summaryrefslogtreecommitdiffstats
path: root/src/runtime/string.go
blob: 7ac3e66a3ac80ce2e233353b2b435e8d61f678f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"internal/abi"
	"internal/bytealg"
	"internal/goarch"
	"unsafe"
)

// The constant is known to the compiler.
// There is no fundamental theory behind this number.
const tmpStringBufSize = 32

type tmpBuf [tmpStringBufSize]byte

// concatstrings implements a Go string concatenation x+y+z+...
// The operands are passed in the slice a.
// If buf != nil, the compiler has determined that the result does not
// escape the calling function, so the string data can be stored in buf
// if small enough.
func concatstrings(buf *tmpBuf, a []string) string {
	idx := 0
	l := 0
	count := 0
	for i, x := range a {
		n := len(x)
		if n == 0 {
			continue
		}
		if l+n < l {
			throw("string concatenation too long")
		}
		l += n
		count++
		idx = i
	}
	if count == 0 {
		return ""
	}

	// If there is just one string and either it is not on the stack
	// or our result does not escape the calling frame (buf != nil),
	// then we can return that string directly.
	if count == 1 && (buf != nil || !stringDataOnStack(a[idx])) {
		return a[idx]
	}
	s, b := rawstringtmp(buf, l)
	for _, x := range a {
		copy(b, x)
		b = b[len(x):]
	}
	return s
}

func concatstring2(buf *tmpBuf, a0, a1 string) string {
	return concatstrings(buf, []string{a0, a1})
}

func concatstring3(buf *tmpBuf, a0, a1, a2 string) string {
	return concatstrings(buf, []string{a0, a1, a2})
}

func concatstring4(buf *tmpBuf, a0, a1, a2, a3 string) string {
	return concatstrings(buf, []string{a0, a1, a2, a3})
}

func concatstring5(buf *tmpBuf, a0, a1, a2, a3, a4 string) string {
	return concatstrings(buf, []string{a0, a1, a2, a3, a4})
}

// slicebytetostring converts a byte slice to a string.
// It is inserted by the compiler into generated code.
// ptr is a pointer to the first element of the slice;
// n is the length of the slice.
// Buf is a fixed-size buffer for the result,
// it is not nil if the result does not escape.
func slicebytetostring(buf *tmpBuf, ptr *byte, n int) string {
	if n == 0 {
		// Turns out to be a relatively common case.
		// Consider that you want to parse out data between parens in "foo()bar",
		// you find the indices and convert the subslice to string.
		return ""
	}
	if raceenabled {
		racereadrangepc(unsafe.Pointer(ptr),
			uintptr(n),
			getcallerpc(),
			abi.FuncPCABIInternal(slicebytetostring))
	}
	if msanenabled {
		msanread(unsafe.Pointer(ptr), uintptr(n))
	}
	if asanenabled {
		asanread(unsafe.Pointer(ptr), uintptr(n))
	}
	if n == 1 {
		p := unsafe.Pointer(&staticuint64s[*ptr])
		if goarch.BigEndian {
			p = add(p, 7)
		}
		return unsafe.String((*byte)(p), 1)
	}

	var p unsafe.Pointer
	if buf != nil && n <= len(buf) {
		p = unsafe.Pointer(buf)
	} else {
		p = mallocgc(uintptr(n), nil, false)
	}
	memmove(p, unsafe.Pointer(ptr), uintptr(n))
	return unsafe.String((*byte)(p), n)
}

// stringDataOnStack reports whether the string's data is
// stored on the current goroutine's stack.
func stringDataOnStack(s string) bool {
	ptr := uintptr(unsafe.Pointer(unsafe.StringData(s)))
	stk := getg().stack
	return stk.lo <= ptr && ptr < stk.hi
}

func rawstringtmp(buf *tmpBuf, l int) (s string, b []byte) {
	if buf != nil && l <= len(buf) {
		b = buf[:l]
		s = slicebytetostringtmp(&b[0], len(b))
	} else {
		s, b = rawstring(l)
	}
	return
}

// slicebytetostringtmp returns a "string" referring to the actual []byte bytes.
//
// Callers need to ensure that the returned string will not be used after
// the calling goroutine modifies the original slice or synchronizes with
// another goroutine.
//
// The function is only called when instrumenting
// and otherwise intrinsified by the compiler.
//
// Some internal compiler optimizations use this function.
//   - Used for m[T1{... Tn{..., string(k), ...} ...}] and m[string(k)]
//     where k is []byte, T1 to Tn is a nesting of struct and array literals.
//   - Used for "<"+string(b)+">" concatenation where b is []byte.
//   - Used for string(b)=="foo" comparison where b is []byte.
func slicebytetostringtmp(ptr *byte, n int) string {
	if raceenabled && n > 0 {
		racereadrangepc(unsafe.Pointer(ptr),
			uintptr(n),
			getcallerpc(),
			abi.FuncPCABIInternal(slicebytetostringtmp))
	}
	if msanenabled && n > 0 {
		msanread(unsafe.Pointer(ptr), uintptr(n))
	}
	if asanenabled && n > 0 {
		asanread(unsafe.Pointer(ptr), uintptr(n))
	}
	return unsafe.String(ptr, n)
}

func stringtoslicebyte(buf *tmpBuf, s string) []byte {
	var b []byte
	if buf != nil && len(s) <= len(buf) {
		*buf = tmpBuf{}
		b = buf[:len(s)]
	} else {
		b = rawbyteslice(len(s))
	}
	copy(b, s)
	return b
}

func stringtoslicerune(buf *[tmpStringBufSize]rune, s string) []rune {
	// two passes.
	// unlike slicerunetostring, no race because strings are immutable.
	n := 0
	for range s {
		n++
	}

	var a []rune
	if buf != nil && n <= len(buf) {
		*buf = [tmpStringBufSize]rune{}
		a = buf[:n]
	} else {
		a = rawruneslice(n)
	}

	n = 0
	for _, r := range s {
		a[n] = r
		n++
	}
	return a
}

func slicerunetostring(buf *tmpBuf, a []rune) string {
	if raceenabled && len(a) > 0 {
		racereadrangepc(unsafe.Pointer(&a[0]),
			uintptr(len(a))*unsafe.Sizeof(a[0]),
			getcallerpc(),
			abi.FuncPCABIInternal(slicerunetostring))
	}
	if msanenabled && len(a) > 0 {
		msanread(unsafe.Pointer(&a[0]), uintptr(len(a))*unsafe.Sizeof(a[0]))
	}
	if asanenabled && len(a) > 0 {
		asanread(unsafe.Pointer(&a[0]), uintptr(len(a))*unsafe.Sizeof(a[0]))
	}
	var dum [4]byte
	size1 := 0
	for _, r := range a {
		size1 += encoderune(dum[:], r)
	}
	s, b := rawstringtmp(buf, size1+3)
	size2 := 0
	for _, r := range a {
		// check for race
		if size2 >= size1 {
			break
		}
		size2 += encoderune(b[size2:], r)
	}
	return s[:size2]
}

type stringStruct struct {
	str unsafe.Pointer
	len int
}

// Variant with *byte pointer type for DWARF debugging.
type stringStructDWARF struct {
	str *byte
	len int
}

func stringStructOf(sp *string) *stringStruct {
	return (*stringStruct)(unsafe.Pointer(sp))
}

func intstring(buf *[4]byte, v int64) (s string) {
	var b []byte
	if buf != nil {
		b = buf[:]
		s = slicebytetostringtmp(&b[0], len(b))
	} else {
		s, b = rawstring(4)
	}
	if int64(rune(v)) != v {
		v = runeError
	}
	n := encoderune(b, rune(v))
	return s[:n]
}

// rawstring allocates storage for a new string. The returned
// string and byte slice both refer to the same storage.
// The storage is not zeroed. Callers should use
// b to set the string contents and then drop b.
func rawstring(size int) (s string, b []byte) {
	p := mallocgc(uintptr(size), nil, false)
	return unsafe.String((*byte)(p), size), unsafe.Slice((*byte)(p), size)
}

// rawbyteslice allocates a new byte slice. The byte slice is not zeroed.
func rawbyteslice(size int) (b []byte) {
	cap := roundupsize(uintptr(size))
	p := mallocgc(cap, nil, false)
	if cap != uintptr(size) {
		memclrNoHeapPointers(add(p, uintptr(size)), cap-uintptr(size))
	}

	*(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(cap)}
	return
}

// rawruneslice allocates a new rune slice. The rune slice is not zeroed.
func rawruneslice(size int) (b []rune) {
	if uintptr(size) > maxAlloc/4 {
		throw("out of memory")
	}
	mem := roundupsize(uintptr(size) * 4)
	p := mallocgc(mem, nil, false)
	if mem != uintptr(size)*4 {
		memclrNoHeapPointers(add(p, uintptr(size)*4), mem-uintptr(size)*4)
	}

	*(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(mem / 4)}
	return
}

// used by cmd/cgo
func gobytes(p *byte, n int) (b []byte) {
	if n == 0 {
		return make([]byte, 0)
	}

	if n < 0 || uintptr(n) > maxAlloc {
		panic(errorString("gobytes: length out of range"))
	}

	bp := mallocgc(uintptr(n), nil, false)
	memmove(bp, unsafe.Pointer(p), uintptr(n))

	*(*slice)(unsafe.Pointer(&b)) = slice{bp, n, n}
	return
}

// This is exported via linkname to assembly in syscall (for Plan9).
//
//go:linkname gostring
func gostring(p *byte) string {
	l := findnull(p)
	if l == 0 {
		return ""
	}
	s, b := rawstring(l)
	memmove(unsafe.Pointer(&b[0]), unsafe.Pointer(p), uintptr(l))
	return s
}

// internal_syscall_gostring is a version of gostring for internal/syscall/unix.
//
//go:linkname internal_syscall_gostring internal/syscall/unix.gostring
func internal_syscall_gostring(p *byte) string {
	return gostring(p)
}

func gostringn(p *byte, l int) string {
	if l == 0 {
		return ""
	}
	s, b := rawstring(l)
	memmove(unsafe.Pointer(&b[0]), unsafe.Pointer(p), uintptr(l))
	return s
}

func hasPrefix(s, prefix string) bool {
	return len(s) >= len(prefix) && s[:len(prefix)] == prefix
}

func hasSuffix(s, suffix string) bool {
	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}

const (
	maxUint64 = ^uint64(0)
	maxInt64  = int64(maxUint64 >> 1)
)

// atoi64 parses an int64 from a string s.
// The bool result reports whether s is a number
// representable by a value of type int64.
func atoi64(s string) (int64, bool) {
	if s == "" {
		return 0, false
	}

	neg := false
	if s[0] == '-' {
		neg = true
		s = s[1:]
	}

	un := uint64(0)
	for i := 0; i < len(s); i++ {
		c := s[i]
		if c < '0' || c > '9' {
			return 0, false
		}
		if un > maxUint64/10 {
			// overflow
			return 0, false
		}
		un *= 10
		un1 := un + uint64(c) - '0'
		if un1 < un {
			// overflow
			return 0, false
		}
		un = un1
	}

	if !neg && un > uint64(maxInt64) {
		return 0, false
	}
	if neg && un > uint64(maxInt64)+1 {
		return 0, false
	}

	n := int64(un)
	if neg {
		n = -n
	}

	return n, true
}

// atoi is like atoi64 but for integers
// that fit into an int.
func atoi(s string) (int, bool) {
	if n, ok := atoi64(s); n == int64(int(n)) {
		return int(n), ok
	}
	return 0, false
}

// atoi32 is like atoi but for integers
// that fit into an int32.
func atoi32(s string) (int32, bool) {
	if n, ok := atoi64(s); n == int64(int32(n)) {
		return int32(n), ok
	}
	return 0, false
}

// parseByteCount parses a string that represents a count of bytes.
//
// s must match the following regular expression:
//
//	^[0-9]+(([KMGT]i)?B)?$
//
// In other words, an integer byte count with an optional unit
// suffix. Acceptable suffixes include one of
// - KiB, MiB, GiB, TiB which represent binary IEC/ISO 80000 units, or
// - B, which just represents bytes.
//
// Returns an int64 because that's what its callers want and receive,
// but the result is always non-negative.
func parseByteCount(s string) (int64, bool) {
	// The empty string is not valid.
	if s == "" {
		return 0, false
	}
	// Handle the easy non-suffix case.
	last := s[len(s)-1]
	if last >= '0' && last <= '9' {
		n, ok := atoi64(s)
		if !ok || n < 0 {
			return 0, false
		}
		return n, ok
	}
	// Failing a trailing digit, this must always end in 'B'.
	// Also at this point there must be at least one digit before
	// that B.
	if last != 'B' || len(s) < 2 {
		return 0, false
	}
	// The one before that must always be a digit or 'i'.
	if c := s[len(s)-2]; c >= '0' && c <= '9' {
		// Trivial 'B' suffix.
		n, ok := atoi64(s[:len(s)-1])
		if !ok || n < 0 {
			return 0, false
		}
		return n, ok
	} else if c != 'i' {
		return 0, false
	}
	// Finally, we need at least 4 characters now, for the unit
	// prefix and at least one digit.
	if len(s) < 4 {
		return 0, false
	}
	power := 0
	switch s[len(s)-3] {
	case 'K':
		power = 1
	case 'M':
		power = 2
	case 'G':
		power = 3
	case 'T':
		power = 4
	default:
		// Invalid suffix.
		return 0, false
	}
	m := uint64(1)
	for i := 0; i < power; i++ {
		m *= 1024
	}
	n, ok := atoi64(s[:len(s)-3])
	if !ok || n < 0 {
		return 0, false
	}
	un := uint64(n)
	if un > maxUint64/m {
		// Overflow.
		return 0, false
	}
	un *= m
	if un > uint64(maxInt64) {
		// Overflow.
		return 0, false
	}
	return int64(un), true
}

//go:nosplit
func findnull(s *byte) int {
	if s == nil {
		return 0
	}

	// Avoid IndexByteString on Plan 9 because it uses SSE instructions
	// on x86 machines, and those are classified as floating point instructions,
	// which are illegal in a note handler.
	if GOOS == "plan9" {
		p := (*[maxAlloc/2 - 1]byte)(unsafe.Pointer(s))
		l := 0
		for p[l] != 0 {
			l++
		}
		return l
	}

	// pageSize is the unit we scan at a time looking for NULL.
	// It must be the minimum page size for any architecture Go
	// runs on. It's okay (just a minor performance loss) if the
	// actual system page size is larger than this value.
	const pageSize = 4096

	offset := 0
	ptr := unsafe.Pointer(s)
	// IndexByteString uses wide reads, so we need to be careful
	// with page boundaries. Call IndexByteString on
	// [ptr, endOfPage) interval.
	safeLen := int(pageSize - uintptr(ptr)%pageSize)

	for {
		t := *(*string)(unsafe.Pointer(&stringStruct{ptr, safeLen}))
		// Check one page at a time.
		if i := bytealg.IndexByteString(t, 0); i != -1 {
			return offset + i
		}
		// Move to next page
		ptr = unsafe.Pointer(uintptr(ptr) + uintptr(safeLen))
		offset += safeLen
		safeLen = pageSize
	}
}

func findnullw(s *uint16) int {
	if s == nil {
		return 0
	}
	p := (*[maxAlloc/2/2 - 1]uint16)(unsafe.Pointer(s))
	l := 0
	for p[l] != 0 {
		l++
	}
	return l
}

//go:nosplit
func gostringnocopy(str *byte) string {
	ss := stringStruct{str: unsafe.Pointer(str), len: findnull(str)}
	s := *(*string)(unsafe.Pointer(&ss))
	return s
}

func gostringw(strw *uint16) string {
	var buf [8]byte
	str := (*[maxAlloc/2/2 - 1]uint16)(unsafe.Pointer(strw))
	n1 := 0
	for i := 0; str[i] != 0; i++ {
		n1 += encoderune(buf[:], rune(str[i]))
	}
	s, b := rawstring(n1 + 4)
	n2 := 0
	for i := 0; str[i] != 0; i++ {
		// check for race
		if n2 >= n1 {
			break
		}
		n2 += encoderune(b[n2:], rune(str[i]))
	}
	b[n2] = 0 // for luck
	return s[:n2]
}