diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:25:22 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:25:22 +0000 |
commit | f6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch) | |
tree | 7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/cmd/compile/internal/inline/inl.go | |
parent | Initial commit. (diff) | |
download | golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip |
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/inline/inl.go')
-rw-r--r-- | src/cmd/compile/internal/inline/inl.go | 1217 |
1 files changed, 1217 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/inline/inl.go b/src/cmd/compile/internal/inline/inl.go new file mode 100644 index 0000000..b365008 --- /dev/null +++ b/src/cmd/compile/internal/inline/inl.go @@ -0,0 +1,1217 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. +// +// The inlining facility makes 2 passes: first CanInline determines which +// functions are suitable for inlining, and for those that are it +// saves a copy of the body. Then InlineCalls walks each function body to +// expand calls to inlinable functions. +// +// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1, +// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and +// are not supported. +// 0: disabled +// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default) +// 2: (unassigned) +// 3: (unassigned) +// 4: allow non-leaf functions +// +// At some point this may get another default and become switch-offable with -N. +// +// The -d typcheckinl flag enables early typechecking of all imported bodies, +// which is useful to flush out bugs. +// +// The Debug.m flag enables diagnostic output. a single -m is useful for verifying +// which calls get inlined or not, more is for debugging, and may go away at any point. + +package inline + +import ( + "fmt" + "go/constant" + "internal/buildcfg" + "strconv" + + "cmd/compile/internal/base" + "cmd/compile/internal/inline/inlheur" + "cmd/compile/internal/ir" + "cmd/compile/internal/logopt" + "cmd/compile/internal/pgo" + "cmd/compile/internal/typecheck" + "cmd/compile/internal/types" + "cmd/internal/obj" +) + +// Inlining budget parameters, gathered in one place +const ( + inlineMaxBudget = 80 + inlineExtraAppendCost = 0 + // default is to inline if there's at most one call. -l=4 overrides this by using 1 instead. + inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742 + inlineExtraPanicCost = 1 // do not penalize inlining panics. + inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help. + + inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big". + inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function. +) + +var ( + // List of all hot callee nodes. + // TODO(prattmic): Make this non-global. + candHotCalleeMap = make(map[*pgo.IRNode]struct{}) + + // List of all hot call sites. CallSiteInfo.Callee is always nil. + // TODO(prattmic): Make this non-global. + candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{}) + + // Threshold in percentage for hot callsite inlining. + inlineHotCallSiteThresholdPercent float64 + + // Threshold in CDF percentage for hot callsite inlining, + // that is, for a threshold of X the hottest callsites that + // make up the top X% of total edge weight will be + // considered hot for inlining candidates. + inlineCDFHotCallSiteThresholdPercent = float64(99) + + // Budget increased due to hotness. + inlineHotMaxBudget int32 = 2000 +) + +// PGOInlinePrologue records the hot callsites from ir-graph. +func PGOInlinePrologue(p *pgo.Profile, funcs []*ir.Func) { + if base.Debug.PGOInlineCDFThreshold != "" { + if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 { + inlineCDFHotCallSiteThresholdPercent = s + } else { + base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100") + } + } + var hotCallsites []pgo.NamedCallEdge + inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p) + if base.Debug.PGODebug > 0 { + fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent) + } + + if x := base.Debug.PGOInlineBudget; x != 0 { + inlineHotMaxBudget = int32(x) + } + + for _, n := range hotCallsites { + // mark inlineable callees from hot edges + if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil { + candHotCalleeMap[callee] = struct{}{} + } + // mark hot call sites + if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil { + csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST} + candHotEdgeMap[csi] = struct{}{} + } + } + + if base.Debug.PGODebug >= 3 { + fmt.Printf("hot-cg before inline in dot format:") + p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent) + } +} + +// hotNodesFromCDF computes an edge weight threshold and the list of hot +// nodes that make up the given percentage of the CDF. The threshold, as +// a percent, is the lower bound of weight for nodes to be considered hot +// (currently only used in debug prints) (in case of equal weights, +// comparing with the threshold may not accurately reflect which nodes are +// considiered hot). +func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NamedCallEdge) { + cum := int64(0) + for i, n := range p.NamedEdgeMap.ByWeight { + w := p.NamedEdgeMap.Weight[n] + cum += w + if pgo.WeightInPercentage(cum, p.TotalWeight) > inlineCDFHotCallSiteThresholdPercent { + // nodes[:i+1] to include the very last node that makes it to go over the threshold. + // (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to + // include that node instead of excluding it.) + return pgo.WeightInPercentage(w, p.TotalWeight), p.NamedEdgeMap.ByWeight[:i+1] + } + } + return 0, p.NamedEdgeMap.ByWeight +} + +// CanInlineFuncs computes whether a batch of functions are inlinable. +func CanInlineFuncs(funcs []*ir.Func, profile *pgo.Profile) { + if profile != nil { + PGOInlinePrologue(profile, funcs) + } + + ir.VisitFuncsBottomUp(funcs, func(list []*ir.Func, recursive bool) { + CanInlineSCC(list, recursive, profile) + }) +} + +// CanInlineSCC computes the inlinability of functions within an SCC +// (strongly connected component). +// +// CanInlineSCC is designed to be used by ir.VisitFuncsBottomUp +// callbacks. +func CanInlineSCC(funcs []*ir.Func, recursive bool, profile *pgo.Profile) { + if base.Flag.LowerL == 0 { + return + } + + numfns := numNonClosures(funcs) + + for _, fn := range funcs { + if !recursive || numfns > 1 { + // We allow inlining if there is no + // recursion, or the recursion cycle is + // across more than one function. + CanInline(fn, profile) + } else { + if base.Flag.LowerM > 1 && fn.OClosure == nil { + fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(fn), fn.Nname) + } + } + if inlheur.Enabled() { + analyzeFuncProps(fn, profile) + } + } +} + +// GarbageCollectUnreferencedHiddenClosures makes a pass over all the +// top-level (non-hidden-closure) functions looking for nested closure +// functions that are reachable, then sweeps through the Target.Decls +// list and marks any non-reachable hidden closure function as dead. +// See issues #59404 and #59638 for more context. +func GarbageCollectUnreferencedHiddenClosures() { + + liveFuncs := make(map[*ir.Func]bool) + + var markLiveFuncs func(fn *ir.Func) + markLiveFuncs = func(fn *ir.Func) { + if liveFuncs[fn] { + return + } + liveFuncs[fn] = true + ir.Visit(fn, func(n ir.Node) { + if clo, ok := n.(*ir.ClosureExpr); ok { + markLiveFuncs(clo.Func) + } + }) + } + + for i := 0; i < len(typecheck.Target.Funcs); i++ { + fn := typecheck.Target.Funcs[i] + if fn.IsHiddenClosure() { + continue + } + markLiveFuncs(fn) + } + + for i := 0; i < len(typecheck.Target.Funcs); i++ { + fn := typecheck.Target.Funcs[i] + if !fn.IsHiddenClosure() { + continue + } + if fn.IsDeadcodeClosure() { + continue + } + if liveFuncs[fn] { + continue + } + fn.SetIsDeadcodeClosure(true) + if base.Flag.LowerM > 2 { + fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn) + } + if fn.Inl != nil && fn.LSym == nil { + ir.InitLSym(fn, true) + } + } +} + +// inlineBudget determines the max budget for function 'fn' prior to +// analyzing the hairyness of the body of 'fn'. We pass in the pgo +// profile if available (which can change the budget), also a +// 'relaxed' flag, which expands the budget slightly to allow for the +// possibility that a call to the function might have its score +// adjusted downwards. If 'verbose' is set, then print a remark where +// we boost the budget due to PGO. +func inlineBudget(fn *ir.Func, profile *pgo.Profile, relaxed bool, verbose bool) int32 { + // Update the budget for profile-guided inlining. + budget := int32(inlineMaxBudget) + if profile != nil { + if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok { + if _, ok := candHotCalleeMap[n]; ok { + budget = int32(inlineHotMaxBudget) + if verbose { + fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn)) + } + } + } + } + if relaxed { + budget += inlheur.BudgetExpansion(inlineMaxBudget) + } + return budget +} + +// CanInline determines whether fn is inlineable. +// If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl. +// fn and fn.Body will already have been typechecked. +func CanInline(fn *ir.Func, profile *pgo.Profile) { + if fn.Nname == nil { + base.Fatalf("CanInline no nname %+v", fn) + } + + var reason string // reason, if any, that the function was not inlined + if base.Flag.LowerM > 1 || logopt.Enabled() { + defer func() { + if reason != "" { + if base.Flag.LowerM > 1 { + fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason) + } + if logopt.Enabled() { + logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason) + } + } + }() + } + + reason = InlineImpossible(fn) + if reason != "" { + return + } + if fn.Typecheck() == 0 { + base.Fatalf("CanInline on non-typechecked function %v", fn) + } + + n := fn.Nname + if n.Func.InlinabilityChecked() { + return + } + defer n.Func.SetInlinabilityChecked(true) + + cc := int32(inlineExtraCallCost) + if base.Flag.LowerL == 4 { + cc = 1 // this appears to yield better performance than 0. + } + + // Used a "relaxed" inline budget if the new inliner is enabled. + relaxed := inlheur.Enabled() + + // Compute the inline budget for this func. + budget := inlineBudget(fn, profile, relaxed, base.Debug.PGODebug > 0) + + // At this point in the game the function we're looking at may + // have "stale" autos, vars that still appear in the Dcl list, but + // which no longer have any uses in the function body (due to + // elimination by deadcode). We'd like to exclude these dead vars + // when creating the "Inline.Dcl" field below; to accomplish this, + // the hairyVisitor below builds up a map of used/referenced + // locals, and we use this map to produce a pruned Inline.Dcl + // list. See issue 25459 for more context. + + visitor := hairyVisitor{ + curFunc: fn, + isBigFunc: IsBigFunc(fn), + budget: budget, + maxBudget: budget, + extraCallCost: cc, + profile: profile, + } + if visitor.tooHairy(fn) { + reason = visitor.reason + return + } + + n.Func.Inl = &ir.Inline{ + Cost: budget - visitor.budget, + Dcl: pruneUnusedAutos(n.Func.Dcl, &visitor), + HaveDcl: true, + + CanDelayResults: canDelayResults(fn), + } + if base.Flag.LowerM != 0 || logopt.Enabled() { + noteInlinableFunc(n, fn, budget-visitor.budget) + } +} + +// noteInlinableFunc issues a message to the user that the specified +// function is inlinable. +func noteInlinableFunc(n *ir.Name, fn *ir.Func, cost int32) { + if base.Flag.LowerM > 1 { + fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, cost, fn.Type(), ir.Nodes(fn.Body)) + } else if base.Flag.LowerM != 0 { + fmt.Printf("%v: can inline %v\n", ir.Line(fn), n) + } + // JSON optimization log output. + if logopt.Enabled() { + logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", cost)) + } +} + +// InlineImpossible returns a non-empty reason string if fn is impossible to +// inline regardless of cost or contents. +func InlineImpossible(fn *ir.Func) string { + var reason string // reason, if any, that the function can not be inlined. + if fn.Nname == nil { + reason = "no name" + return reason + } + + // If marked "go:noinline", don't inline. + if fn.Pragma&ir.Noinline != 0 { + reason = "marked go:noinline" + return reason + } + + // If marked "go:norace" and -race compilation, don't inline. + if base.Flag.Race && fn.Pragma&ir.Norace != 0 { + reason = "marked go:norace with -race compilation" + return reason + } + + // If marked "go:nocheckptr" and -d checkptr compilation, don't inline. + if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 { + reason = "marked go:nocheckptr" + return reason + } + + // If marked "go:cgo_unsafe_args", don't inline, since the function + // makes assumptions about its argument frame layout. + if fn.Pragma&ir.CgoUnsafeArgs != 0 { + reason = "marked go:cgo_unsafe_args" + return reason + } + + // If marked as "go:uintptrkeepalive", don't inline, since the keep + // alive information is lost during inlining. + // + // TODO(prattmic): This is handled on calls during escape analysis, + // which is after inlining. Move prior to inlining so the keep-alive is + // maintained after inlining. + if fn.Pragma&ir.UintptrKeepAlive != 0 { + reason = "marked as having a keep-alive uintptr argument" + return reason + } + + // If marked as "go:uintptrescapes", don't inline, since the escape + // information is lost during inlining. + if fn.Pragma&ir.UintptrEscapes != 0 { + reason = "marked as having an escaping uintptr argument" + return reason + } + + // The nowritebarrierrec checker currently works at function + // granularity, so inlining yeswritebarrierrec functions can confuse it + // (#22342). As a workaround, disallow inlining them for now. + if fn.Pragma&ir.Yeswritebarrierrec != 0 { + reason = "marked go:yeswritebarrierrec" + return reason + } + + // If a local function has no fn.Body (is defined outside of Go), cannot inline it. + // Imported functions don't have fn.Body but might have inline body in fn.Inl. + if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) { + reason = "no function body" + return reason + } + + return "" +} + +// canDelayResults reports whether inlined calls to fn can delay +// declaring the result parameter until the "return" statement. +func canDelayResults(fn *ir.Func) bool { + // We can delay declaring+initializing result parameters if: + // (1) there's exactly one "return" statement in the inlined function; + // (2) it's not an empty return statement (#44355); and + // (3) the result parameters aren't named. + + nreturns := 0 + ir.VisitList(fn.Body, func(n ir.Node) { + if n, ok := n.(*ir.ReturnStmt); ok { + nreturns++ + if len(n.Results) == 0 { + nreturns++ // empty return statement (case 2) + } + } + }) + + if nreturns != 1 { + return false // not exactly one return statement (case 1) + } + + // temporaries for return values. + for _, param := range fn.Type().Results() { + if sym := param.Sym; sym != nil && !sym.IsBlank() { + return false // found a named result parameter (case 3) + } + } + + return true +} + +// hairyVisitor visits a function body to determine its inlining +// hairiness and whether or not it can be inlined. +type hairyVisitor struct { + // This is needed to access the current caller in the doNode function. + curFunc *ir.Func + isBigFunc bool + budget int32 + maxBudget int32 + reason string + extraCallCost int32 + usedLocals ir.NameSet + do func(ir.Node) bool + profile *pgo.Profile +} + +func (v *hairyVisitor) tooHairy(fn *ir.Func) bool { + v.do = v.doNode // cache closure + if ir.DoChildren(fn, v.do) { + return true + } + if v.budget < 0 { + v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget) + return true + } + return false +} + +// doNode visits n and its children, updates the state in v, and returns true if +// n makes the current function too hairy for inlining. +func (v *hairyVisitor) doNode(n ir.Node) bool { + if n == nil { + return false + } +opSwitch: + switch n.Op() { + // Call is okay if inlinable and we have the budget for the body. + case ir.OCALLFUNC: + n := n.(*ir.CallExpr) + // Functions that call runtime.getcaller{pc,sp} can not be inlined + // because getcaller{pc,sp} expect a pointer to the caller's first argument. + // + // runtime.throw is a "cheap call" like panic in normal code. + var cheap bool + if n.Fun.Op() == ir.ONAME { + name := n.Fun.(*ir.Name) + if name.Class == ir.PFUNC { + switch fn := types.RuntimeSymName(name.Sym()); fn { + case "getcallerpc", "getcallersp": + v.reason = "call to " + fn + return true + case "throw": + v.budget -= inlineExtraThrowCost + break opSwitch + case "panicrangeexit": + cheap = true + } + // Special case for reflect.noescape. It does just type + // conversions to appease the escape analysis, and doesn't + // generate code. + if types.ReflectSymName(name.Sym()) == "noescape" { + cheap = true + } + } + // Special case for coverage counter updates; although + // these correspond to real operations, we treat them as + // zero cost for the moment. This is due to the existence + // of tests that are sensitive to inlining-- if the + // insertion of coverage instrumentation happens to tip a + // given function over the threshold and move it from + // "inlinable" to "not-inlinable", this can cause changes + // in allocation behavior, which can then result in test + // failures (a good example is the TestAllocations in + // crypto/ed25519). + if isAtomicCoverageCounterUpdate(n) { + return false + } + } + if n.Fun.Op() == ir.OMETHEXPR { + if meth := ir.MethodExprName(n.Fun); meth != nil { + if fn := meth.Func; fn != nil { + s := fn.Sym() + if types.RuntimeSymName(s) == "heapBits.nextArena" { + // Special case: explicitly allow mid-stack inlining of + // runtime.heapBits.next even though it calls slow-path + // runtime.heapBits.nextArena. + cheap = true + } + // Special case: on architectures that can do unaligned loads, + // explicitly mark encoding/binary methods as cheap, + // because in practice they are, even though our inlining + // budgeting system does not see that. See issue 42958. + if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" { + switch s.Name { + case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16", + "bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16", + "littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16", + "bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16", + "littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16", + "bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16": + cheap = true + } + } + } + } + } + if cheap { + break // treat like any other node, that is, cost of 1 + } + + if ir.IsIntrinsicCall(n) { + // Treat like any other node. + break + } + + if callee := inlCallee(v.curFunc, n.Fun, v.profile); callee != nil && typecheck.HaveInlineBody(callee) { + // Check whether we'd actually inline this call. Set + // log == false since we aren't actually doing inlining + // yet. + if ok, _ := canInlineCallExpr(v.curFunc, n, callee, v.isBigFunc, false); ok { + // mkinlcall would inline this call [1], so use + // the cost of the inline body as the cost of + // the call, as that is what will actually + // appear in the code. + // + // [1] This is almost a perfect match to the + // mkinlcall logic, except that + // canInlineCallExpr considers inlining cycles + // by looking at what has already been inlined. + // Since we haven't done any inlining yet we + // will miss those. + v.budget -= callee.Inl.Cost + break + } + } + + // Call cost for non-leaf inlining. + v.budget -= v.extraCallCost + + case ir.OCALLMETH: + base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") + + // Things that are too hairy, irrespective of the budget + case ir.OCALL, ir.OCALLINTER: + // Call cost for non-leaf inlining. + v.budget -= v.extraCallCost + + case ir.OPANIC: + n := n.(*ir.UnaryExpr) + if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() { + // Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining. + // Before CL 284412, these conversions were introduced later in the + // compiler, so they didn't count against inlining budget. + v.budget++ + } + v.budget -= inlineExtraPanicCost + + case ir.ORECOVER: + base.FatalfAt(n.Pos(), "ORECOVER missed typecheck") + case ir.ORECOVERFP: + // recover matches the argument frame pointer to find + // the right panic value, so it needs an argument frame. + v.reason = "call to recover" + return true + + case ir.OCLOSURE: + if base.Debug.InlFuncsWithClosures == 0 { + v.reason = "not inlining functions with closures" + return true + } + + // TODO(danscales): Maybe make budget proportional to number of closure + // variables, e.g.: + //v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3) + // TODO(austin): However, if we're able to inline this closure into + // v.curFunc, then we actually pay nothing for the closure captures. We + // should try to account for that if we're going to account for captures. + v.budget -= 15 + + case ir.OGO, ir.ODEFER, ir.OTAILCALL: + v.reason = "unhandled op " + n.Op().String() + return true + + case ir.OAPPEND: + v.budget -= inlineExtraAppendCost + + case ir.OADDR: + n := n.(*ir.AddrExpr) + // Make "&s.f" cost 0 when f's offset is zero. + if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) { + if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 { + v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR + } + } + + case ir.ODEREF: + // *(*X)(unsafe.Pointer(&x)) is low-cost + n := n.(*ir.StarExpr) + + ptr := n.X + for ptr.Op() == ir.OCONVNOP { + ptr = ptr.(*ir.ConvExpr).X + } + if ptr.Op() == ir.OADDR { + v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR + } + + case ir.OCONVNOP: + // This doesn't produce code, but the children might. + v.budget++ // undo default cost + + case ir.OFALL, ir.OTYPE: + // These nodes don't produce code; omit from inlining budget. + return false + + case ir.OIF: + n := n.(*ir.IfStmt) + if ir.IsConst(n.Cond, constant.Bool) { + // This if and the condition cost nothing. + if doList(n.Init(), v.do) { + return true + } + if ir.BoolVal(n.Cond) { + return doList(n.Body, v.do) + } else { + return doList(n.Else, v.do) + } + } + + case ir.ONAME: + n := n.(*ir.Name) + if n.Class == ir.PAUTO { + v.usedLocals.Add(n) + } + + case ir.OBLOCK: + // The only OBLOCK we should see at this point is an empty one. + // In any event, let the visitList(n.List()) below take care of the statements, + // and don't charge for the OBLOCK itself. The ++ undoes the -- below. + v.budget++ + + case ir.OMETHVALUE, ir.OSLICELIT: + v.budget-- // Hack for toolstash -cmp. + + case ir.OMETHEXPR: + v.budget++ // Hack for toolstash -cmp. + + case ir.OAS2: + n := n.(*ir.AssignListStmt) + + // Unified IR unconditionally rewrites: + // + // a, b = f() + // + // into: + // + // DCL tmp1 + // DCL tmp2 + // tmp1, tmp2 = f() + // a, b = tmp1, tmp2 + // + // so that it can insert implicit conversions as necessary. To + // minimize impact to the existing inlining heuristics (in + // particular, to avoid breaking the existing inlinability regress + // tests), we need to compensate for this here. + // + // See also identical logic in IsBigFunc. + if len(n.Rhs) > 0 { + if init := n.Rhs[0].Init(); len(init) == 1 { + if _, ok := init[0].(*ir.AssignListStmt); ok { + // 4 for each value, because each temporary variable now + // appears 3 times (DCL, LHS, RHS), plus an extra DCL node. + // + // 1 for the extra "tmp1, tmp2 = f()" assignment statement. + v.budget += 4*int32(len(n.Lhs)) + 1 + } + } + } + + case ir.OAS: + // Special case for coverage counter updates and coverage + // function registrations. Although these correspond to real + // operations, we treat them as zero cost for the moment. This + // is primarily due to the existence of tests that are + // sensitive to inlining-- if the insertion of coverage + // instrumentation happens to tip a given function over the + // threshold and move it from "inlinable" to "not-inlinable", + // this can cause changes in allocation behavior, which can + // then result in test failures (a good example is the + // TestAllocations in crypto/ed25519). + n := n.(*ir.AssignStmt) + if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) { + return false + } + } + + v.budget-- + + // When debugging, don't stop early, to get full cost of inlining this function + if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() { + v.reason = "too expensive" + return true + } + + return ir.DoChildren(n, v.do) +} + +// IsBigFunc reports whether fn is a "big" function. +// +// Note: The criteria for "big" is heuristic and subject to change. +func IsBigFunc(fn *ir.Func) bool { + budget := inlineBigFunctionNodes + return ir.Any(fn, func(n ir.Node) bool { + // See logic in hairyVisitor.doNode, explaining unified IR's + // handling of "a, b = f()" assignments. + if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 && len(n.Rhs) > 0 { + if init := n.Rhs[0].Init(); len(init) == 1 { + if _, ok := init[0].(*ir.AssignListStmt); ok { + budget += 4*len(n.Lhs) + 1 + } + } + } + + budget-- + return budget <= 0 + }) +} + +// TryInlineCall returns an inlined call expression for call, or nil +// if inlining is not possible. +func TryInlineCall(callerfn *ir.Func, call *ir.CallExpr, bigCaller bool, profile *pgo.Profile) *ir.InlinedCallExpr { + if base.Flag.LowerL == 0 { + return nil + } + if call.Op() != ir.OCALLFUNC { + return nil + } + if call.GoDefer || call.NoInline { + return nil + } + + // Prevent inlining some reflect.Value methods when using checkptr, + // even when package reflect was compiled without it (#35073). + if base.Debug.Checkptr != 0 && call.Fun.Op() == ir.OMETHEXPR { + if method := ir.MethodExprName(call.Fun); method != nil { + switch types.ReflectSymName(method.Sym()) { + case "Value.UnsafeAddr", "Value.Pointer": + return nil + } + } + } + + if base.Flag.LowerM > 3 { + fmt.Printf("%v:call to func %+v\n", ir.Line(call), call.Fun) + } + if ir.IsIntrinsicCall(call) { + return nil + } + if fn := inlCallee(callerfn, call.Fun, profile); fn != nil && typecheck.HaveInlineBody(fn) { + return mkinlcall(callerfn, call, fn, bigCaller) + } + return nil +} + +// inlCallee takes a function-typed expression and returns the underlying function ONAME +// that it refers to if statically known. Otherwise, it returns nil. +func inlCallee(caller *ir.Func, fn ir.Node, profile *pgo.Profile) (res *ir.Func) { + fn = ir.StaticValue(fn) + switch fn.Op() { + case ir.OMETHEXPR: + fn := fn.(*ir.SelectorExpr) + n := ir.MethodExprName(fn) + // Check that receiver type matches fn.X. + // TODO(mdempsky): Handle implicit dereference + // of pointer receiver argument? + if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) { + return nil + } + return n.Func + case ir.ONAME: + fn := fn.(*ir.Name) + if fn.Class == ir.PFUNC { + return fn.Func + } + case ir.OCLOSURE: + fn := fn.(*ir.ClosureExpr) + c := fn.Func + if len(c.ClosureVars) != 0 && c.ClosureVars[0].Outer.Curfn != caller { + return nil // inliner doesn't support inlining across closure frames + } + CanInline(c, profile) + return c + } + return nil +} + +var inlgen int + +// SSADumpInline gives the SSA back end a chance to dump the function +// when producing output for debugging the compiler itself. +var SSADumpInline = func(*ir.Func) {} + +// InlineCall allows the inliner implementation to be overridden. +// If it returns nil, the function will not be inlined. +var InlineCall = func(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr { + base.Fatalf("inline.InlineCall not overridden") + panic("unreachable") +} + +// inlineCostOK returns true if call n from caller to callee is cheap enough to +// inline. bigCaller indicates that caller is a big function. +// +// In addition to the "cost OK" boolean, it also returns the "max +// cost" limit used to make the decision (which may differ depending +// on func size), and the score assigned to this specific callsite. +func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32, int32) { + maxCost := int32(inlineMaxBudget) + if bigCaller { + // We use this to restrict inlining into very big functions. + // See issue 26546 and 17566. + maxCost = inlineBigFunctionMaxCost + } + + metric := callee.Inl.Cost + if inlheur.Enabled() { + score, ok := inlheur.GetCallSiteScore(caller, n) + if ok { + metric = int32(score) + } + } + + if metric <= maxCost { + // Simple case. Function is already cheap enough. + return true, 0, metric + } + + // We'll also allow inlining of hot functions below inlineHotMaxBudget, + // but only in small functions. + + lineOffset := pgo.NodeLineOffset(n, caller) + csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: caller} + if _, ok := candHotEdgeMap[csi]; !ok { + // Cold + return false, maxCost, metric + } + + // Hot + + if bigCaller { + if base.Debug.PGODebug > 0 { + fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) + } + return false, maxCost, metric + } + + if metric > inlineHotMaxBudget { + return false, inlineHotMaxBudget, metric + } + + if !base.PGOHash.MatchPosWithInfo(n.Pos(), "inline", nil) { + // De-selected by PGO Hash. + return false, maxCost, metric + } + + if base.Debug.PGODebug > 0 { + fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) + } + + return true, 0, metric +} + +// canInlineCallsite returns true if the call n from caller to callee +// can be inlined, plus the score computed for the call expr in +// question. bigCaller indicates that caller is a big function. log +// indicates that the 'cannot inline' reason should be logged. +// +// Preconditions: CanInline(callee) has already been called. +func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCaller bool, log bool) (bool, int32) { + if callee.Inl == nil { + // callee is never inlinable. + if log && logopt.Enabled() { + logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), + fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(callee))) + } + return false, 0 + } + + ok, maxCost, callSiteScore := inlineCostOK(n, callerfn, callee, bigCaller) + if !ok { + // callee cost too high for this call site. + if log && logopt.Enabled() { + logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), + fmt.Sprintf("cost %d of %s exceeds max caller cost %d", callee.Inl.Cost, ir.PkgFuncName(callee), maxCost)) + } + return false, 0 + } + + if callee == callerfn { + // Can't recursively inline a function into itself. + if log && logopt.Enabled() { + logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(callerfn))) + } + return false, 0 + } + + if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) { + // Runtime package must not be instrumented. + // Instrument skips runtime package. However, some runtime code can be + // inlined into other packages and instrumented there. To avoid this, + // we disable inlining of runtime functions when instrumenting. + // The example that we observed is inlining of LockOSThread, + // which lead to false race reports on m contents. + if log && logopt.Enabled() { + logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), + fmt.Sprintf("call to runtime function %s in instrumented build", ir.PkgFuncName(callee))) + } + return false, 0 + } + + if base.Flag.Race && types.IsNoRacePkg(callee.Sym().Pkg) { + if log && logopt.Enabled() { + logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), + fmt.Sprintf(`call to into "no-race" package function %s in race build`, ir.PkgFuncName(callee))) + } + return false, 0 + } + + // Check if we've already inlined this function at this particular + // call site, in order to stop inlining when we reach the beginning + // of a recursion cycle again. We don't inline immediately recursive + // functions, but allow inlining if there is a recursion cycle of + // many functions. Most likely, the inlining will stop before we + // even hit the beginning of the cycle again, but this catches the + // unusual case. + parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() + sym := callee.Linksym() + for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) { + if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym { + if log { + if base.Flag.LowerM > 1 { + fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), callee, ir.FuncName(callerfn)) + } + if logopt.Enabled() { + logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), + fmt.Sprintf("repeated recursive cycle to %s", ir.PkgFuncName(callee))) + } + } + return false, 0 + } + } + + return true, callSiteScore +} + +// mkinlcall returns an OINLCALL node that can replace OCALLFUNC n, or +// nil if it cannot be inlined. callerfn is the function that contains +// n, and fn is the function being called. +// +// The result of mkinlcall MUST be assigned back to n, e.g. +// +// n.Left = mkinlcall(n.Left, fn, isddd) +func mkinlcall(callerfn *ir.Func, n *ir.CallExpr, fn *ir.Func, bigCaller bool) *ir.InlinedCallExpr { + ok, score := canInlineCallExpr(callerfn, n, fn, bigCaller, true) + if !ok { + return nil + } + typecheck.AssertFixedCall(n) + + parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() + sym := fn.Linksym() + inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn)) + + closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) { + // The linker needs FuncInfo metadata for all inlined + // functions. This is typically handled by gc.enqueueFunc + // calling ir.InitLSym for all function declarations in + // typecheck.Target.Decls (ir.UseClosure adds all closures to + // Decls). + // + // However, non-trivial closures in Decls are ignored, and are + // insteaded enqueued when walk of the calling function + // discovers them. + // + // This presents a problem for direct calls to closures. + // Inlining will replace the entire closure definition with its + // body, which hides the closure from walk and thus suppresses + // symbol creation. + // + // Explicitly create a symbol early in this edge case to ensure + // we keep this metadata. + // + // TODO: Refactor to keep a reference so this can all be done + // by enqueueFunc. + + if n.Op() != ir.OCALLFUNC { + // Not a standard call. + return + } + if n.Fun.Op() != ir.OCLOSURE { + // Not a direct closure call. + return + } + + clo := n.Fun.(*ir.ClosureExpr) + if ir.IsTrivialClosure(clo) { + // enqueueFunc will handle trivial closures anyways. + return + } + + ir.InitLSym(fn, true) + } + + closureInitLSym(n, fn) + + if base.Flag.GenDwarfInl > 0 { + if !sym.WasInlined() { + base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn) + sym.Set(obj.AttrWasInlined, true) + } + } + + if base.Flag.LowerM != 0 { + if buildcfg.Experiment.NewInliner { + fmt.Printf("%v: inlining call to %v with score %d\n", + ir.Line(n), fn, score) + } else { + fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn) + } + } + if base.Flag.LowerM > 2 { + fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n) + } + + res := InlineCall(callerfn, n, fn, inlIndex) + + if res == nil { + base.FatalfAt(n.Pos(), "inlining call to %v failed", fn) + } + + if base.Flag.LowerM > 2 { + fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res) + } + + if inlheur.Enabled() { + inlheur.UpdateCallsiteTable(callerfn, n, res) + } + + return res +} + +// CalleeEffects appends any side effects from evaluating callee to init. +func CalleeEffects(init *ir.Nodes, callee ir.Node) { + for { + init.Append(ir.TakeInit(callee)...) + + switch callee.Op() { + case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR: + return // done + + case ir.OCONVNOP: + conv := callee.(*ir.ConvExpr) + callee = conv.X + + case ir.OINLCALL: + ic := callee.(*ir.InlinedCallExpr) + init.Append(ic.Body.Take()...) + callee = ic.SingleResult() + + default: + base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee) + } + } +} + +func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name { + s := make([]*ir.Name, 0, len(ll)) + for _, n := range ll { + if n.Class == ir.PAUTO { + if !vis.usedLocals.Has(n) { + // TODO(mdempsky): Simplify code after confident that this + // never happens anymore. + base.FatalfAt(n.Pos(), "unused auto: %v", n) + continue + } + } + s = append(s, n) + } + return s +} + +// numNonClosures returns the number of functions in list which are not closures. +func numNonClosures(list []*ir.Func) int { + count := 0 + for _, fn := range list { + if fn.OClosure == nil { + count++ + } + } + return count +} + +func doList(list []ir.Node, do func(ir.Node) bool) bool { + for _, x := range list { + if x != nil { + if do(x) { + return true + } + } + } + return false +} + +// isIndexingCoverageCounter returns true if the specified node 'n' is indexing +// into a coverage counter array. +func isIndexingCoverageCounter(n ir.Node) bool { + if n.Op() != ir.OINDEX { + return false + } + ixn := n.(*ir.IndexExpr) + if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() { + return false + } + nn := ixn.X.(*ir.Name) + return nn.CoverageCounter() +} + +// isAtomicCoverageCounterUpdate examines the specified node to +// determine whether it represents a call to sync/atomic.AddUint32 to +// increment a coverage counter. +func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool { + if cn.Fun.Op() != ir.ONAME { + return false + } + name := cn.Fun.(*ir.Name) + if name.Class != ir.PFUNC { + return false + } + fn := name.Sym().Name + if name.Sym().Pkg.Path != "sync/atomic" || + (fn != "AddUint32" && fn != "StoreUint32") { + return false + } + if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR { + return false + } + adn := cn.Args[0].(*ir.AddrExpr) + v := isIndexingCoverageCounter(adn.X) + return v +} + +func PostProcessCallSites(profile *pgo.Profile) { + if base.Debug.DumpInlCallSiteScores != 0 { + budgetCallback := func(fn *ir.Func, prof *pgo.Profile) (int32, bool) { + v := inlineBudget(fn, prof, false, false) + return v, v == inlineHotMaxBudget + } + inlheur.DumpInlCallSiteScores(profile, budgetCallback) + } +} + +func analyzeFuncProps(fn *ir.Func, p *pgo.Profile) { + canInline := func(fn *ir.Func) { CanInline(fn, p) } + budgetForFunc := func(fn *ir.Func) int32 { + return inlineBudget(fn, p, true, false) + } + inlheur.AnalyzeFunc(fn, canInline, budgetForFunc, inlineMaxBudget) +} |