summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/inline/inl.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
commitf6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch)
tree7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/cmd/compile/internal/inline/inl.go
parentInitial commit. (diff)
downloadgolang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz
golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/inline/inl.go')
-rw-r--r--src/cmd/compile/internal/inline/inl.go1217
1 files changed, 1217 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/inline/inl.go b/src/cmd/compile/internal/inline/inl.go
new file mode 100644
index 0000000..b365008
--- /dev/null
+++ b/src/cmd/compile/internal/inline/inl.go
@@ -0,0 +1,1217 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+//
+// The inlining facility makes 2 passes: first CanInline determines which
+// functions are suitable for inlining, and for those that are it
+// saves a copy of the body. Then InlineCalls walks each function body to
+// expand calls to inlinable functions.
+//
+// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
+// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
+// are not supported.
+// 0: disabled
+// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
+// 2: (unassigned)
+// 3: (unassigned)
+// 4: allow non-leaf functions
+//
+// At some point this may get another default and become switch-offable with -N.
+//
+// The -d typcheckinl flag enables early typechecking of all imported bodies,
+// which is useful to flush out bugs.
+//
+// The Debug.m flag enables diagnostic output. a single -m is useful for verifying
+// which calls get inlined or not, more is for debugging, and may go away at any point.
+
+package inline
+
+import (
+ "fmt"
+ "go/constant"
+ "internal/buildcfg"
+ "strconv"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/inline/inlheur"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/logopt"
+ "cmd/compile/internal/pgo"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "cmd/internal/obj"
+)
+
+// Inlining budget parameters, gathered in one place
+const (
+ inlineMaxBudget = 80
+ inlineExtraAppendCost = 0
+ // default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
+ inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
+ inlineExtraPanicCost = 1 // do not penalize inlining panics.
+ inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
+
+ inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big".
+ inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function.
+)
+
+var (
+ // List of all hot callee nodes.
+ // TODO(prattmic): Make this non-global.
+ candHotCalleeMap = make(map[*pgo.IRNode]struct{})
+
+ // List of all hot call sites. CallSiteInfo.Callee is always nil.
+ // TODO(prattmic): Make this non-global.
+ candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{})
+
+ // Threshold in percentage for hot callsite inlining.
+ inlineHotCallSiteThresholdPercent float64
+
+ // Threshold in CDF percentage for hot callsite inlining,
+ // that is, for a threshold of X the hottest callsites that
+ // make up the top X% of total edge weight will be
+ // considered hot for inlining candidates.
+ inlineCDFHotCallSiteThresholdPercent = float64(99)
+
+ // Budget increased due to hotness.
+ inlineHotMaxBudget int32 = 2000
+)
+
+// PGOInlinePrologue records the hot callsites from ir-graph.
+func PGOInlinePrologue(p *pgo.Profile, funcs []*ir.Func) {
+ if base.Debug.PGOInlineCDFThreshold != "" {
+ if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 {
+ inlineCDFHotCallSiteThresholdPercent = s
+ } else {
+ base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100")
+ }
+ }
+ var hotCallsites []pgo.NamedCallEdge
+ inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p)
+ if base.Debug.PGODebug > 0 {
+ fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent)
+ }
+
+ if x := base.Debug.PGOInlineBudget; x != 0 {
+ inlineHotMaxBudget = int32(x)
+ }
+
+ for _, n := range hotCallsites {
+ // mark inlineable callees from hot edges
+ if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil {
+ candHotCalleeMap[callee] = struct{}{}
+ }
+ // mark hot call sites
+ if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil {
+ csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST}
+ candHotEdgeMap[csi] = struct{}{}
+ }
+ }
+
+ if base.Debug.PGODebug >= 3 {
+ fmt.Printf("hot-cg before inline in dot format:")
+ p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
+ }
+}
+
+// hotNodesFromCDF computes an edge weight threshold and the list of hot
+// nodes that make up the given percentage of the CDF. The threshold, as
+// a percent, is the lower bound of weight for nodes to be considered hot
+// (currently only used in debug prints) (in case of equal weights,
+// comparing with the threshold may not accurately reflect which nodes are
+// considiered hot).
+func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NamedCallEdge) {
+ cum := int64(0)
+ for i, n := range p.NamedEdgeMap.ByWeight {
+ w := p.NamedEdgeMap.Weight[n]
+ cum += w
+ if pgo.WeightInPercentage(cum, p.TotalWeight) > inlineCDFHotCallSiteThresholdPercent {
+ // nodes[:i+1] to include the very last node that makes it to go over the threshold.
+ // (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to
+ // include that node instead of excluding it.)
+ return pgo.WeightInPercentage(w, p.TotalWeight), p.NamedEdgeMap.ByWeight[:i+1]
+ }
+ }
+ return 0, p.NamedEdgeMap.ByWeight
+}
+
+// CanInlineFuncs computes whether a batch of functions are inlinable.
+func CanInlineFuncs(funcs []*ir.Func, profile *pgo.Profile) {
+ if profile != nil {
+ PGOInlinePrologue(profile, funcs)
+ }
+
+ ir.VisitFuncsBottomUp(funcs, func(list []*ir.Func, recursive bool) {
+ CanInlineSCC(list, recursive, profile)
+ })
+}
+
+// CanInlineSCC computes the inlinability of functions within an SCC
+// (strongly connected component).
+//
+// CanInlineSCC is designed to be used by ir.VisitFuncsBottomUp
+// callbacks.
+func CanInlineSCC(funcs []*ir.Func, recursive bool, profile *pgo.Profile) {
+ if base.Flag.LowerL == 0 {
+ return
+ }
+
+ numfns := numNonClosures(funcs)
+
+ for _, fn := range funcs {
+ if !recursive || numfns > 1 {
+ // We allow inlining if there is no
+ // recursion, or the recursion cycle is
+ // across more than one function.
+ CanInline(fn, profile)
+ } else {
+ if base.Flag.LowerM > 1 && fn.OClosure == nil {
+ fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(fn), fn.Nname)
+ }
+ }
+ if inlheur.Enabled() {
+ analyzeFuncProps(fn, profile)
+ }
+ }
+}
+
+// GarbageCollectUnreferencedHiddenClosures makes a pass over all the
+// top-level (non-hidden-closure) functions looking for nested closure
+// functions that are reachable, then sweeps through the Target.Decls
+// list and marks any non-reachable hidden closure function as dead.
+// See issues #59404 and #59638 for more context.
+func GarbageCollectUnreferencedHiddenClosures() {
+
+ liveFuncs := make(map[*ir.Func]bool)
+
+ var markLiveFuncs func(fn *ir.Func)
+ markLiveFuncs = func(fn *ir.Func) {
+ if liveFuncs[fn] {
+ return
+ }
+ liveFuncs[fn] = true
+ ir.Visit(fn, func(n ir.Node) {
+ if clo, ok := n.(*ir.ClosureExpr); ok {
+ markLiveFuncs(clo.Func)
+ }
+ })
+ }
+
+ for i := 0; i < len(typecheck.Target.Funcs); i++ {
+ fn := typecheck.Target.Funcs[i]
+ if fn.IsHiddenClosure() {
+ continue
+ }
+ markLiveFuncs(fn)
+ }
+
+ for i := 0; i < len(typecheck.Target.Funcs); i++ {
+ fn := typecheck.Target.Funcs[i]
+ if !fn.IsHiddenClosure() {
+ continue
+ }
+ if fn.IsDeadcodeClosure() {
+ continue
+ }
+ if liveFuncs[fn] {
+ continue
+ }
+ fn.SetIsDeadcodeClosure(true)
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn)
+ }
+ if fn.Inl != nil && fn.LSym == nil {
+ ir.InitLSym(fn, true)
+ }
+ }
+}
+
+// inlineBudget determines the max budget for function 'fn' prior to
+// analyzing the hairyness of the body of 'fn'. We pass in the pgo
+// profile if available (which can change the budget), also a
+// 'relaxed' flag, which expands the budget slightly to allow for the
+// possibility that a call to the function might have its score
+// adjusted downwards. If 'verbose' is set, then print a remark where
+// we boost the budget due to PGO.
+func inlineBudget(fn *ir.Func, profile *pgo.Profile, relaxed bool, verbose bool) int32 {
+ // Update the budget for profile-guided inlining.
+ budget := int32(inlineMaxBudget)
+ if profile != nil {
+ if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok {
+ if _, ok := candHotCalleeMap[n]; ok {
+ budget = int32(inlineHotMaxBudget)
+ if verbose {
+ fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn))
+ }
+ }
+ }
+ }
+ if relaxed {
+ budget += inlheur.BudgetExpansion(inlineMaxBudget)
+ }
+ return budget
+}
+
+// CanInline determines whether fn is inlineable.
+// If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl.
+// fn and fn.Body will already have been typechecked.
+func CanInline(fn *ir.Func, profile *pgo.Profile) {
+ if fn.Nname == nil {
+ base.Fatalf("CanInline no nname %+v", fn)
+ }
+
+ var reason string // reason, if any, that the function was not inlined
+ if base.Flag.LowerM > 1 || logopt.Enabled() {
+ defer func() {
+ if reason != "" {
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
+ }
+ if logopt.Enabled() {
+ logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
+ }
+ }
+ }()
+ }
+
+ reason = InlineImpossible(fn)
+ if reason != "" {
+ return
+ }
+ if fn.Typecheck() == 0 {
+ base.Fatalf("CanInline on non-typechecked function %v", fn)
+ }
+
+ n := fn.Nname
+ if n.Func.InlinabilityChecked() {
+ return
+ }
+ defer n.Func.SetInlinabilityChecked(true)
+
+ cc := int32(inlineExtraCallCost)
+ if base.Flag.LowerL == 4 {
+ cc = 1 // this appears to yield better performance than 0.
+ }
+
+ // Used a "relaxed" inline budget if the new inliner is enabled.
+ relaxed := inlheur.Enabled()
+
+ // Compute the inline budget for this func.
+ budget := inlineBudget(fn, profile, relaxed, base.Debug.PGODebug > 0)
+
+ // At this point in the game the function we're looking at may
+ // have "stale" autos, vars that still appear in the Dcl list, but
+ // which no longer have any uses in the function body (due to
+ // elimination by deadcode). We'd like to exclude these dead vars
+ // when creating the "Inline.Dcl" field below; to accomplish this,
+ // the hairyVisitor below builds up a map of used/referenced
+ // locals, and we use this map to produce a pruned Inline.Dcl
+ // list. See issue 25459 for more context.
+
+ visitor := hairyVisitor{
+ curFunc: fn,
+ isBigFunc: IsBigFunc(fn),
+ budget: budget,
+ maxBudget: budget,
+ extraCallCost: cc,
+ profile: profile,
+ }
+ if visitor.tooHairy(fn) {
+ reason = visitor.reason
+ return
+ }
+
+ n.Func.Inl = &ir.Inline{
+ Cost: budget - visitor.budget,
+ Dcl: pruneUnusedAutos(n.Func.Dcl, &visitor),
+ HaveDcl: true,
+
+ CanDelayResults: canDelayResults(fn),
+ }
+ if base.Flag.LowerM != 0 || logopt.Enabled() {
+ noteInlinableFunc(n, fn, budget-visitor.budget)
+ }
+}
+
+// noteInlinableFunc issues a message to the user that the specified
+// function is inlinable.
+func noteInlinableFunc(n *ir.Name, fn *ir.Func, cost int32) {
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, cost, fn.Type(), ir.Nodes(fn.Body))
+ } else if base.Flag.LowerM != 0 {
+ fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
+ }
+ // JSON optimization log output.
+ if logopt.Enabled() {
+ logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", cost))
+ }
+}
+
+// InlineImpossible returns a non-empty reason string if fn is impossible to
+// inline regardless of cost or contents.
+func InlineImpossible(fn *ir.Func) string {
+ var reason string // reason, if any, that the function can not be inlined.
+ if fn.Nname == nil {
+ reason = "no name"
+ return reason
+ }
+
+ // If marked "go:noinline", don't inline.
+ if fn.Pragma&ir.Noinline != 0 {
+ reason = "marked go:noinline"
+ return reason
+ }
+
+ // If marked "go:norace" and -race compilation, don't inline.
+ if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
+ reason = "marked go:norace with -race compilation"
+ return reason
+ }
+
+ // If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
+ if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
+ reason = "marked go:nocheckptr"
+ return reason
+ }
+
+ // If marked "go:cgo_unsafe_args", don't inline, since the function
+ // makes assumptions about its argument frame layout.
+ if fn.Pragma&ir.CgoUnsafeArgs != 0 {
+ reason = "marked go:cgo_unsafe_args"
+ return reason
+ }
+
+ // If marked as "go:uintptrkeepalive", don't inline, since the keep
+ // alive information is lost during inlining.
+ //
+ // TODO(prattmic): This is handled on calls during escape analysis,
+ // which is after inlining. Move prior to inlining so the keep-alive is
+ // maintained after inlining.
+ if fn.Pragma&ir.UintptrKeepAlive != 0 {
+ reason = "marked as having a keep-alive uintptr argument"
+ return reason
+ }
+
+ // If marked as "go:uintptrescapes", don't inline, since the escape
+ // information is lost during inlining.
+ if fn.Pragma&ir.UintptrEscapes != 0 {
+ reason = "marked as having an escaping uintptr argument"
+ return reason
+ }
+
+ // The nowritebarrierrec checker currently works at function
+ // granularity, so inlining yeswritebarrierrec functions can confuse it
+ // (#22342). As a workaround, disallow inlining them for now.
+ if fn.Pragma&ir.Yeswritebarrierrec != 0 {
+ reason = "marked go:yeswritebarrierrec"
+ return reason
+ }
+
+ // If a local function has no fn.Body (is defined outside of Go), cannot inline it.
+ // Imported functions don't have fn.Body but might have inline body in fn.Inl.
+ if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) {
+ reason = "no function body"
+ return reason
+ }
+
+ return ""
+}
+
+// canDelayResults reports whether inlined calls to fn can delay
+// declaring the result parameter until the "return" statement.
+func canDelayResults(fn *ir.Func) bool {
+ // We can delay declaring+initializing result parameters if:
+ // (1) there's exactly one "return" statement in the inlined function;
+ // (2) it's not an empty return statement (#44355); and
+ // (3) the result parameters aren't named.
+
+ nreturns := 0
+ ir.VisitList(fn.Body, func(n ir.Node) {
+ if n, ok := n.(*ir.ReturnStmt); ok {
+ nreturns++
+ if len(n.Results) == 0 {
+ nreturns++ // empty return statement (case 2)
+ }
+ }
+ })
+
+ if nreturns != 1 {
+ return false // not exactly one return statement (case 1)
+ }
+
+ // temporaries for return values.
+ for _, param := range fn.Type().Results() {
+ if sym := param.Sym; sym != nil && !sym.IsBlank() {
+ return false // found a named result parameter (case 3)
+ }
+ }
+
+ return true
+}
+
+// hairyVisitor visits a function body to determine its inlining
+// hairiness and whether or not it can be inlined.
+type hairyVisitor struct {
+ // This is needed to access the current caller in the doNode function.
+ curFunc *ir.Func
+ isBigFunc bool
+ budget int32
+ maxBudget int32
+ reason string
+ extraCallCost int32
+ usedLocals ir.NameSet
+ do func(ir.Node) bool
+ profile *pgo.Profile
+}
+
+func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
+ v.do = v.doNode // cache closure
+ if ir.DoChildren(fn, v.do) {
+ return true
+ }
+ if v.budget < 0 {
+ v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget)
+ return true
+ }
+ return false
+}
+
+// doNode visits n and its children, updates the state in v, and returns true if
+// n makes the current function too hairy for inlining.
+func (v *hairyVisitor) doNode(n ir.Node) bool {
+ if n == nil {
+ return false
+ }
+opSwitch:
+ switch n.Op() {
+ // Call is okay if inlinable and we have the budget for the body.
+ case ir.OCALLFUNC:
+ n := n.(*ir.CallExpr)
+ // Functions that call runtime.getcaller{pc,sp} can not be inlined
+ // because getcaller{pc,sp} expect a pointer to the caller's first argument.
+ //
+ // runtime.throw is a "cheap call" like panic in normal code.
+ var cheap bool
+ if n.Fun.Op() == ir.ONAME {
+ name := n.Fun.(*ir.Name)
+ if name.Class == ir.PFUNC {
+ switch fn := types.RuntimeSymName(name.Sym()); fn {
+ case "getcallerpc", "getcallersp":
+ v.reason = "call to " + fn
+ return true
+ case "throw":
+ v.budget -= inlineExtraThrowCost
+ break opSwitch
+ case "panicrangeexit":
+ cheap = true
+ }
+ // Special case for reflect.noescape. It does just type
+ // conversions to appease the escape analysis, and doesn't
+ // generate code.
+ if types.ReflectSymName(name.Sym()) == "noescape" {
+ cheap = true
+ }
+ }
+ // Special case for coverage counter updates; although
+ // these correspond to real operations, we treat them as
+ // zero cost for the moment. This is due to the existence
+ // of tests that are sensitive to inlining-- if the
+ // insertion of coverage instrumentation happens to tip a
+ // given function over the threshold and move it from
+ // "inlinable" to "not-inlinable", this can cause changes
+ // in allocation behavior, which can then result in test
+ // failures (a good example is the TestAllocations in
+ // crypto/ed25519).
+ if isAtomicCoverageCounterUpdate(n) {
+ return false
+ }
+ }
+ if n.Fun.Op() == ir.OMETHEXPR {
+ if meth := ir.MethodExprName(n.Fun); meth != nil {
+ if fn := meth.Func; fn != nil {
+ s := fn.Sym()
+ if types.RuntimeSymName(s) == "heapBits.nextArena" {
+ // Special case: explicitly allow mid-stack inlining of
+ // runtime.heapBits.next even though it calls slow-path
+ // runtime.heapBits.nextArena.
+ cheap = true
+ }
+ // Special case: on architectures that can do unaligned loads,
+ // explicitly mark encoding/binary methods as cheap,
+ // because in practice they are, even though our inlining
+ // budgeting system does not see that. See issue 42958.
+ if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" {
+ switch s.Name {
+ case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16",
+ "bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16",
+ "littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16",
+ "bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16",
+ "littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16",
+ "bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16":
+ cheap = true
+ }
+ }
+ }
+ }
+ }
+ if cheap {
+ break // treat like any other node, that is, cost of 1
+ }
+
+ if ir.IsIntrinsicCall(n) {
+ // Treat like any other node.
+ break
+ }
+
+ if callee := inlCallee(v.curFunc, n.Fun, v.profile); callee != nil && typecheck.HaveInlineBody(callee) {
+ // Check whether we'd actually inline this call. Set
+ // log == false since we aren't actually doing inlining
+ // yet.
+ if ok, _ := canInlineCallExpr(v.curFunc, n, callee, v.isBigFunc, false); ok {
+ // mkinlcall would inline this call [1], so use
+ // the cost of the inline body as the cost of
+ // the call, as that is what will actually
+ // appear in the code.
+ //
+ // [1] This is almost a perfect match to the
+ // mkinlcall logic, except that
+ // canInlineCallExpr considers inlining cycles
+ // by looking at what has already been inlined.
+ // Since we haven't done any inlining yet we
+ // will miss those.
+ v.budget -= callee.Inl.Cost
+ break
+ }
+ }
+
+ // Call cost for non-leaf inlining.
+ v.budget -= v.extraCallCost
+
+ case ir.OCALLMETH:
+ base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
+
+ // Things that are too hairy, irrespective of the budget
+ case ir.OCALL, ir.OCALLINTER:
+ // Call cost for non-leaf inlining.
+ v.budget -= v.extraCallCost
+
+ case ir.OPANIC:
+ n := n.(*ir.UnaryExpr)
+ if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
+ // Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
+ // Before CL 284412, these conversions were introduced later in the
+ // compiler, so they didn't count against inlining budget.
+ v.budget++
+ }
+ v.budget -= inlineExtraPanicCost
+
+ case ir.ORECOVER:
+ base.FatalfAt(n.Pos(), "ORECOVER missed typecheck")
+ case ir.ORECOVERFP:
+ // recover matches the argument frame pointer to find
+ // the right panic value, so it needs an argument frame.
+ v.reason = "call to recover"
+ return true
+
+ case ir.OCLOSURE:
+ if base.Debug.InlFuncsWithClosures == 0 {
+ v.reason = "not inlining functions with closures"
+ return true
+ }
+
+ // TODO(danscales): Maybe make budget proportional to number of closure
+ // variables, e.g.:
+ //v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
+ // TODO(austin): However, if we're able to inline this closure into
+ // v.curFunc, then we actually pay nothing for the closure captures. We
+ // should try to account for that if we're going to account for captures.
+ v.budget -= 15
+
+ case ir.OGO, ir.ODEFER, ir.OTAILCALL:
+ v.reason = "unhandled op " + n.Op().String()
+ return true
+
+ case ir.OAPPEND:
+ v.budget -= inlineExtraAppendCost
+
+ case ir.OADDR:
+ n := n.(*ir.AddrExpr)
+ // Make "&s.f" cost 0 when f's offset is zero.
+ if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) {
+ if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 {
+ v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR
+ }
+ }
+
+ case ir.ODEREF:
+ // *(*X)(unsafe.Pointer(&x)) is low-cost
+ n := n.(*ir.StarExpr)
+
+ ptr := n.X
+ for ptr.Op() == ir.OCONVNOP {
+ ptr = ptr.(*ir.ConvExpr).X
+ }
+ if ptr.Op() == ir.OADDR {
+ v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
+ }
+
+ case ir.OCONVNOP:
+ // This doesn't produce code, but the children might.
+ v.budget++ // undo default cost
+
+ case ir.OFALL, ir.OTYPE:
+ // These nodes don't produce code; omit from inlining budget.
+ return false
+
+ case ir.OIF:
+ n := n.(*ir.IfStmt)
+ if ir.IsConst(n.Cond, constant.Bool) {
+ // This if and the condition cost nothing.
+ if doList(n.Init(), v.do) {
+ return true
+ }
+ if ir.BoolVal(n.Cond) {
+ return doList(n.Body, v.do)
+ } else {
+ return doList(n.Else, v.do)
+ }
+ }
+
+ case ir.ONAME:
+ n := n.(*ir.Name)
+ if n.Class == ir.PAUTO {
+ v.usedLocals.Add(n)
+ }
+
+ case ir.OBLOCK:
+ // The only OBLOCK we should see at this point is an empty one.
+ // In any event, let the visitList(n.List()) below take care of the statements,
+ // and don't charge for the OBLOCK itself. The ++ undoes the -- below.
+ v.budget++
+
+ case ir.OMETHVALUE, ir.OSLICELIT:
+ v.budget-- // Hack for toolstash -cmp.
+
+ case ir.OMETHEXPR:
+ v.budget++ // Hack for toolstash -cmp.
+
+ case ir.OAS2:
+ n := n.(*ir.AssignListStmt)
+
+ // Unified IR unconditionally rewrites:
+ //
+ // a, b = f()
+ //
+ // into:
+ //
+ // DCL tmp1
+ // DCL tmp2
+ // tmp1, tmp2 = f()
+ // a, b = tmp1, tmp2
+ //
+ // so that it can insert implicit conversions as necessary. To
+ // minimize impact to the existing inlining heuristics (in
+ // particular, to avoid breaking the existing inlinability regress
+ // tests), we need to compensate for this here.
+ //
+ // See also identical logic in IsBigFunc.
+ if len(n.Rhs) > 0 {
+ if init := n.Rhs[0].Init(); len(init) == 1 {
+ if _, ok := init[0].(*ir.AssignListStmt); ok {
+ // 4 for each value, because each temporary variable now
+ // appears 3 times (DCL, LHS, RHS), plus an extra DCL node.
+ //
+ // 1 for the extra "tmp1, tmp2 = f()" assignment statement.
+ v.budget += 4*int32(len(n.Lhs)) + 1
+ }
+ }
+ }
+
+ case ir.OAS:
+ // Special case for coverage counter updates and coverage
+ // function registrations. Although these correspond to real
+ // operations, we treat them as zero cost for the moment. This
+ // is primarily due to the existence of tests that are
+ // sensitive to inlining-- if the insertion of coverage
+ // instrumentation happens to tip a given function over the
+ // threshold and move it from "inlinable" to "not-inlinable",
+ // this can cause changes in allocation behavior, which can
+ // then result in test failures (a good example is the
+ // TestAllocations in crypto/ed25519).
+ n := n.(*ir.AssignStmt)
+ if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) {
+ return false
+ }
+ }
+
+ v.budget--
+
+ // When debugging, don't stop early, to get full cost of inlining this function
+ if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
+ v.reason = "too expensive"
+ return true
+ }
+
+ return ir.DoChildren(n, v.do)
+}
+
+// IsBigFunc reports whether fn is a "big" function.
+//
+// Note: The criteria for "big" is heuristic and subject to change.
+func IsBigFunc(fn *ir.Func) bool {
+ budget := inlineBigFunctionNodes
+ return ir.Any(fn, func(n ir.Node) bool {
+ // See logic in hairyVisitor.doNode, explaining unified IR's
+ // handling of "a, b = f()" assignments.
+ if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 && len(n.Rhs) > 0 {
+ if init := n.Rhs[0].Init(); len(init) == 1 {
+ if _, ok := init[0].(*ir.AssignListStmt); ok {
+ budget += 4*len(n.Lhs) + 1
+ }
+ }
+ }
+
+ budget--
+ return budget <= 0
+ })
+}
+
+// TryInlineCall returns an inlined call expression for call, or nil
+// if inlining is not possible.
+func TryInlineCall(callerfn *ir.Func, call *ir.CallExpr, bigCaller bool, profile *pgo.Profile) *ir.InlinedCallExpr {
+ if base.Flag.LowerL == 0 {
+ return nil
+ }
+ if call.Op() != ir.OCALLFUNC {
+ return nil
+ }
+ if call.GoDefer || call.NoInline {
+ return nil
+ }
+
+ // Prevent inlining some reflect.Value methods when using checkptr,
+ // even when package reflect was compiled without it (#35073).
+ if base.Debug.Checkptr != 0 && call.Fun.Op() == ir.OMETHEXPR {
+ if method := ir.MethodExprName(call.Fun); method != nil {
+ switch types.ReflectSymName(method.Sym()) {
+ case "Value.UnsafeAddr", "Value.Pointer":
+ return nil
+ }
+ }
+ }
+
+ if base.Flag.LowerM > 3 {
+ fmt.Printf("%v:call to func %+v\n", ir.Line(call), call.Fun)
+ }
+ if ir.IsIntrinsicCall(call) {
+ return nil
+ }
+ if fn := inlCallee(callerfn, call.Fun, profile); fn != nil && typecheck.HaveInlineBody(fn) {
+ return mkinlcall(callerfn, call, fn, bigCaller)
+ }
+ return nil
+}
+
+// inlCallee takes a function-typed expression and returns the underlying function ONAME
+// that it refers to if statically known. Otherwise, it returns nil.
+func inlCallee(caller *ir.Func, fn ir.Node, profile *pgo.Profile) (res *ir.Func) {
+ fn = ir.StaticValue(fn)
+ switch fn.Op() {
+ case ir.OMETHEXPR:
+ fn := fn.(*ir.SelectorExpr)
+ n := ir.MethodExprName(fn)
+ // Check that receiver type matches fn.X.
+ // TODO(mdempsky): Handle implicit dereference
+ // of pointer receiver argument?
+ if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
+ return nil
+ }
+ return n.Func
+ case ir.ONAME:
+ fn := fn.(*ir.Name)
+ if fn.Class == ir.PFUNC {
+ return fn.Func
+ }
+ case ir.OCLOSURE:
+ fn := fn.(*ir.ClosureExpr)
+ c := fn.Func
+ if len(c.ClosureVars) != 0 && c.ClosureVars[0].Outer.Curfn != caller {
+ return nil // inliner doesn't support inlining across closure frames
+ }
+ CanInline(c, profile)
+ return c
+ }
+ return nil
+}
+
+var inlgen int
+
+// SSADumpInline gives the SSA back end a chance to dump the function
+// when producing output for debugging the compiler itself.
+var SSADumpInline = func(*ir.Func) {}
+
+// InlineCall allows the inliner implementation to be overridden.
+// If it returns nil, the function will not be inlined.
+var InlineCall = func(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
+ base.Fatalf("inline.InlineCall not overridden")
+ panic("unreachable")
+}
+
+// inlineCostOK returns true if call n from caller to callee is cheap enough to
+// inline. bigCaller indicates that caller is a big function.
+//
+// In addition to the "cost OK" boolean, it also returns the "max
+// cost" limit used to make the decision (which may differ depending
+// on func size), and the score assigned to this specific callsite.
+func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32, int32) {
+ maxCost := int32(inlineMaxBudget)
+ if bigCaller {
+ // We use this to restrict inlining into very big functions.
+ // See issue 26546 and 17566.
+ maxCost = inlineBigFunctionMaxCost
+ }
+
+ metric := callee.Inl.Cost
+ if inlheur.Enabled() {
+ score, ok := inlheur.GetCallSiteScore(caller, n)
+ if ok {
+ metric = int32(score)
+ }
+ }
+
+ if metric <= maxCost {
+ // Simple case. Function is already cheap enough.
+ return true, 0, metric
+ }
+
+ // We'll also allow inlining of hot functions below inlineHotMaxBudget,
+ // but only in small functions.
+
+ lineOffset := pgo.NodeLineOffset(n, caller)
+ csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: caller}
+ if _, ok := candHotEdgeMap[csi]; !ok {
+ // Cold
+ return false, maxCost, metric
+ }
+
+ // Hot
+
+ if bigCaller {
+ if base.Debug.PGODebug > 0 {
+ fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
+ }
+ return false, maxCost, metric
+ }
+
+ if metric > inlineHotMaxBudget {
+ return false, inlineHotMaxBudget, metric
+ }
+
+ if !base.PGOHash.MatchPosWithInfo(n.Pos(), "inline", nil) {
+ // De-selected by PGO Hash.
+ return false, maxCost, metric
+ }
+
+ if base.Debug.PGODebug > 0 {
+ fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
+ }
+
+ return true, 0, metric
+}
+
+// canInlineCallsite returns true if the call n from caller to callee
+// can be inlined, plus the score computed for the call expr in
+// question. bigCaller indicates that caller is a big function. log
+// indicates that the 'cannot inline' reason should be logged.
+//
+// Preconditions: CanInline(callee) has already been called.
+func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCaller bool, log bool) (bool, int32) {
+ if callee.Inl == nil {
+ // callee is never inlinable.
+ if log && logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
+ fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(callee)))
+ }
+ return false, 0
+ }
+
+ ok, maxCost, callSiteScore := inlineCostOK(n, callerfn, callee, bigCaller)
+ if !ok {
+ // callee cost too high for this call site.
+ if log && logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
+ fmt.Sprintf("cost %d of %s exceeds max caller cost %d", callee.Inl.Cost, ir.PkgFuncName(callee), maxCost))
+ }
+ return false, 0
+ }
+
+ if callee == callerfn {
+ // Can't recursively inline a function into itself.
+ if log && logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(callerfn)))
+ }
+ return false, 0
+ }
+
+ if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) {
+ // Runtime package must not be instrumented.
+ // Instrument skips runtime package. However, some runtime code can be
+ // inlined into other packages and instrumented there. To avoid this,
+ // we disable inlining of runtime functions when instrumenting.
+ // The example that we observed is inlining of LockOSThread,
+ // which lead to false race reports on m contents.
+ if log && logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
+ fmt.Sprintf("call to runtime function %s in instrumented build", ir.PkgFuncName(callee)))
+ }
+ return false, 0
+ }
+
+ if base.Flag.Race && types.IsNoRacePkg(callee.Sym().Pkg) {
+ if log && logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
+ fmt.Sprintf(`call to into "no-race" package function %s in race build`, ir.PkgFuncName(callee)))
+ }
+ return false, 0
+ }
+
+ // Check if we've already inlined this function at this particular
+ // call site, in order to stop inlining when we reach the beginning
+ // of a recursion cycle again. We don't inline immediately recursive
+ // functions, but allow inlining if there is a recursion cycle of
+ // many functions. Most likely, the inlining will stop before we
+ // even hit the beginning of the cycle again, but this catches the
+ // unusual case.
+ parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
+ sym := callee.Linksym()
+ for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) {
+ if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym {
+ if log {
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), callee, ir.FuncName(callerfn))
+ }
+ if logopt.Enabled() {
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
+ fmt.Sprintf("repeated recursive cycle to %s", ir.PkgFuncName(callee)))
+ }
+ }
+ return false, 0
+ }
+ }
+
+ return true, callSiteScore
+}
+
+// mkinlcall returns an OINLCALL node that can replace OCALLFUNC n, or
+// nil if it cannot be inlined. callerfn is the function that contains
+// n, and fn is the function being called.
+//
+// The result of mkinlcall MUST be assigned back to n, e.g.
+//
+// n.Left = mkinlcall(n.Left, fn, isddd)
+func mkinlcall(callerfn *ir.Func, n *ir.CallExpr, fn *ir.Func, bigCaller bool) *ir.InlinedCallExpr {
+ ok, score := canInlineCallExpr(callerfn, n, fn, bigCaller, true)
+ if !ok {
+ return nil
+ }
+ typecheck.AssertFixedCall(n)
+
+ parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
+ sym := fn.Linksym()
+ inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn))
+
+ closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) {
+ // The linker needs FuncInfo metadata for all inlined
+ // functions. This is typically handled by gc.enqueueFunc
+ // calling ir.InitLSym for all function declarations in
+ // typecheck.Target.Decls (ir.UseClosure adds all closures to
+ // Decls).
+ //
+ // However, non-trivial closures in Decls are ignored, and are
+ // insteaded enqueued when walk of the calling function
+ // discovers them.
+ //
+ // This presents a problem for direct calls to closures.
+ // Inlining will replace the entire closure definition with its
+ // body, which hides the closure from walk and thus suppresses
+ // symbol creation.
+ //
+ // Explicitly create a symbol early in this edge case to ensure
+ // we keep this metadata.
+ //
+ // TODO: Refactor to keep a reference so this can all be done
+ // by enqueueFunc.
+
+ if n.Op() != ir.OCALLFUNC {
+ // Not a standard call.
+ return
+ }
+ if n.Fun.Op() != ir.OCLOSURE {
+ // Not a direct closure call.
+ return
+ }
+
+ clo := n.Fun.(*ir.ClosureExpr)
+ if ir.IsTrivialClosure(clo) {
+ // enqueueFunc will handle trivial closures anyways.
+ return
+ }
+
+ ir.InitLSym(fn, true)
+ }
+
+ closureInitLSym(n, fn)
+
+ if base.Flag.GenDwarfInl > 0 {
+ if !sym.WasInlined() {
+ base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
+ sym.Set(obj.AttrWasInlined, true)
+ }
+ }
+
+ if base.Flag.LowerM != 0 {
+ if buildcfg.Experiment.NewInliner {
+ fmt.Printf("%v: inlining call to %v with score %d\n",
+ ir.Line(n), fn, score)
+ } else {
+ fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
+ }
+ }
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
+ }
+
+ res := InlineCall(callerfn, n, fn, inlIndex)
+
+ if res == nil {
+ base.FatalfAt(n.Pos(), "inlining call to %v failed", fn)
+ }
+
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res)
+ }
+
+ if inlheur.Enabled() {
+ inlheur.UpdateCallsiteTable(callerfn, n, res)
+ }
+
+ return res
+}
+
+// CalleeEffects appends any side effects from evaluating callee to init.
+func CalleeEffects(init *ir.Nodes, callee ir.Node) {
+ for {
+ init.Append(ir.TakeInit(callee)...)
+
+ switch callee.Op() {
+ case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR:
+ return // done
+
+ case ir.OCONVNOP:
+ conv := callee.(*ir.ConvExpr)
+ callee = conv.X
+
+ case ir.OINLCALL:
+ ic := callee.(*ir.InlinedCallExpr)
+ init.Append(ic.Body.Take()...)
+ callee = ic.SingleResult()
+
+ default:
+ base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee)
+ }
+ }
+}
+
+func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
+ s := make([]*ir.Name, 0, len(ll))
+ for _, n := range ll {
+ if n.Class == ir.PAUTO {
+ if !vis.usedLocals.Has(n) {
+ // TODO(mdempsky): Simplify code after confident that this
+ // never happens anymore.
+ base.FatalfAt(n.Pos(), "unused auto: %v", n)
+ continue
+ }
+ }
+ s = append(s, n)
+ }
+ return s
+}
+
+// numNonClosures returns the number of functions in list which are not closures.
+func numNonClosures(list []*ir.Func) int {
+ count := 0
+ for _, fn := range list {
+ if fn.OClosure == nil {
+ count++
+ }
+ }
+ return count
+}
+
+func doList(list []ir.Node, do func(ir.Node) bool) bool {
+ for _, x := range list {
+ if x != nil {
+ if do(x) {
+ return true
+ }
+ }
+ }
+ return false
+}
+
+// isIndexingCoverageCounter returns true if the specified node 'n' is indexing
+// into a coverage counter array.
+func isIndexingCoverageCounter(n ir.Node) bool {
+ if n.Op() != ir.OINDEX {
+ return false
+ }
+ ixn := n.(*ir.IndexExpr)
+ if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() {
+ return false
+ }
+ nn := ixn.X.(*ir.Name)
+ return nn.CoverageCounter()
+}
+
+// isAtomicCoverageCounterUpdate examines the specified node to
+// determine whether it represents a call to sync/atomic.AddUint32 to
+// increment a coverage counter.
+func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool {
+ if cn.Fun.Op() != ir.ONAME {
+ return false
+ }
+ name := cn.Fun.(*ir.Name)
+ if name.Class != ir.PFUNC {
+ return false
+ }
+ fn := name.Sym().Name
+ if name.Sym().Pkg.Path != "sync/atomic" ||
+ (fn != "AddUint32" && fn != "StoreUint32") {
+ return false
+ }
+ if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR {
+ return false
+ }
+ adn := cn.Args[0].(*ir.AddrExpr)
+ v := isIndexingCoverageCounter(adn.X)
+ return v
+}
+
+func PostProcessCallSites(profile *pgo.Profile) {
+ if base.Debug.DumpInlCallSiteScores != 0 {
+ budgetCallback := func(fn *ir.Func, prof *pgo.Profile) (int32, bool) {
+ v := inlineBudget(fn, prof, false, false)
+ return v, v == inlineHotMaxBudget
+ }
+ inlheur.DumpInlCallSiteScores(profile, budgetCallback)
+ }
+}
+
+func analyzeFuncProps(fn *ir.Func, p *pgo.Profile) {
+ canInline := func(fn *ir.Func) { CanInline(fn, p) }
+ budgetForFunc := func(fn *ir.Func) int32 {
+ return inlineBudget(fn, p, true, false)
+ }
+ inlheur.AnalyzeFunc(fn, canInline, budgetForFunc, inlineMaxBudget)
+}