summaryrefslogtreecommitdiffstats
path: root/src/syscall/exec_linux.go
blob: dfbb38ac1678c74275085a00149c73b1c8a9bb86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build linux

package syscall

import (
	"internal/itoa"
	"runtime"
	"unsafe"
)

// Linux unshare/clone/clone2/clone3 flags, architecture-independent,
// copied from linux/sched.h.
const (
	CLONE_VM             = 0x00000100 // set if VM shared between processes
	CLONE_FS             = 0x00000200 // set if fs info shared between processes
	CLONE_FILES          = 0x00000400 // set if open files shared between processes
	CLONE_SIGHAND        = 0x00000800 // set if signal handlers and blocked signals shared
	CLONE_PIDFD          = 0x00001000 // set if a pidfd should be placed in parent
	CLONE_PTRACE         = 0x00002000 // set if we want to let tracing continue on the child too
	CLONE_VFORK          = 0x00004000 // set if the parent wants the child to wake it up on mm_release
	CLONE_PARENT         = 0x00008000 // set if we want to have the same parent as the cloner
	CLONE_THREAD         = 0x00010000 // Same thread group?
	CLONE_NEWNS          = 0x00020000 // New mount namespace group
	CLONE_SYSVSEM        = 0x00040000 // share system V SEM_UNDO semantics
	CLONE_SETTLS         = 0x00080000 // create a new TLS for the child
	CLONE_PARENT_SETTID  = 0x00100000 // set the TID in the parent
	CLONE_CHILD_CLEARTID = 0x00200000 // clear the TID in the child
	CLONE_DETACHED       = 0x00400000 // Unused, ignored
	CLONE_UNTRACED       = 0x00800000 // set if the tracing process can't force CLONE_PTRACE on this clone
	CLONE_CHILD_SETTID   = 0x01000000 // set the TID in the child
	CLONE_NEWCGROUP      = 0x02000000 // New cgroup namespace
	CLONE_NEWUTS         = 0x04000000 // New utsname namespace
	CLONE_NEWIPC         = 0x08000000 // New ipc namespace
	CLONE_NEWUSER        = 0x10000000 // New user namespace
	CLONE_NEWPID         = 0x20000000 // New pid namespace
	CLONE_NEWNET         = 0x40000000 // New network namespace
	CLONE_IO             = 0x80000000 // Clone io context

	// Flags for the clone3() syscall.

	CLONE_CLEAR_SIGHAND = 0x100000000 // Clear any signal handler and reset to SIG_DFL.
	CLONE_INTO_CGROUP   = 0x200000000 // Clone into a specific cgroup given the right permissions.

	// Cloning flags intersect with CSIGNAL so can be used with unshare and clone3
	// syscalls only:

	CLONE_NEWTIME = 0x00000080 // New time namespace
)

// SysProcIDMap holds Container ID to Host ID mappings used for User Namespaces in Linux.
// See user_namespaces(7).
type SysProcIDMap struct {
	ContainerID int // Container ID.
	HostID      int // Host ID.
	Size        int // Size.
}

type SysProcAttr struct {
	Chroot     string      // Chroot.
	Credential *Credential // Credential.
	// Ptrace tells the child to call ptrace(PTRACE_TRACEME).
	// Call runtime.LockOSThread before starting a process with this set,
	// and don't call UnlockOSThread until done with PtraceSyscall calls.
	Ptrace bool
	Setsid bool // Create session.
	// Setpgid sets the process group ID of the child to Pgid,
	// or, if Pgid == 0, to the new child's process ID.
	Setpgid bool
	// Setctty sets the controlling terminal of the child to
	// file descriptor Ctty. Ctty must be a descriptor number
	// in the child process: an index into ProcAttr.Files.
	// This is only meaningful if Setsid is true.
	Setctty bool
	Noctty  bool // Detach fd 0 from controlling terminal
	Ctty    int  // Controlling TTY fd
	// Foreground places the child process group in the foreground.
	// This implies Setpgid. The Ctty field must be set to
	// the descriptor of the controlling TTY.
	// Unlike Setctty, in this case Ctty must be a descriptor
	// number in the parent process.
	Foreground bool
	Pgid       int // Child's process group ID if Setpgid.
	// Pdeathsig, if non-zero, is a signal that the kernel will send to
	// the child process when the creating thread dies. Note that the signal
	// is sent on thread termination, which may happen before process termination.
	// There are more details at https://go.dev/issue/27505.
	Pdeathsig    Signal
	Cloneflags   uintptr        // Flags for clone calls (Linux only)
	Unshareflags uintptr        // Flags for unshare calls (Linux only)
	UidMappings  []SysProcIDMap // User ID mappings for user namespaces.
	GidMappings  []SysProcIDMap // Group ID mappings for user namespaces.
	// GidMappingsEnableSetgroups enabling setgroups syscall.
	// If false, then setgroups syscall will be disabled for the child process.
	// This parameter is no-op if GidMappings == nil. Otherwise for unprivileged
	// users this should be set to false for mappings work.
	GidMappingsEnableSetgroups bool
	AmbientCaps                []uintptr // Ambient capabilities (Linux only)
	UseCgroupFD                bool      // Whether to make use of the CgroupFD field.
	CgroupFD                   int       // File descriptor of a cgroup to put the new process into.
}

var (
	none  = [...]byte{'n', 'o', 'n', 'e', 0}
	slash = [...]byte{'/', 0}
)

// Implemented in runtime package.
func runtime_BeforeFork()
func runtime_AfterFork()
func runtime_AfterForkInChild()

// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
// If a dup or exec fails, write the errno error to pipe.
// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
// In the child, this function must not acquire any locks, because
// they might have been locked at the time of the fork. This means
// no rescheduling, no malloc calls, and no new stack segments.
// For the same reason compiler does not race instrument it.
// The calls to RawSyscall are okay because they are assembly
// functions that do not grow the stack.
//
//go:norace
func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) {
	// Set up and fork. This returns immediately in the parent or
	// if there's an error.
	upid, err, mapPipe, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe)
	if locked {
		runtime_AfterFork()
	}
	if err != 0 {
		return 0, err
	}

	// parent; return PID
	pid = int(upid)

	if sys.UidMappings != nil || sys.GidMappings != nil {
		Close(mapPipe[0])
		var err2 Errno
		// uid/gid mappings will be written after fork and unshare(2) for user
		// namespaces.
		if sys.Unshareflags&CLONE_NEWUSER == 0 {
			if err := writeUidGidMappings(pid, sys); err != nil {
				err2 = err.(Errno)
			}
		}
		RawSyscall(SYS_WRITE, uintptr(mapPipe[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
		Close(mapPipe[1])
	}

	return pid, 0
}

const _LINUX_CAPABILITY_VERSION_3 = 0x20080522

type capHeader struct {
	version uint32
	pid     int32
}

type capData struct {
	effective   uint32
	permitted   uint32
	inheritable uint32
}
type caps struct {
	hdr  capHeader
	data [2]capData
}

// See CAP_TO_INDEX in linux/capability.h:
func capToIndex(cap uintptr) uintptr { return cap >> 5 }

// See CAP_TO_MASK in linux/capability.h:
func capToMask(cap uintptr) uint32 { return 1 << uint(cap&31) }

// cloneArgs holds arguments for clone3 Linux syscall.
type cloneArgs struct {
	flags      uint64 // Flags bit mask
	pidFD      uint64 // Where to store PID file descriptor (int *)
	childTID   uint64 // Where to store child TID, in child's memory (pid_t *)
	parentTID  uint64 // Where to store child TID, in parent's memory (pid_t *)
	exitSignal uint64 // Signal to deliver to parent on child termination
	stack      uint64 // Pointer to lowest byte of stack
	stackSize  uint64 // Size of stack
	tls        uint64 // Location of new TLS
	setTID     uint64 // Pointer to a pid_t array (since Linux 5.5)
	setTIDSize uint64 // Number of elements in set_tid (since Linux 5.5)
	cgroup     uint64 // File descriptor for target cgroup of child (since Linux 5.7)
}

// forkAndExecInChild1 implements the body of forkAndExecInChild up to
// the parent's post-fork path. This is a separate function so we can
// separate the child's and parent's stack frames if we're using
// vfork.
//
// This is go:noinline because the point is to keep the stack frames
// of this and forkAndExecInChild separate.
//
//go:noinline
//go:norace
//go:nocheckptr
func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid uintptr, err1 Errno, mapPipe [2]int, locked bool) {
	// Defined in linux/prctl.h starting with Linux 4.3.
	const (
		PR_CAP_AMBIENT       = 0x2f
		PR_CAP_AMBIENT_RAISE = 0x2
	)

	// vfork requires that the child not touch any of the parent's
	// active stack frames. Hence, the child does all post-fork
	// processing in this stack frame and never returns, while the
	// parent returns immediately from this frame and does all
	// post-fork processing in the outer frame.
	//
	// Declare all variables at top in case any
	// declarations require heap allocation (e.g., err2).
	// ":=" should not be used to declare any variable after
	// the call to runtime_BeforeFork.
	//
	// NOTE(bcmills): The allocation behavior described in the above comment
	// seems to lack a corresponding test, and it may be rendered invalid
	// by an otherwise-correct change in the compiler.
	var (
		err2                      Errno
		nextfd                    int
		i                         int
		caps                      caps
		fd1, flags                uintptr
		puid, psetgroups, pgid    []byte
		uidmap, setgroups, gidmap []byte
		clone3                    *cloneArgs
		pgrp                      int32
		dirfd                     int
		cred                      *Credential
		ngroups, groups           uintptr
		c                         uintptr
	)

	rlim, rlimOK := origRlimitNofile.Load().(Rlimit)

	if sys.UidMappings != nil {
		puid = []byte("/proc/self/uid_map\000")
		uidmap = formatIDMappings(sys.UidMappings)
	}

	if sys.GidMappings != nil {
		psetgroups = []byte("/proc/self/setgroups\000")
		pgid = []byte("/proc/self/gid_map\000")

		if sys.GidMappingsEnableSetgroups {
			setgroups = []byte("allow\000")
		} else {
			setgroups = []byte("deny\000")
		}
		gidmap = formatIDMappings(sys.GidMappings)
	}

	// Record parent PID so child can test if it has died.
	ppid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0)

	// Guard against side effects of shuffling fds below.
	// Make sure that nextfd is beyond any currently open files so
	// that we can't run the risk of overwriting any of them.
	fd := make([]int, len(attr.Files))
	nextfd = len(attr.Files)
	for i, ufd := range attr.Files {
		if nextfd < int(ufd) {
			nextfd = int(ufd)
		}
		fd[i] = int(ufd)
	}
	nextfd++

	// Allocate another pipe for parent to child communication for
	// synchronizing writing of User ID/Group ID mappings.
	if sys.UidMappings != nil || sys.GidMappings != nil {
		if err := forkExecPipe(mapPipe[:]); err != nil {
			err1 = err.(Errno)
			return
		}
	}

	flags = sys.Cloneflags
	if sys.Cloneflags&CLONE_NEWUSER == 0 && sys.Unshareflags&CLONE_NEWUSER == 0 {
		flags |= CLONE_VFORK | CLONE_VM
	}
	// Whether to use clone3.
	if sys.UseCgroupFD {
		clone3 = &cloneArgs{
			flags:      uint64(flags) | CLONE_INTO_CGROUP,
			exitSignal: uint64(SIGCHLD),
			cgroup:     uint64(sys.CgroupFD),
		}
	} else if flags&CLONE_NEWTIME != 0 {
		clone3 = &cloneArgs{
			flags:      uint64(flags),
			exitSignal: uint64(SIGCHLD),
		}
	}

	// About to call fork.
	// No more allocation or calls of non-assembly functions.
	runtime_BeforeFork()
	locked = true
	if clone3 != nil {
		pid, err1 = rawVforkSyscall(_SYS_clone3, uintptr(unsafe.Pointer(clone3)), unsafe.Sizeof(*clone3))
	} else {
		flags |= uintptr(SIGCHLD)
		if runtime.GOARCH == "s390x" {
			// On Linux/s390, the first two arguments of clone(2) are swapped.
			pid, err1 = rawVforkSyscall(SYS_CLONE, 0, flags)
		} else {
			pid, err1 = rawVforkSyscall(SYS_CLONE, flags, 0)
		}
	}
	if err1 != 0 || pid != 0 {
		// If we're in the parent, we must return immediately
		// so we're not in the same stack frame as the child.
		// This can at most use the return PC, which the child
		// will not modify, and the results of
		// rawVforkSyscall, which must have been written after
		// the child was replaced.
		return
	}

	// Fork succeeded, now in child.

	// Enable the "keep capabilities" flag to set ambient capabilities later.
	if len(sys.AmbientCaps) > 0 {
		_, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_KEEPCAPS, 1, 0, 0, 0, 0)
		if err1 != 0 {
			goto childerror
		}
	}

	// Wait for User ID/Group ID mappings to be written.
	if sys.UidMappings != nil || sys.GidMappings != nil {
		if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(mapPipe[1]), 0, 0); err1 != 0 {
			goto childerror
		}
		pid, _, err1 = RawSyscall(SYS_READ, uintptr(mapPipe[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
		if err1 != 0 {
			goto childerror
		}
		if pid != unsafe.Sizeof(err2) {
			err1 = EINVAL
			goto childerror
		}
		if err2 != 0 {
			err1 = err2
			goto childerror
		}
	}

	// Session ID
	if sys.Setsid {
		_, _, err1 = RawSyscall(SYS_SETSID, 0, 0, 0)
		if err1 != 0 {
			goto childerror
		}
	}

	// Set process group
	if sys.Setpgid || sys.Foreground {
		// Place child in process group.
		_, _, err1 = RawSyscall(SYS_SETPGID, 0, uintptr(sys.Pgid), 0)
		if err1 != 0 {
			goto childerror
		}
	}

	if sys.Foreground {
		pgrp = int32(sys.Pgid)
		if pgrp == 0 {
			pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0)

			pgrp = int32(pid)
		}

		// Place process group in foreground.
		_, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp)))
		if err1 != 0 {
			goto childerror
		}
	}

	// Restore the signal mask. We do this after TIOCSPGRP to avoid
	// having the kernel send a SIGTTOU signal to the process group.
	runtime_AfterForkInChild()

	// Unshare
	if sys.Unshareflags != 0 {
		_, _, err1 = RawSyscall(SYS_UNSHARE, sys.Unshareflags, 0, 0)
		if err1 != 0 {
			goto childerror
		}

		if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.GidMappings != nil {
			dirfd = int(_AT_FDCWD)
			if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&psetgroups[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
				goto childerror
			}
			pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&setgroups[0])), uintptr(len(setgroups)))
			if err1 != 0 {
				goto childerror
			}
			if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
				goto childerror
			}

			if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&pgid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
				goto childerror
			}
			pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&gidmap[0])), uintptr(len(gidmap)))
			if err1 != 0 {
				goto childerror
			}
			if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
				goto childerror
			}
		}

		if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.UidMappings != nil {
			dirfd = int(_AT_FDCWD)
			if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&puid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
				goto childerror
			}
			pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&uidmap[0])), uintptr(len(uidmap)))
			if err1 != 0 {
				goto childerror
			}
			if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
				goto childerror
			}
		}

		// The unshare system call in Linux doesn't unshare mount points
		// mounted with --shared. Systemd mounts / with --shared. For a
		// long discussion of the pros and cons of this see debian bug 739593.
		// The Go model of unsharing is more like Plan 9, where you ask
		// to unshare and the namespaces are unconditionally unshared.
		// To make this model work we must further mark / as MS_PRIVATE.
		// This is what the standard unshare command does.
		if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS {
			_, _, err1 = RawSyscall6(SYS_MOUNT, uintptr(unsafe.Pointer(&none[0])), uintptr(unsafe.Pointer(&slash[0])), 0, MS_REC|MS_PRIVATE, 0, 0)
			if err1 != 0 {
				goto childerror
			}
		}
	}

	// Chroot
	if chroot != nil {
		_, _, err1 = RawSyscall(SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0)
		if err1 != 0 {
			goto childerror
		}
	}

	// User and groups
	if cred = sys.Credential; cred != nil {
		ngroups = uintptr(len(cred.Groups))
		groups = uintptr(0)
		if ngroups > 0 {
			groups = uintptr(unsafe.Pointer(&cred.Groups[0]))
		}
		if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups {
			_, _, err1 = RawSyscall(_SYS_setgroups, ngroups, groups, 0)
			if err1 != 0 {
				goto childerror
			}
		}
		_, _, err1 = RawSyscall(sys_SETGID, uintptr(cred.Gid), 0, 0)
		if err1 != 0 {
			goto childerror
		}
		_, _, err1 = RawSyscall(sys_SETUID, uintptr(cred.Uid), 0, 0)
		if err1 != 0 {
			goto childerror
		}
	}

	if len(sys.AmbientCaps) != 0 {
		// Ambient capabilities were added in the 4.3 kernel,
		// so it is safe to always use _LINUX_CAPABILITY_VERSION_3.
		caps.hdr.version = _LINUX_CAPABILITY_VERSION_3

		if _, _, err1 = RawSyscall(SYS_CAPGET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
			goto childerror
		}

		for _, c = range sys.AmbientCaps {
			// Add the c capability to the permitted and inheritable capability mask,
			// otherwise we will not be able to add it to the ambient capability mask.
			caps.data[capToIndex(c)].permitted |= capToMask(c)
			caps.data[capToIndex(c)].inheritable |= capToMask(c)
		}

		if _, _, err1 = RawSyscall(SYS_CAPSET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
			goto childerror
		}

		for _, c = range sys.AmbientCaps {
			_, _, err1 = RawSyscall6(SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0)
			if err1 != 0 {
				goto childerror
			}
		}
	}

	// Chdir
	if dir != nil {
		_, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
		if err1 != 0 {
			goto childerror
		}
	}

	// Parent death signal
	if sys.Pdeathsig != 0 {
		_, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_PDEATHSIG, uintptr(sys.Pdeathsig), 0, 0, 0, 0)
		if err1 != 0 {
			goto childerror
		}

		// Signal self if parent is already dead. This might cause a
		// duplicate signal in rare cases, but it won't matter when
		// using SIGKILL.
		pid, _ = rawSyscallNoError(SYS_GETPPID, 0, 0, 0)
		if pid != ppid {
			pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0)
			_, _, err1 = RawSyscall(SYS_KILL, pid, uintptr(sys.Pdeathsig), 0)
			if err1 != 0 {
				goto childerror
			}
		}
	}

	// Pass 1: look for fd[i] < i and move those up above len(fd)
	// so that pass 2 won't stomp on an fd it needs later.
	if pipe < nextfd {
		_, _, err1 = RawSyscall(SYS_DUP3, uintptr(pipe), uintptr(nextfd), O_CLOEXEC)
		if err1 != 0 {
			goto childerror
		}
		pipe = nextfd
		nextfd++
	}
	for i = 0; i < len(fd); i++ {
		if fd[i] >= 0 && fd[i] < i {
			if nextfd == pipe { // don't stomp on pipe
				nextfd++
			}
			_, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(nextfd), O_CLOEXEC)
			if err1 != 0 {
				goto childerror
			}
			fd[i] = nextfd
			nextfd++
		}
	}

	// Pass 2: dup fd[i] down onto i.
	for i = 0; i < len(fd); i++ {
		if fd[i] == -1 {
			RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
			continue
		}
		if fd[i] == i {
			// dup2(i, i) won't clear close-on-exec flag on Linux,
			// probably not elsewhere either.
			_, _, err1 = RawSyscall(fcntl64Syscall, uintptr(fd[i]), F_SETFD, 0)
			if err1 != 0 {
				goto childerror
			}
			continue
		}
		// The new fd is created NOT close-on-exec,
		// which is exactly what we want.
		_, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(i), 0)
		if err1 != 0 {
			goto childerror
		}
	}

	// By convention, we don't close-on-exec the fds we are
	// started with, so if len(fd) < 3, close 0, 1, 2 as needed.
	// Programs that know they inherit fds >= 3 will need
	// to set them close-on-exec.
	for i = len(fd); i < 3; i++ {
		RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
	}

	// Detach fd 0 from tty
	if sys.Noctty {
		_, _, err1 = RawSyscall(SYS_IOCTL, 0, uintptr(TIOCNOTTY), 0)
		if err1 != 0 {
			goto childerror
		}
	}

	// Set the controlling TTY to Ctty
	if sys.Setctty {
		_, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSCTTY), 1)
		if err1 != 0 {
			goto childerror
		}
	}

	// Restore original rlimit.
	if rlimOK && rlim.Cur != 0 {
		rawSetrlimit(RLIMIT_NOFILE, &rlim)
	}

	// Enable tracing if requested.
	// Do this right before exec so that we don't unnecessarily trace the runtime
	// setting up after the fork. See issue #21428.
	if sys.Ptrace {
		_, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0)
		if err1 != 0 {
			goto childerror
		}
	}

	// Time to exec.
	_, _, err1 = RawSyscall(SYS_EXECVE,
		uintptr(unsafe.Pointer(argv0)),
		uintptr(unsafe.Pointer(&argv[0])),
		uintptr(unsafe.Pointer(&envv[0])))

childerror:
	// send error code on pipe
	RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1))
	for {
		RawSyscall(SYS_EXIT, 253, 0, 0)
	}
}

func formatIDMappings(idMap []SysProcIDMap) []byte {
	var data []byte
	for _, im := range idMap {
		data = append(data, itoa.Itoa(im.ContainerID)+" "+itoa.Itoa(im.HostID)+" "+itoa.Itoa(im.Size)+"\n"...)
	}
	return data
}

// writeIDMappings writes the user namespace User ID or Group ID mappings to the specified path.
func writeIDMappings(path string, idMap []SysProcIDMap) error {
	fd, err := Open(path, O_RDWR, 0)
	if err != nil {
		return err
	}

	if _, err := Write(fd, formatIDMappings(idMap)); err != nil {
		Close(fd)
		return err
	}

	if err := Close(fd); err != nil {
		return err
	}

	return nil
}

// writeSetgroups writes to /proc/PID/setgroups "deny" if enable is false
// and "allow" if enable is true.
// This is needed since kernel 3.19, because you can't write gid_map without
// disabling setgroups() system call.
func writeSetgroups(pid int, enable bool) error {
	sgf := "/proc/" + itoa.Itoa(pid) + "/setgroups"
	fd, err := Open(sgf, O_RDWR, 0)
	if err != nil {
		return err
	}

	var data []byte
	if enable {
		data = []byte("allow")
	} else {
		data = []byte("deny")
	}

	if _, err := Write(fd, data); err != nil {
		Close(fd)
		return err
	}

	return Close(fd)
}

// writeUidGidMappings writes User ID and Group ID mappings for user namespaces
// for a process and it is called from the parent process.
func writeUidGidMappings(pid int, sys *SysProcAttr) error {
	if sys.UidMappings != nil {
		uidf := "/proc/" + itoa.Itoa(pid) + "/uid_map"
		if err := writeIDMappings(uidf, sys.UidMappings); err != nil {
			return err
		}
	}

	if sys.GidMappings != nil {
		// If the kernel is too old to support /proc/PID/setgroups, writeSetGroups will return ENOENT; this is OK.
		if err := writeSetgroups(pid, sys.GidMappingsEnableSetgroups); err != nil && err != ENOENT {
			return err
		}
		gidf := "/proc/" + itoa.Itoa(pid) + "/gid_map"
		if err := writeIDMappings(gidf, sys.GidMappings); err != nil {
			return err
		}
	}

	return nil
}