summaryrefslogtreecommitdiffstats
path: root/src/runtime/sema.go
blob: d0a81170c3c25631287e640dad1c6f8ea2d303e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Semaphore implementation exposed to Go.
// Intended use is provide a sleep and wakeup
// primitive that can be used in the contended case
// of other synchronization primitives.
// Thus it targets the same goal as Linux's futex,
// but it has much simpler semantics.
//
// That is, don't think of these as semaphores.
// Think of them as a way to implement sleep and wakeup
// such that every sleep is paired with a single wakeup,
// even if, due to races, the wakeup happens before the sleep.
//
// See Mullender and Cox, ``Semaphores in Plan 9,''
// https://swtch.com/semaphore.pdf

package runtime

import (
	"internal/cpu"
	"runtime/internal/atomic"
	"unsafe"
)

// Asynchronous semaphore for sync.Mutex.

// A semaRoot holds a balanced tree of sudog with distinct addresses (s.elem).
// Each of those sudog may in turn point (through s.waitlink) to a list
// of other sudogs waiting on the same address.
// The operations on the inner lists of sudogs with the same address
// are all O(1). The scanning of the top-level semaRoot list is O(log n),
// where n is the number of distinct addresses with goroutines blocked
// on them that hash to the given semaRoot.
// See golang.org/issue/17953 for a program that worked badly
// before we introduced the second level of list, and
// BenchmarkSemTable/OneAddrCollision/* for a benchmark that exercises this.
type semaRoot struct {
	lock  mutex
	treap *sudog        // root of balanced tree of unique waiters.
	nwait atomic.Uint32 // Number of waiters. Read w/o the lock.
}

var semtable semTable

// Prime to not correlate with any user patterns.
const semTabSize = 251

type semTable [semTabSize]struct {
	root semaRoot
	pad  [cpu.CacheLinePadSize - unsafe.Sizeof(semaRoot{})]byte
}

func (t *semTable) rootFor(addr *uint32) *semaRoot {
	return &t[(uintptr(unsafe.Pointer(addr))>>3)%semTabSize].root
}

//go:linkname sync_runtime_Semacquire sync.runtime_Semacquire
func sync_runtime_Semacquire(addr *uint32) {
	semacquire1(addr, false, semaBlockProfile, 0, waitReasonSemacquire)
}

//go:linkname poll_runtime_Semacquire internal/poll.runtime_Semacquire
func poll_runtime_Semacquire(addr *uint32) {
	semacquire1(addr, false, semaBlockProfile, 0, waitReasonSemacquire)
}

//go:linkname sync_runtime_Semrelease sync.runtime_Semrelease
func sync_runtime_Semrelease(addr *uint32, handoff bool, skipframes int) {
	semrelease1(addr, handoff, skipframes)
}

//go:linkname sync_runtime_SemacquireMutex sync.runtime_SemacquireMutex
func sync_runtime_SemacquireMutex(addr *uint32, lifo bool, skipframes int) {
	semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes, waitReasonSyncMutexLock)
}

//go:linkname sync_runtime_SemacquireRWMutexR sync.runtime_SemacquireRWMutexR
func sync_runtime_SemacquireRWMutexR(addr *uint32, lifo bool, skipframes int) {
	semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes, waitReasonSyncRWMutexRLock)
}

//go:linkname sync_runtime_SemacquireRWMutex sync.runtime_SemacquireRWMutex
func sync_runtime_SemacquireRWMutex(addr *uint32, lifo bool, skipframes int) {
	semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes, waitReasonSyncRWMutexLock)
}

//go:linkname poll_runtime_Semrelease internal/poll.runtime_Semrelease
func poll_runtime_Semrelease(addr *uint32) {
	semrelease(addr)
}

func readyWithTime(s *sudog, traceskip int) {
	if s.releasetime != 0 {
		s.releasetime = cputicks()
	}
	goready(s.g, traceskip)
}

type semaProfileFlags int

const (
	semaBlockProfile semaProfileFlags = 1 << iota
	semaMutexProfile
)

// Called from runtime.
func semacquire(addr *uint32) {
	semacquire1(addr, false, 0, 0, waitReasonSemacquire)
}

func semacquire1(addr *uint32, lifo bool, profile semaProfileFlags, skipframes int, reason waitReason) {
	gp := getg()
	if gp != gp.m.curg {
		throw("semacquire not on the G stack")
	}

	// Easy case.
	if cansemacquire(addr) {
		return
	}

	// Harder case:
	//	increment waiter count
	//	try cansemacquire one more time, return if succeeded
	//	enqueue itself as a waiter
	//	sleep
	//	(waiter descriptor is dequeued by signaler)
	s := acquireSudog()
	root := semtable.rootFor(addr)
	t0 := int64(0)
	s.releasetime = 0
	s.acquiretime = 0
	s.ticket = 0
	if profile&semaBlockProfile != 0 && blockprofilerate > 0 {
		t0 = cputicks()
		s.releasetime = -1
	}
	if profile&semaMutexProfile != 0 && mutexprofilerate > 0 {
		if t0 == 0 {
			t0 = cputicks()
		}
		s.acquiretime = t0
	}
	for {
		lockWithRank(&root.lock, lockRankRoot)
		// Add ourselves to nwait to disable "easy case" in semrelease.
		root.nwait.Add(1)
		// Check cansemacquire to avoid missed wakeup.
		if cansemacquire(addr) {
			root.nwait.Add(-1)
			unlock(&root.lock)
			break
		}
		// Any semrelease after the cansemacquire knows we're waiting
		// (we set nwait above), so go to sleep.
		root.queue(addr, s, lifo)
		goparkunlock(&root.lock, reason, traceBlockSync, 4+skipframes)
		if s.ticket != 0 || cansemacquire(addr) {
			break
		}
	}
	if s.releasetime > 0 {
		blockevent(s.releasetime-t0, 3+skipframes)
	}
	releaseSudog(s)
}

func semrelease(addr *uint32) {
	semrelease1(addr, false, 0)
}

func semrelease1(addr *uint32, handoff bool, skipframes int) {
	root := semtable.rootFor(addr)
	atomic.Xadd(addr, 1)

	// Easy case: no waiters?
	// This check must happen after the xadd, to avoid a missed wakeup
	// (see loop in semacquire).
	if root.nwait.Load() == 0 {
		return
	}

	// Harder case: search for a waiter and wake it.
	lockWithRank(&root.lock, lockRankRoot)
	if root.nwait.Load() == 0 {
		// The count is already consumed by another goroutine,
		// so no need to wake up another goroutine.
		unlock(&root.lock)
		return
	}
	s, t0 := root.dequeue(addr)
	if s != nil {
		root.nwait.Add(-1)
	}
	unlock(&root.lock)
	if s != nil { // May be slow or even yield, so unlock first
		acquiretime := s.acquiretime
		if acquiretime != 0 {
			mutexevent(t0-acquiretime, 3+skipframes)
		}
		if s.ticket != 0 {
			throw("corrupted semaphore ticket")
		}
		if handoff && cansemacquire(addr) {
			s.ticket = 1
		}
		readyWithTime(s, 5+skipframes)
		if s.ticket == 1 && getg().m.locks == 0 {
			// Direct G handoff
			// readyWithTime has added the waiter G as runnext in the
			// current P; we now call the scheduler so that we start running
			// the waiter G immediately.
			// Note that waiter inherits our time slice: this is desirable
			// to avoid having a highly contended semaphore hog the P
			// indefinitely. goyield is like Gosched, but it emits a
			// "preempted" trace event instead and, more importantly, puts
			// the current G on the local runq instead of the global one.
			// We only do this in the starving regime (handoff=true), as in
			// the non-starving case it is possible for a different waiter
			// to acquire the semaphore while we are yielding/scheduling,
			// and this would be wasteful. We wait instead to enter starving
			// regime, and then we start to do direct handoffs of ticket and
			// P.
			// See issue 33747 for discussion.
			goyield()
		}
	}
}

func cansemacquire(addr *uint32) bool {
	for {
		v := atomic.Load(addr)
		if v == 0 {
			return false
		}
		if atomic.Cas(addr, v, v-1) {
			return true
		}
	}
}

// queue adds s to the blocked goroutines in semaRoot.
func (root *semaRoot) queue(addr *uint32, s *sudog, lifo bool) {
	s.g = getg()
	s.elem = unsafe.Pointer(addr)
	s.next = nil
	s.prev = nil

	var last *sudog
	pt := &root.treap
	for t := *pt; t != nil; t = *pt {
		if t.elem == unsafe.Pointer(addr) {
			// Already have addr in list.
			if lifo {
				// Substitute s in t's place in treap.
				*pt = s
				s.ticket = t.ticket
				s.acquiretime = t.acquiretime
				s.parent = t.parent
				s.prev = t.prev
				s.next = t.next
				if s.prev != nil {
					s.prev.parent = s
				}
				if s.next != nil {
					s.next.parent = s
				}
				// Add t first in s's wait list.
				s.waitlink = t
				s.waittail = t.waittail
				if s.waittail == nil {
					s.waittail = t
				}
				t.parent = nil
				t.prev = nil
				t.next = nil
				t.waittail = nil
			} else {
				// Add s to end of t's wait list.
				if t.waittail == nil {
					t.waitlink = s
				} else {
					t.waittail.waitlink = s
				}
				t.waittail = s
				s.waitlink = nil
			}
			return
		}
		last = t
		if uintptr(unsafe.Pointer(addr)) < uintptr(t.elem) {
			pt = &t.prev
		} else {
			pt = &t.next
		}
	}

	// Add s as new leaf in tree of unique addrs.
	// The balanced tree is a treap using ticket as the random heap priority.
	// That is, it is a binary tree ordered according to the elem addresses,
	// but then among the space of possible binary trees respecting those
	// addresses, it is kept balanced on average by maintaining a heap ordering
	// on the ticket: s.ticket <= both s.prev.ticket and s.next.ticket.
	// https://en.wikipedia.org/wiki/Treap
	// https://faculty.washington.edu/aragon/pubs/rst89.pdf
	//
	// s.ticket compared with zero in couple of places, therefore set lowest bit.
	// It will not affect treap's quality noticeably.
	s.ticket = fastrand() | 1
	s.parent = last
	*pt = s

	// Rotate up into tree according to ticket (priority).
	for s.parent != nil && s.parent.ticket > s.ticket {
		if s.parent.prev == s {
			root.rotateRight(s.parent)
		} else {
			if s.parent.next != s {
				panic("semaRoot queue")
			}
			root.rotateLeft(s.parent)
		}
	}
}

// dequeue searches for and finds the first goroutine
// in semaRoot blocked on addr.
// If the sudog was being profiled, dequeue returns the time
// at which it was woken up as now. Otherwise now is 0.
func (root *semaRoot) dequeue(addr *uint32) (found *sudog, now int64) {
	ps := &root.treap
	s := *ps
	for ; s != nil; s = *ps {
		if s.elem == unsafe.Pointer(addr) {
			goto Found
		}
		if uintptr(unsafe.Pointer(addr)) < uintptr(s.elem) {
			ps = &s.prev
		} else {
			ps = &s.next
		}
	}
	return nil, 0

Found:
	now = int64(0)
	if s.acquiretime != 0 {
		now = cputicks()
	}
	if t := s.waitlink; t != nil {
		// Substitute t, also waiting on addr, for s in root tree of unique addrs.
		*ps = t
		t.ticket = s.ticket
		t.parent = s.parent
		t.prev = s.prev
		if t.prev != nil {
			t.prev.parent = t
		}
		t.next = s.next
		if t.next != nil {
			t.next.parent = t
		}
		if t.waitlink != nil {
			t.waittail = s.waittail
		} else {
			t.waittail = nil
		}
		t.acquiretime = now
		s.waitlink = nil
		s.waittail = nil
	} else {
		// Rotate s down to be leaf of tree for removal, respecting priorities.
		for s.next != nil || s.prev != nil {
			if s.next == nil || s.prev != nil && s.prev.ticket < s.next.ticket {
				root.rotateRight(s)
			} else {
				root.rotateLeft(s)
			}
		}
		// Remove s, now a leaf.
		if s.parent != nil {
			if s.parent.prev == s {
				s.parent.prev = nil
			} else {
				s.parent.next = nil
			}
		} else {
			root.treap = nil
		}
	}
	s.parent = nil
	s.elem = nil
	s.next = nil
	s.prev = nil
	s.ticket = 0
	return s, now
}

// rotateLeft rotates the tree rooted at node x.
// turning (x a (y b c)) into (y (x a b) c).
func (root *semaRoot) rotateLeft(x *sudog) {
	// p -> (x a (y b c))
	p := x.parent
	y := x.next
	b := y.prev

	y.prev = x
	x.parent = y
	x.next = b
	if b != nil {
		b.parent = x
	}

	y.parent = p
	if p == nil {
		root.treap = y
	} else if p.prev == x {
		p.prev = y
	} else {
		if p.next != x {
			throw("semaRoot rotateLeft")
		}
		p.next = y
	}
}

// rotateRight rotates the tree rooted at node y.
// turning (y (x a b) c) into (x a (y b c)).
func (root *semaRoot) rotateRight(y *sudog) {
	// p -> (y (x a b) c)
	p := y.parent
	x := y.prev
	b := x.next

	x.next = y
	y.parent = x
	y.prev = b
	if b != nil {
		b.parent = y
	}

	x.parent = p
	if p == nil {
		root.treap = x
	} else if p.prev == y {
		p.prev = x
	} else {
		if p.next != y {
			throw("semaRoot rotateRight")
		}
		p.next = x
	}
}

// notifyList is a ticket-based notification list used to implement sync.Cond.
//
// It must be kept in sync with the sync package.
type notifyList struct {
	// wait is the ticket number of the next waiter. It is atomically
	// incremented outside the lock.
	wait atomic.Uint32

	// notify is the ticket number of the next waiter to be notified. It can
	// be read outside the lock, but is only written to with lock held.
	//
	// Both wait & notify can wrap around, and such cases will be correctly
	// handled as long as their "unwrapped" difference is bounded by 2^31.
	// For this not to be the case, we'd need to have 2^31+ goroutines
	// blocked on the same condvar, which is currently not possible.
	notify uint32

	// List of parked waiters.
	lock mutex
	head *sudog
	tail *sudog
}

// less checks if a < b, considering a & b running counts that may overflow the
// 32-bit range, and that their "unwrapped" difference is always less than 2^31.
func less(a, b uint32) bool {
	return int32(a-b) < 0
}

// notifyListAdd adds the caller to a notify list such that it can receive
// notifications. The caller must eventually call notifyListWait to wait for
// such a notification, passing the returned ticket number.
//
//go:linkname notifyListAdd sync.runtime_notifyListAdd
func notifyListAdd(l *notifyList) uint32 {
	// This may be called concurrently, for example, when called from
	// sync.Cond.Wait while holding a RWMutex in read mode.
	return l.wait.Add(1) - 1
}

// notifyListWait waits for a notification. If one has been sent since
// notifyListAdd was called, it returns immediately. Otherwise, it blocks.
//
//go:linkname notifyListWait sync.runtime_notifyListWait
func notifyListWait(l *notifyList, t uint32) {
	lockWithRank(&l.lock, lockRankNotifyList)

	// Return right away if this ticket has already been notified.
	if less(t, l.notify) {
		unlock(&l.lock)
		return
	}

	// Enqueue itself.
	s := acquireSudog()
	s.g = getg()
	s.ticket = t
	s.releasetime = 0
	t0 := int64(0)
	if blockprofilerate > 0 {
		t0 = cputicks()
		s.releasetime = -1
	}
	if l.tail == nil {
		l.head = s
	} else {
		l.tail.next = s
	}
	l.tail = s
	goparkunlock(&l.lock, waitReasonSyncCondWait, traceBlockCondWait, 3)
	if t0 != 0 {
		blockevent(s.releasetime-t0, 2)
	}
	releaseSudog(s)
}

// notifyListNotifyAll notifies all entries in the list.
//
//go:linkname notifyListNotifyAll sync.runtime_notifyListNotifyAll
func notifyListNotifyAll(l *notifyList) {
	// Fast-path: if there are no new waiters since the last notification
	// we don't need to acquire the lock.
	if l.wait.Load() == atomic.Load(&l.notify) {
		return
	}

	// Pull the list out into a local variable, waiters will be readied
	// outside the lock.
	lockWithRank(&l.lock, lockRankNotifyList)
	s := l.head
	l.head = nil
	l.tail = nil

	// Update the next ticket to be notified. We can set it to the current
	// value of wait because any previous waiters are already in the list
	// or will notice that they have already been notified when trying to
	// add themselves to the list.
	atomic.Store(&l.notify, l.wait.Load())
	unlock(&l.lock)

	// Go through the local list and ready all waiters.
	for s != nil {
		next := s.next
		s.next = nil
		readyWithTime(s, 4)
		s = next
	}
}

// notifyListNotifyOne notifies one entry in the list.
//
//go:linkname notifyListNotifyOne sync.runtime_notifyListNotifyOne
func notifyListNotifyOne(l *notifyList) {
	// Fast-path: if there are no new waiters since the last notification
	// we don't need to acquire the lock at all.
	if l.wait.Load() == atomic.Load(&l.notify) {
		return
	}

	lockWithRank(&l.lock, lockRankNotifyList)

	// Re-check under the lock if we need to do anything.
	t := l.notify
	if t == l.wait.Load() {
		unlock(&l.lock)
		return
	}

	// Update the next notify ticket number.
	atomic.Store(&l.notify, t+1)

	// Try to find the g that needs to be notified.
	// If it hasn't made it to the list yet we won't find it,
	// but it won't park itself once it sees the new notify number.
	//
	// This scan looks linear but essentially always stops quickly.
	// Because g's queue separately from taking numbers,
	// there may be minor reorderings in the list, but we
	// expect the g we're looking for to be near the front.
	// The g has others in front of it on the list only to the
	// extent that it lost the race, so the iteration will not
	// be too long. This applies even when the g is missing:
	// it hasn't yet gotten to sleep and has lost the race to
	// the (few) other g's that we find on the list.
	for p, s := (*sudog)(nil), l.head; s != nil; p, s = s, s.next {
		if s.ticket == t {
			n := s.next
			if p != nil {
				p.next = n
			} else {
				l.head = n
			}
			if n == nil {
				l.tail = p
			}
			unlock(&l.lock)
			s.next = nil
			readyWithTime(s, 4)
			return
		}
	}
	unlock(&l.lock)
}

//go:linkname notifyListCheck sync.runtime_notifyListCheck
func notifyListCheck(sz uintptr) {
	if sz != unsafe.Sizeof(notifyList{}) {
		print("runtime: bad notifyList size - sync=", sz, " runtime=", unsafe.Sizeof(notifyList{}), "\n")
		throw("bad notifyList size")
	}
}

//go:linkname sync_nanotime sync.runtime_nanotime
func sync_nanotime() int64 {
	return nanotime()
}