func (p *parser) parseEscape(s string) (r rune, rest string, err error) {
	t := s[1:]
	if t == "" {
		return 0, "", &Error{ErrTrailingBackslash, ""}
	}
	c, t, err := nextRune(t)
	if err != nil {
		return 0, "", err
	}

Switch:
	switch c {
	default:
		if c < utf8.RuneSelf && !isalnum(c) {
			// Escaped non-word characters are always themselves.
			// PCRE is not quite so rigorous: it accepts things like
			// \q, but we don't. We once rejected \_, but too many
			// programs and people insist on using it, so allow \_.
			return c, t, nil
		}

	// Octal escapes.
	case '1', '2', '3', '4', '5', '6', '7':
		// Single non-zero digit is a backreference; not supported
		if t == "" || t[0] < '0' || t[0] > '7' {
			break
		}
		fallthrough
	case '0':
		// Consume up to three octal digits; already have one.
		r = c - '0'
		for i := 1; i < 3; i++ {
			if t == "" || t[0] < '0' || t[0] > '7' {
				break
			}
			r = r*8 + rune(t[0]) - '0'
			t = t[1:]
		}
		return r, t, nil

	// Hexadecimal escapes.
	case 'x':
		if t == "" {
			break
		}
		if c, t, err = nextRune(t); err != nil {
			return 0, "", err
		}
		if c == '{' {
			// Any number of digits in braces.
			// Perl accepts any text at all; it ignores all text
			// after the first non-hex digit. We require only hex digits,
			// and at least one.
			nhex := 0
			r = 0
			for {
				if t == "" {
					break Switch
				}
				if c, t, err = nextRune(t); err != nil {
					return 0, "", err
				}
				if c == '}' {
					break
				}
				v := unhex(c)
				if v < 0 {
					break Switch
				}
				r = r*16 + v
				if r > unicode.MaxRune {
					break Switch
				}
				nhex++
			}
			if nhex == 0 {
				break Switch
			}
			return r, t, nil
		}

		// Easy case: two hex digits.
		x := unhex(c)
		if c, t, err = nextRune(t); err != nil {
			return 0, "", err
		}
		y := unhex(c)
		if x < 0 || y < 0 {
			break
		}
		return x*16 + y, t, nil

	// C escapes. There is no case 'b', to avoid misparsing
	// the Perl word-boundary \b as the C backspace \b
	// when in POSIX mode. In Perl, /\b/ means word-boundary
	// but /[\b]/ means backspace. We don't support that.
	// If you want a backspace, embed a literal backspace
	// character or use \x08.
	case 'a':
		return '\a', t, err
	case 'f':
		return '\f', t, err
	case 'n':
		return '\n', t, err
	case 'r':
		return '\r', t, err
	case 't':
		return '\t', t, err
	case 'v':
		return '\v', t, err
	}
	return 0, "", &Error{ErrInvalidEscape, s[:len(s)-len(t)]}
}

// parseClassChar parses a character class character at the beginning of s
// and returns it.
func (p *parser) parseClassChar(s, wholeClass string) (r rune, rest string, err error) {
	if s == "" {
		return 0, "", &Error{Code: ErrMissingBracket, Expr: wholeClass}
	}

	// Allow regular escape sequences even though
	// many need not be escaped in this context.
	if s[0] == '\\' {
		return p.parseEscape(s)
	}

	return nextRune(s)
}

type charGroup struct {
	sign  int
	class []rune
}

// parsePerlClassEscape parses a leading Perl character class escape like \d
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest string) {
	if p.flags&PerlX == 0 || len(s) < 2 || s[0] != '\\' {
		return
	}
	g := perlGroup[s[0:2]]
	if g.sign == 0 {
		return
	}
	return p.appendGroup(r, g), s[2:]
}

// parseNamedClass parses a leading POSIX named character class like [:alnum:]
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parseNamedClass(s string, r []rune) (out []rune, rest string, err error) {
	if len(s) < 2 || s[0] != '[' || s[1] != ':' {
		return
	}

	i := strings.Index(s[2:], ":]")
	if i < 0 {
		return
	}
	i += 2
	name, s := s[0:i+2], s[i+2:]
	g := posixGroup[name]
	if g.sign == 0 {
		return nil, "", &Error{ErrInvalidCharRange, name}
	}
	return p.appendGroup(r, g), s, nil
}

func (p *parser) appendGroup(r []rune, g charGroup) []rune {
	if p.flags&FoldCase == 0 {
		if g.sign < 0 {
			r = appendNegatedClass(r, g.class)
		} else {
			r = appendClass(r, g.class)
		}
	} else {
		tmp := p.tmpClass[:0]
		tmp = appendFoldedClass(tmp, g.class)
		p.tmpClass = tmp
		tmp = cleanClass(&p.tmpClass)
		if g.sign < 0 {
			r = appendNegatedClass(r, tmp)
		} else {
			r = appendClass(r, tmp)
		}
	}
	return r
}

var anyTable = &unicode.RangeTable{
	R16: []unicode.Range16{{Lo: 0, Hi: 1<<16 - 1, Stride: 1}},
	R32: []unicode.Range32{{Lo: 1 << 16, Hi: unicode.MaxRune, Stride: 1}},
}

// unicodeTable returns the unicode.RangeTable identified by name
// and the table of additional fold-equivalent code points.
func unicodeTable(name string) (*unicode.RangeTable, *unicode.RangeTable) {
	// Special case: "Any" means any.
	if name == "Any" {
		return anyTable, anyTable
	}
	if t := unicode.Categories[name]; t != nil {
		return t, unicode.FoldCategory[name]
	}
	if t := unicode.Scripts[name]; t != nil {
		return t, unicode.FoldScript[name]
	}
	return nil, nil
}

// parseUnicodeClass parses a leading Unicode character class like \p{Han}
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parseUnicodeClass(s string, r []rune) (out []rune, rest string, err error) {
	if p.flags&UnicodeGroups == 0 || len(s) < 2 || s[0] != '\\' || s[1] != 'p' && s[1] != 'P' {
		return
	}

	// Committed to parse or return error.
	sign := +1
	if s[1] == 'P' {
		sign = -1
	}
	t := s[2:]
	c, t, err := nextRune(t)
	if err != nil {
		return
	}
	var seq, name string
	if c != '{' {
		// Single-letter name.
		seq = s[:len(s)-len(t)]
		name = seq[2:]
	} else {
		// Name is in braces.
		end := strings.IndexRune(s, '}')
		if end < 0 {
			if err = checkUTF8(s); err != nil {
				return
			}
			return nil, "", &Error{ErrInvalidCharRange, s}
		}
		seq, t = s[:end+1], s[end+1:]
		name = s[3:end]
		if err = checkUTF8(name); err != nil {
			return
		}
	}

	// Group can have leading negation too.  \p{^Han} == \P{Han}, \P{^Han} == \p{Han}.
	if name != "" && name[0] == '^' {
		sign = -sign
		name = name[1:]
	}

	tab, fold := unicodeTable(name)
	if tab == nil {
		return nil, "", &Error{ErrInvalidCharRange, seq}
	}

	if p.flags&FoldCase == 0 || fold == nil {
		if sign > 0 {
			r = appendTable(r, tab)
		} else {
			r = appendNegatedTable(r, tab)
		}
	} else {
		// Merge and clean tab and fold in a temporary buffer.
		// This is necessary for the negative case and just tidy
		// for the positive case.
		tmp := p.tmpClass[:0]
		tmp = appendTable(tmp, tab)
		tmp = appendTable(tmp, fold)
		p.tmpClass = tmp
		tmp = cleanClass(&p.tmpClass)
		if sign > 0 {
			r = appendClass(r, tmp)
		} else {
			r = appendNegatedClass(r, tmp)
		}
	}
	return r, t, nil
}

// parseClass parses a character class at the beginning of s
// and pushes it onto the parse stack.
func (p *parser) parseClass(s string) (rest string, err error) {
	t := s[1:] // chop [
	re := p.newRegexp(OpCharClass)
	re.Flags = p.flags
	re.Rune = re.Rune0[:0]

	sign := +1
	if t != "" && t[0] == '^' {
		sign = -1
		t = t[1:]

		// If character class does not match \n, add it here,
		// so that negation later will do the right thing.
		if p.flags&ClassNL == 0 {
			re.Rune = append(re.Rune, '\n', '\n')
		}
	}

	class := re.Rune
	first := true // ] and - are okay as first char in class
	for t == "" || t[0] != ']' || first {
		// POSIX: - is only okay unescaped as first or last in class.
		// Perl: - is okay anywhere.
		if t != "" && t[0] == '-' && p.flags&PerlX == 0 && !first && (len(t) == 1 || t[1] != ']') {
			_, size := utf8.DecodeRuneInString(t[1:])
			return "", &Error{Code: ErrInvalidCharRange, Expr: t[:1+size]}
		}
		first = false

		// Look for POSIX [:alnum:] etc.
		if len(t) > 2 && t[0] == '[' && t[1] == ':' {
			nclass, nt, err := p.parseNamedClass(t, class)
			if err != nil {
				return "", err
			}
			if nclass != nil {
				class, t = nclass, nt
				continue
			}
		}

		// Look for Unicode character group like \p{Han}.
		nclass, nt, err := p.parseUnicodeClass(t, class)
		if err != nil {
			return "", err
		}
		if nclass != nil {
			class, t = nclass, nt
			continue
		}

		// Look for Perl character class symbols (extension).
		if nclass, nt := p.parsePerlClassEscape(t, class); nclass != nil {
			class, t = nclass, nt
			continue
		}

		// Single character or simple range.
		rng := t
		var lo, hi rune
		if lo, t, err = p.parseClassChar(t, s); err != nil {
			return "", err
		}
		hi = lo
		// [a-] means (a|-) so check for final ].
		if len(t) >= 2 && t[0] == '-' && t[1] != ']' {
			t = t[1:]
			if hi, t, err = p.parseClassChar(t, s); err != nil {
				return "", err
			}
			if hi < lo {
				rng = rng[:len(rng)-len(t)]
				return "", &Error{Code: ErrInvalidCharRange, Expr: rng}
			}
		}
		if p.flags&FoldCase == 0 {
			class = appendRange(class, lo, hi)
		} else {
			class = appendFoldedRange(class, lo, hi)
		}
	}
	t = t[1:] // chop ]

	// Use &re.Rune instead of &class to avoid allocation.
	re.Rune = class
	class = cleanClass(&re.Rune)
	if sign < 0 {
		class = negateClass(class)
	}
	re.Rune = class
	p.push(re)
	return t, nil
}

// cleanClass sorts the ranges (pairs of elements of r),
// merges them, and eliminates duplicates.
func cleanClass(rp *[]rune) []rune {

	// Sort by lo increasing, hi decreasing to break ties.
	sort.Sort(ranges{rp})

	r := *rp
	if len(r) < 2 {
		return r
	}

	// Merge abutting, overlapping.
	w := 2 // write index
	for i := 2; i < len(r); i += 2 {
		lo, hi := r[i], r[i+1]
		if lo <= r[w-1]+1 {
			// merge with previous range
			if hi > r[w-1] {
				r[w-1] = hi
			}
			continue
		}
		// new disjoint range
		r[w] = lo
		r[w+1] = hi
		w += 2
	}

	return r[:w]
}

// appendLiteral returns the result of appending the literal x to the class r.
func appendLiteral(r []rune, x rune, flags Flags) []rune {
	if flags&FoldCase != 0 {
		return appendFoldedRange(r, x, x)
	}
	return appendRange(r, x, x)
}

// appendRange returns the result of appending the range lo-hi to the class r.
func appendRange(r []rune, lo, hi rune) []rune {
	// Expand last range or next to last range if it overlaps or abuts.
	// Checking two ranges helps when appending case-folded
	// alphabets, so that one range can be expanding A-Z and the
	// other expanding a-z.
	n := len(r)
	for i := 2; i <= 4; i += 2 { // twice, using i=2, i=4
		if n >= i {
			rlo, rhi := r[n-i], r[n-i+1]
			if lo <= rhi+1 && rlo <= hi+1 {
				if lo < rlo {
					r[n-i] = lo
				}
				if hi > rhi {
					r[n-i+1] = hi
				}
				return r
			}
		}
	}

	return append(r, lo, hi)
}

const (
	// minimum and maximum runes involved in folding.
	// checked during test.
	minFold = 0x0041
	maxFold = 0x1e943
)

// appendFoldedRange returns the result of appending the range lo-hi
// and its case folding-equivalent runes to the class r.
func appendFoldedRange(r []rune, lo, hi rune) []rune {
	// Optimizations.
	if lo <= minFold && hi >= maxFold {
		// Range is full: folding can't add more.
		return appendRange(r, lo, hi)
	}
	if hi < minFold || lo > maxFold {
		// Range is outside folding possibilities.
		return appendRange(r, lo, hi)
	}
	if lo < minFold {
		// [lo, minFold-1] needs no folding.
		r = appendRange(r, lo, minFold-1)
		lo = minFold
	}
	if hi > maxFold {
		// [maxFold+1, hi] needs no folding.
		r = appendRange(r, maxFold+1, hi)
		hi = maxFold
	}

	// Brute force. Depend on appendRange to coalesce ranges on the fly.
	for c := lo; c <= hi; c++ {
		r = appendRange(r, c, c)
		f := unicode.SimpleFold(c)
		for f != c {
			r = appendRange(r, f, f)
			f = unicode.SimpleFold(f)
		}
	}
	return r
}

// appendClass returns the result of appending the class x to the class r.
// It assume x is clean.
func appendClass(r []rune, x []rune) []rune {
	for i := 0; i < len(x); i += 2 {
		r = appendRange(r, x[i], x[i+1])
	}
	return r
}

// appendFoldedClass returns the result of appending the case folding of the class x to the class r.
func appendFoldedClass(r []rune, x []rune) []rune {
	for i := 0; i < len(x); i += 2 {
		r = appendFoldedRange(r, x[i], x[i+1])
	}
	return r
}

// appendNegatedClass returns the result of appending the negation of the class x to the class r.
// It assumes x is clean.
func appendNegatedClass(r []rune, x []rune) []rune {
	nextLo := '\u0000'
	for i := 0; i < len(x); i += 2 {
		lo, hi := x[i], x[i+1]
		if nextLo <= lo-1 {
			r = appendRange(r, nextLo, lo-1)
		}
		nextLo = hi + 1
	}
	if nextLo <= unicode.MaxRune {
		r = appendRange(r, nextLo, unicode.MaxRune)
	}
	return r
}

// appendTable returns the result of appending x to the class r.
func appendTable(r []rune, x *unicode.RangeTable) []rune {
	for _, xr := range x.R16 {
		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
		if stride == 1 {
			r = appendRange(r, lo, hi)
			continue
		}
		for c := lo; c <= hi; c += stride {
			r = appendRange(r, c, c)
		}
	}
	for _, xr := range x.R32 {
		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
		if stride == 1 {
			r = appendRange(r, lo, hi)
			continue
		}
		for c := lo; c <= hi; c += stride {
			r = appendRange(r, c, c)
		}
	}
	return r
}

// appendNegatedTable returns the result of appending the negation of x to the class r.
func appendNegatedTable(r []rune, x *unicode.RangeTable) []rune {
	nextLo := '\u0000' // lo end of next class to add
	for _, xr := range x.R16 {
		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
		if stride == 1 {
			if nextLo <= lo-1 {
				r = appendRange(r, nextLo, lo-1)
			}
			nextLo = hi + 1
			continue
		}
		for c := lo; c <= hi; c += stride {
			if nextLo <= c-1 {
				r = appendRange(r, nextLo, c-1)
			}
			nextLo = c + 1
		}
	}
	for _, xr := range x.R32 {
		lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
		if stride == 1 {
			if nextLo <= lo-1 {
				r = appendRange(r, nextLo, lo-1)
			}
			nextLo = hi + 1
			continue
		}
		for c := lo; c <= hi; c += stride {
			if nextLo <= c-1 {
				r = appendRange(r, nextLo, c-1)
			}
			nextLo = c + 1
		}
	}
	if nextLo <= unicode.MaxRune {
		r = appendRange(r, nextLo, unicode.MaxRune)
	}
	return r
}

// negateClass overwrites r and returns r's negation.
// It assumes the class r is already clean.
func negateClass(r []rune) []rune {
	nextLo := '\u0000' // lo end of next class to add
	w := 0             // write index
	for i := 0; i < len(r); i += 2 {
		lo, hi := r[i], r[i+1]
		if nextLo <= lo-1 {
			r[w] = nextLo
			r[w+1] = lo - 1
			w += 2
		}
		nextLo = hi + 1
	}
	r = r[:w]
	if nextLo <= unicode.MaxRune {
		// It's possible for the negation to have one more
		// range - this one - than the original class, so use append.
		r = append(r, nextLo, unicode.MaxRune)
	}
	return r
}

// ranges implements sort.Interface on a []rune.
// The choice of receiver type definition is strange
// but avoids an allocation since we already have
// a *[]rune.
type ranges struct {
	p *[]rune
}

func (ra ranges) Less(i, j int) bool {
	p := *ra.p
	i *= 2
	j *= 2
	return p[i] < p[j] || p[i] == p[j] && p[i+1] > p[j+1]
}

func (ra ranges) Len() int {
	return len(*ra.p) / 2
}

func (ra ranges) Swap(i, j int) {
	p := *ra.p
	i *= 2
	j *= 2
	p[i], p[i+1], p[j], p[j+1] = p[j], p[j+1], p[i], p[i+1]
}

func checkUTF8(s string) error {
	for s != "" {
		rune, size := utf8.DecodeRuneInString(s)
		if rune == utf8.RuneError && size == 1 {
			return &Error{Code: ErrInvalidUTF8, Expr: s}
		}
		s = s[size:]
	}
	return nil
}

func nextRune(s string) (c rune, t string, err error) {
	c, size := utf8.DecodeRuneInString(s)
	if c == utf8.RuneError && size == 1 {
		return 0, "", &Error{Code: ErrInvalidUTF8, Expr: s}
	}
	return c, s[size:], nil
}

func isalnum(c rune) bool {
	return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z'
}

func unhex(c rune) rune {
	if '0' <= c && c <= '9' {
		return c - '0'
	}
	if 'a' <= c && c <= 'f' {
		return c - 'a' + 10
	}
	if 'A' <= c && c <= 'F' {
		return c - 'A' + 10
	}
	return -1
}