summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/poset.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
commitf6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch)
tree7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/cmd/compile/internal/ssa/poset.go
parentInitial commit. (diff)
downloadgolang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz
golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/ssa/poset.go')
-rw-r--r--src/cmd/compile/internal/ssa/poset.go1358
1 files changed, 1358 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/poset.go b/src/cmd/compile/internal/ssa/poset.go
new file mode 100644
index 0000000..7b64843
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/poset.go
@@ -0,0 +1,1358 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "fmt"
+ "os"
+)
+
+// If true, check poset integrity after every mutation
+var debugPoset = false
+
+const uintSize = 32 << (^uint(0) >> 63) // 32 or 64
+
+// bitset is a bit array for dense indexes.
+type bitset []uint
+
+func newBitset(n int) bitset {
+ return make(bitset, (n+uintSize-1)/uintSize)
+}
+
+func (bs bitset) Reset() {
+ for i := range bs {
+ bs[i] = 0
+ }
+}
+
+func (bs bitset) Set(idx uint32) {
+ bs[idx/uintSize] |= 1 << (idx % uintSize)
+}
+
+func (bs bitset) Clear(idx uint32) {
+ bs[idx/uintSize] &^= 1 << (idx % uintSize)
+}
+
+func (bs bitset) Test(idx uint32) bool {
+ return bs[idx/uintSize]&(1<<(idx%uintSize)) != 0
+}
+
+type undoType uint8
+
+const (
+ undoInvalid undoType = iota
+ undoCheckpoint // a checkpoint to group undo passes
+ undoSetChl // change back left child of undo.idx to undo.edge
+ undoSetChr // change back right child of undo.idx to undo.edge
+ undoNonEqual // forget that SSA value undo.ID is non-equal to undo.idx (another ID)
+ undoNewNode // remove new node created for SSA value undo.ID
+ undoNewConstant // remove the constant node idx from the constants map
+ undoAliasNode // unalias SSA value undo.ID so that it points back to node index undo.idx
+ undoNewRoot // remove node undo.idx from root list
+ undoChangeRoot // remove node undo.idx from root list, and put back undo.edge.Target instead
+ undoMergeRoot // remove node undo.idx from root list, and put back its children instead
+)
+
+// posetUndo represents an undo pass to be performed.
+// It's a union of fields that can be used to store information,
+// and typ is the discriminant, that specifies which kind
+// of operation must be performed. Not all fields are always used.
+type posetUndo struct {
+ typ undoType
+ idx uint32
+ ID ID
+ edge posetEdge
+}
+
+const (
+ // Make poset handle constants as unsigned numbers.
+ posetFlagUnsigned = 1 << iota
+)
+
+// A poset edge. The zero value is the null/empty edge.
+// Packs target node index (31 bits) and strict flag (1 bit).
+type posetEdge uint32
+
+func newedge(t uint32, strict bool) posetEdge {
+ s := uint32(0)
+ if strict {
+ s = 1
+ }
+ return posetEdge(t<<1 | s)
+}
+func (e posetEdge) Target() uint32 { return uint32(e) >> 1 }
+func (e posetEdge) Strict() bool { return uint32(e)&1 != 0 }
+func (e posetEdge) String() string {
+ s := fmt.Sprint(e.Target())
+ if e.Strict() {
+ s += "*"
+ }
+ return s
+}
+
+// posetNode is a node of a DAG within the poset.
+type posetNode struct {
+ l, r posetEdge
+}
+
+// poset is a union-find data structure that can represent a partially ordered set
+// of SSA values. Given a binary relation that creates a partial order (eg: '<'),
+// clients can record relations between SSA values using SetOrder, and later
+// check relations (in the transitive closure) with Ordered. For instance,
+// if SetOrder is called to record that A<B and B<C, Ordered will later confirm
+// that A<C.
+//
+// It is possible to record equality relations between SSA values with SetEqual and check
+// equality with Equal. Equality propagates into the transitive closure for the partial
+// order so that if we know that A<B<C and later learn that A==D, Ordered will return
+// true for D<C.
+//
+// It is also possible to record inequality relations between nodes with SetNonEqual;
+// non-equality relations are not transitive, but they can still be useful: for instance
+// if we know that A<=B and later we learn that A!=B, we can deduce that A<B.
+// NonEqual can be used to check whether it is known that the nodes are different, either
+// because SetNonEqual was called before, or because we know that they are strictly ordered.
+//
+// poset will refuse to record new relations that contradict existing relations:
+// for instance if A<B<C, calling SetOrder for C<A will fail returning false; also
+// calling SetEqual for C==A will fail.
+//
+// poset is implemented as a forest of DAGs; in each DAG, if there is a path (directed)
+// from node A to B, it means that A<B (or A<=B). Equality is represented by mapping
+// two SSA values to the same DAG node; when a new equality relation is recorded
+// between two existing nodes, the nodes are merged, adjusting incoming and outgoing edges.
+//
+// Constants are specially treated. When a constant is added to the poset, it is
+// immediately linked to other constants already present; so for instance if the
+// poset knows that x<=3, and then x is tested against 5, 5 is first added and linked
+// 3 (using 3<5), so that the poset knows that x<=3<5; at that point, it is able
+// to answer x<5 correctly. This means that all constants are always within the same
+// DAG; as an implementation detail, we enfoce that the DAG containtining the constants
+// is always the first in the forest.
+//
+// poset is designed to be memory efficient and do little allocations during normal usage.
+// Most internal data structures are pre-allocated and flat, so for instance adding a
+// new relation does not cause any allocation. For performance reasons,
+// each node has only up to two outgoing edges (like a binary tree), so intermediate
+// "extra" nodes are required to represent more than two relations. For instance,
+// to record that A<I, A<J, A<K (with no known relation between I,J,K), we create the
+// following DAG:
+//
+// A
+// / \
+// I extra
+// / \
+// J K
+type poset struct {
+ lastidx uint32 // last generated dense index
+ flags uint8 // internal flags
+ values map[ID]uint32 // map SSA values to dense indexes
+ constants map[int64]uint32 // record SSA constants together with their value
+ nodes []posetNode // nodes (in all DAGs)
+ roots []uint32 // list of root nodes (forest)
+ noneq map[uint32]bitset // non-equal relations
+ undo []posetUndo // undo chain
+}
+
+func newPoset() *poset {
+ return &poset{
+ values: make(map[ID]uint32),
+ constants: make(map[int64]uint32, 8),
+ nodes: make([]posetNode, 1, 16),
+ roots: make([]uint32, 0, 4),
+ noneq: make(map[uint32]bitset),
+ undo: make([]posetUndo, 0, 4),
+ }
+}
+
+func (po *poset) SetUnsigned(uns bool) {
+ if uns {
+ po.flags |= posetFlagUnsigned
+ } else {
+ po.flags &^= posetFlagUnsigned
+ }
+}
+
+// Handle children
+func (po *poset) setchl(i uint32, l posetEdge) { po.nodes[i].l = l }
+func (po *poset) setchr(i uint32, r posetEdge) { po.nodes[i].r = r }
+func (po *poset) chl(i uint32) uint32 { return po.nodes[i].l.Target() }
+func (po *poset) chr(i uint32) uint32 { return po.nodes[i].r.Target() }
+func (po *poset) children(i uint32) (posetEdge, posetEdge) {
+ return po.nodes[i].l, po.nodes[i].r
+}
+
+// upush records a new undo step. It can be used for simple
+// undo passes that record up to one index and one edge.
+func (po *poset) upush(typ undoType, p uint32, e posetEdge) {
+ po.undo = append(po.undo, posetUndo{typ: typ, idx: p, edge: e})
+}
+
+// upushnew pushes an undo pass for a new node
+func (po *poset) upushnew(id ID, idx uint32) {
+ po.undo = append(po.undo, posetUndo{typ: undoNewNode, ID: id, idx: idx})
+}
+
+// upushneq pushes a new undo pass for a nonequal relation
+func (po *poset) upushneq(idx1 uint32, idx2 uint32) {
+ po.undo = append(po.undo, posetUndo{typ: undoNonEqual, ID: ID(idx1), idx: idx2})
+}
+
+// upushalias pushes a new undo pass for aliasing two nodes
+func (po *poset) upushalias(id ID, i2 uint32) {
+ po.undo = append(po.undo, posetUndo{typ: undoAliasNode, ID: id, idx: i2})
+}
+
+// upushconst pushes a new undo pass for a new constant
+func (po *poset) upushconst(idx uint32, old uint32) {
+ po.undo = append(po.undo, posetUndo{typ: undoNewConstant, idx: idx, ID: ID(old)})
+}
+
+// addchild adds i2 as direct child of i1.
+func (po *poset) addchild(i1, i2 uint32, strict bool) {
+ i1l, i1r := po.children(i1)
+ e2 := newedge(i2, strict)
+
+ if i1l == 0 {
+ po.setchl(i1, e2)
+ po.upush(undoSetChl, i1, 0)
+ } else if i1r == 0 {
+ po.setchr(i1, e2)
+ po.upush(undoSetChr, i1, 0)
+ } else {
+ // If n1 already has two children, add an intermediate extra
+ // node to record the relation correctly (without relating
+ // n2 to other existing nodes). Use a non-deterministic value
+ // to decide whether to append on the left or the right, to avoid
+ // creating degenerated chains.
+ //
+ // n1
+ // / \
+ // i1l extra
+ // / \
+ // i1r n2
+ //
+ extra := po.newnode(nil)
+ if (i1^i2)&1 != 0 { // non-deterministic
+ po.setchl(extra, i1r)
+ po.setchr(extra, e2)
+ po.setchr(i1, newedge(extra, false))
+ po.upush(undoSetChr, i1, i1r)
+ } else {
+ po.setchl(extra, i1l)
+ po.setchr(extra, e2)
+ po.setchl(i1, newedge(extra, false))
+ po.upush(undoSetChl, i1, i1l)
+ }
+ }
+}
+
+// newnode allocates a new node bound to SSA value n.
+// If n is nil, this is an extra node (= only used internally).
+func (po *poset) newnode(n *Value) uint32 {
+ i := po.lastidx + 1
+ po.lastidx++
+ po.nodes = append(po.nodes, posetNode{})
+ if n != nil {
+ if po.values[n.ID] != 0 {
+ panic("newnode for Value already inserted")
+ }
+ po.values[n.ID] = i
+ po.upushnew(n.ID, i)
+ } else {
+ po.upushnew(0, i)
+ }
+ return i
+}
+
+// lookup searches for a SSA value into the forest of DAGS, and return its node.
+// Constants are materialized on the fly during lookup.
+func (po *poset) lookup(n *Value) (uint32, bool) {
+ i, f := po.values[n.ID]
+ if !f && n.isGenericIntConst() {
+ po.newconst(n)
+ i, f = po.values[n.ID]
+ }
+ return i, f
+}
+
+// newconst creates a node for a constant. It links it to other constants, so
+// that n<=5 is detected true when n<=3 is known to be true.
+// TODO: this is O(N), fix it.
+func (po *poset) newconst(n *Value) {
+ if !n.isGenericIntConst() {
+ panic("newconst on non-constant")
+ }
+
+ // If the same constant is already present in the poset through a different
+ // Value, just alias to it without allocating a new node.
+ val := n.AuxInt
+ if po.flags&posetFlagUnsigned != 0 {
+ val = int64(n.AuxUnsigned())
+ }
+ if c, found := po.constants[val]; found {
+ po.values[n.ID] = c
+ po.upushalias(n.ID, 0)
+ return
+ }
+
+ // Create the new node for this constant
+ i := po.newnode(n)
+
+ // If this is the first constant, put it as a new root, as
+ // we can't record an existing connection so we don't have
+ // a specific DAG to add it to. Notice that we want all
+ // constants to be in root #0, so make sure the new root
+ // goes there.
+ if len(po.constants) == 0 {
+ idx := len(po.roots)
+ po.roots = append(po.roots, i)
+ po.roots[0], po.roots[idx] = po.roots[idx], po.roots[0]
+ po.upush(undoNewRoot, i, 0)
+ po.constants[val] = i
+ po.upushconst(i, 0)
+ return
+ }
+
+ // Find the lower and upper bound among existing constants. That is,
+ // find the higher constant that is lower than the one that we're adding,
+ // and the lower constant that is higher.
+ // The loop is duplicated to handle signed and unsigned comparison,
+ // depending on how the poset was configured.
+ var lowerptr, higherptr uint32
+
+ if po.flags&posetFlagUnsigned != 0 {
+ var lower, higher uint64
+ val1 := n.AuxUnsigned()
+ for val2, ptr := range po.constants {
+ val2 := uint64(val2)
+ if val1 == val2 {
+ panic("unreachable")
+ }
+ if val2 < val1 && (lowerptr == 0 || val2 > lower) {
+ lower = val2
+ lowerptr = ptr
+ } else if val2 > val1 && (higherptr == 0 || val2 < higher) {
+ higher = val2
+ higherptr = ptr
+ }
+ }
+ } else {
+ var lower, higher int64
+ val1 := n.AuxInt
+ for val2, ptr := range po.constants {
+ if val1 == val2 {
+ panic("unreachable")
+ }
+ if val2 < val1 && (lowerptr == 0 || val2 > lower) {
+ lower = val2
+ lowerptr = ptr
+ } else if val2 > val1 && (higherptr == 0 || val2 < higher) {
+ higher = val2
+ higherptr = ptr
+ }
+ }
+ }
+
+ if lowerptr == 0 && higherptr == 0 {
+ // This should not happen, as at least one
+ // other constant must exist if we get here.
+ panic("no constant found")
+ }
+
+ // Create the new node and connect it to the bounds, so that
+ // lower < n < higher. We could have found both bounds or only one
+ // of them, depending on what other constants are present in the poset.
+ // Notice that we always link constants together, so they
+ // are always part of the same DAG.
+ switch {
+ case lowerptr != 0 && higherptr != 0:
+ // Both bounds are present, record lower < n < higher.
+ po.addchild(lowerptr, i, true)
+ po.addchild(i, higherptr, true)
+
+ case lowerptr != 0:
+ // Lower bound only, record lower < n.
+ po.addchild(lowerptr, i, true)
+
+ case higherptr != 0:
+ // Higher bound only. To record n < higher, we need
+ // an extra root:
+ //
+ // extra
+ // / \
+ // root \
+ // / n
+ // .... /
+ // \ /
+ // higher
+ //
+ i2 := higherptr
+ r2 := po.findroot(i2)
+ if r2 != po.roots[0] { // all constants should be in root #0
+ panic("constant not in root #0")
+ }
+ extra := po.newnode(nil)
+ po.changeroot(r2, extra)
+ po.upush(undoChangeRoot, extra, newedge(r2, false))
+ po.addchild(extra, r2, false)
+ po.addchild(extra, i, false)
+ po.addchild(i, i2, true)
+ }
+
+ po.constants[val] = i
+ po.upushconst(i, 0)
+}
+
+// aliasnewnode records that a single node n2 (not in the poset yet) is an alias
+// of the master node n1.
+func (po *poset) aliasnewnode(n1, n2 *Value) {
+ i1, i2 := po.values[n1.ID], po.values[n2.ID]
+ if i1 == 0 || i2 != 0 {
+ panic("aliasnewnode invalid arguments")
+ }
+
+ po.values[n2.ID] = i1
+ po.upushalias(n2.ID, 0)
+}
+
+// aliasnodes records that all the nodes i2s are aliases of a single master node n1.
+// aliasnodes takes care of rearranging the DAG, changing references of parent/children
+// of nodes in i2s, so that they point to n1 instead.
+// Complexity is O(n) (with n being the total number of nodes in the poset, not just
+// the number of nodes being aliased).
+func (po *poset) aliasnodes(n1 *Value, i2s bitset) {
+ i1 := po.values[n1.ID]
+ if i1 == 0 {
+ panic("aliasnode for non-existing node")
+ }
+ if i2s.Test(i1) {
+ panic("aliasnode i2s contains n1 node")
+ }
+
+ // Go through all the nodes to adjust parent/chidlren of nodes in i2s
+ for idx, n := range po.nodes {
+ // Do not touch i1 itself, otherwise we can create useless self-loops
+ if uint32(idx) == i1 {
+ continue
+ }
+ l, r := n.l, n.r
+
+ // Rename all references to i2s into i1
+ if i2s.Test(l.Target()) {
+ po.setchl(uint32(idx), newedge(i1, l.Strict()))
+ po.upush(undoSetChl, uint32(idx), l)
+ }
+ if i2s.Test(r.Target()) {
+ po.setchr(uint32(idx), newedge(i1, r.Strict()))
+ po.upush(undoSetChr, uint32(idx), r)
+ }
+
+ // Connect all children of i2s to i1 (unless those children
+ // are in i2s as well, in which case it would be useless)
+ if i2s.Test(uint32(idx)) {
+ if l != 0 && !i2s.Test(l.Target()) {
+ po.addchild(i1, l.Target(), l.Strict())
+ }
+ if r != 0 && !i2s.Test(r.Target()) {
+ po.addchild(i1, r.Target(), r.Strict())
+ }
+ po.setchl(uint32(idx), 0)
+ po.setchr(uint32(idx), 0)
+ po.upush(undoSetChl, uint32(idx), l)
+ po.upush(undoSetChr, uint32(idx), r)
+ }
+ }
+
+ // Reassign all existing IDs that point to i2 to i1.
+ // This includes n2.ID.
+ for k, v := range po.values {
+ if i2s.Test(v) {
+ po.values[k] = i1
+ po.upushalias(k, v)
+ }
+ }
+
+ // If one of the aliased nodes is a constant, then make sure
+ // po.constants is updated to point to the master node.
+ for val, idx := range po.constants {
+ if i2s.Test(idx) {
+ po.constants[val] = i1
+ po.upushconst(i1, idx)
+ }
+ }
+}
+
+func (po *poset) isroot(r uint32) bool {
+ for i := range po.roots {
+ if po.roots[i] == r {
+ return true
+ }
+ }
+ return false
+}
+
+func (po *poset) changeroot(oldr, newr uint32) {
+ for i := range po.roots {
+ if po.roots[i] == oldr {
+ po.roots[i] = newr
+ return
+ }
+ }
+ panic("changeroot on non-root")
+}
+
+func (po *poset) removeroot(r uint32) {
+ for i := range po.roots {
+ if po.roots[i] == r {
+ po.roots = append(po.roots[:i], po.roots[i+1:]...)
+ return
+ }
+ }
+ panic("removeroot on non-root")
+}
+
+// dfs performs a depth-first search within the DAG whose root is r.
+// f is the visit function called for each node; if it returns true,
+// the search is aborted and true is returned. The root node is
+// visited too.
+// If strict, ignore edges across a path until at least one
+// strict edge is found. For instance, for a chain A<=B<=C<D<=E<F,
+// a strict walk visits D,E,F.
+// If the visit ends, false is returned.
+func (po *poset) dfs(r uint32, strict bool, f func(i uint32) bool) bool {
+ closed := newBitset(int(po.lastidx + 1))
+ open := make([]uint32, 1, 64)
+ open[0] = r
+
+ if strict {
+ // Do a first DFS; walk all paths and stop when we find a strict
+ // edge, building a "next" list of nodes reachable through strict
+ // edges. This will be the bootstrap open list for the real DFS.
+ next := make([]uint32, 0, 64)
+
+ for len(open) > 0 {
+ i := open[len(open)-1]
+ open = open[:len(open)-1]
+
+ // Don't visit the same node twice. Notice that all nodes
+ // across non-strict paths are still visited at least once, so
+ // a non-strict path can never obscure a strict path to the
+ // same node.
+ if !closed.Test(i) {
+ closed.Set(i)
+
+ l, r := po.children(i)
+ if l != 0 {
+ if l.Strict() {
+ next = append(next, l.Target())
+ } else {
+ open = append(open, l.Target())
+ }
+ }
+ if r != 0 {
+ if r.Strict() {
+ next = append(next, r.Target())
+ } else {
+ open = append(open, r.Target())
+ }
+ }
+ }
+ }
+ open = next
+ closed.Reset()
+ }
+
+ for len(open) > 0 {
+ i := open[len(open)-1]
+ open = open[:len(open)-1]
+
+ if !closed.Test(i) {
+ if f(i) {
+ return true
+ }
+ closed.Set(i)
+ l, r := po.children(i)
+ if l != 0 {
+ open = append(open, l.Target())
+ }
+ if r != 0 {
+ open = append(open, r.Target())
+ }
+ }
+ }
+ return false
+}
+
+// Returns true if there is a path from i1 to i2.
+// If strict == true: if the function returns true, then i1 < i2.
+// If strict == false: if the function returns true, then i1 <= i2.
+// If the function returns false, no relation is known.
+func (po *poset) reaches(i1, i2 uint32, strict bool) bool {
+ return po.dfs(i1, strict, func(n uint32) bool {
+ return n == i2
+ })
+}
+
+// findroot finds i's root, that is which DAG contains i.
+// Returns the root; if i is itself a root, it is returned.
+// Panic if i is not in any DAG.
+func (po *poset) findroot(i uint32) uint32 {
+ // TODO(rasky): if needed, a way to speed up this search is
+ // storing a bitset for each root using it as a mini bloom filter
+ // of nodes present under that root.
+ for _, r := range po.roots {
+ if po.reaches(r, i, false) {
+ return r
+ }
+ }
+ panic("findroot didn't find any root")
+}
+
+// mergeroot merges two DAGs into one DAG by creating a new extra root
+func (po *poset) mergeroot(r1, r2 uint32) uint32 {
+ // Root #0 is special as it contains all constants. Since mergeroot
+ // discards r2 as root and keeps r1, make sure that r2 is not root #0,
+ // otherwise constants would move to a different root.
+ if r2 == po.roots[0] {
+ r1, r2 = r2, r1
+ }
+ r := po.newnode(nil)
+ po.setchl(r, newedge(r1, false))
+ po.setchr(r, newedge(r2, false))
+ po.changeroot(r1, r)
+ po.removeroot(r2)
+ po.upush(undoMergeRoot, r, 0)
+ return r
+}
+
+// collapsepath marks n1 and n2 as equal and collapses as equal all
+// nodes across all paths between n1 and n2. If a strict edge is
+// found, the function does not modify the DAG and returns false.
+// Complexity is O(n).
+func (po *poset) collapsepath(n1, n2 *Value) bool {
+ i1, i2 := po.values[n1.ID], po.values[n2.ID]
+ if po.reaches(i1, i2, true) {
+ return false
+ }
+
+ // Find all the paths from i1 to i2
+ paths := po.findpaths(i1, i2)
+ // Mark all nodes in all the paths as aliases of n1
+ // (excluding n1 itself)
+ paths.Clear(i1)
+ po.aliasnodes(n1, paths)
+ return true
+}
+
+// findpaths is a recursive function that calculates all paths from cur to dst
+// and return them as a bitset (the index of a node is set in the bitset if
+// that node is on at least one path from cur to dst).
+// We do a DFS from cur (stopping going deep any time we reach dst, if ever),
+// and mark as part of the paths any node that has a children which is already
+// part of the path (or is dst itself).
+func (po *poset) findpaths(cur, dst uint32) bitset {
+ seen := newBitset(int(po.lastidx + 1))
+ path := newBitset(int(po.lastidx + 1))
+ path.Set(dst)
+ po.findpaths1(cur, dst, seen, path)
+ return path
+}
+
+func (po *poset) findpaths1(cur, dst uint32, seen bitset, path bitset) {
+ if cur == dst {
+ return
+ }
+ seen.Set(cur)
+ l, r := po.chl(cur), po.chr(cur)
+ if !seen.Test(l) {
+ po.findpaths1(l, dst, seen, path)
+ }
+ if !seen.Test(r) {
+ po.findpaths1(r, dst, seen, path)
+ }
+ if path.Test(l) || path.Test(r) {
+ path.Set(cur)
+ }
+}
+
+// Check whether it is recorded that i1!=i2
+func (po *poset) isnoneq(i1, i2 uint32) bool {
+ if i1 == i2 {
+ return false
+ }
+ if i1 < i2 {
+ i1, i2 = i2, i1
+ }
+
+ // Check if we recorded a non-equal relation before
+ if bs, ok := po.noneq[i1]; ok && bs.Test(i2) {
+ return true
+ }
+ return false
+}
+
+// Record that i1!=i2
+func (po *poset) setnoneq(n1, n2 *Value) {
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+
+ // If any of the nodes do not exist in the poset, allocate them. Since
+ // we don't know any relation (in the partial order) about them, they must
+ // become independent roots.
+ if !f1 {
+ i1 = po.newnode(n1)
+ po.roots = append(po.roots, i1)
+ po.upush(undoNewRoot, i1, 0)
+ }
+ if !f2 {
+ i2 = po.newnode(n2)
+ po.roots = append(po.roots, i2)
+ po.upush(undoNewRoot, i2, 0)
+ }
+
+ if i1 == i2 {
+ panic("setnoneq on same node")
+ }
+ if i1 < i2 {
+ i1, i2 = i2, i1
+ }
+ bs := po.noneq[i1]
+ if bs == nil {
+ // Given that we record non-equality relations using the
+ // higher index as a key, the bitsize will never change size.
+ // TODO(rasky): if memory is a problem, consider allocating
+ // a small bitset and lazily grow it when higher indices arrive.
+ bs = newBitset(int(i1))
+ po.noneq[i1] = bs
+ } else if bs.Test(i2) {
+ // Already recorded
+ return
+ }
+ bs.Set(i2)
+ po.upushneq(i1, i2)
+}
+
+// CheckIntegrity verifies internal integrity of a poset. It is intended
+// for debugging purposes.
+func (po *poset) CheckIntegrity() {
+ // Record which index is a constant
+ constants := newBitset(int(po.lastidx + 1))
+ for _, c := range po.constants {
+ constants.Set(c)
+ }
+
+ // Verify that each node appears in a single DAG, and that
+ // all constants are within the first DAG
+ seen := newBitset(int(po.lastidx + 1))
+ for ridx, r := range po.roots {
+ if r == 0 {
+ panic("empty root")
+ }
+
+ po.dfs(r, false, func(i uint32) bool {
+ if seen.Test(i) {
+ panic("duplicate node")
+ }
+ seen.Set(i)
+ if constants.Test(i) {
+ if ridx != 0 {
+ panic("constants not in the first DAG")
+ }
+ }
+ return false
+ })
+ }
+
+ // Verify that values contain the minimum set
+ for id, idx := range po.values {
+ if !seen.Test(idx) {
+ panic(fmt.Errorf("spurious value [%d]=%d", id, idx))
+ }
+ }
+
+ // Verify that only existing nodes have non-zero children
+ for i, n := range po.nodes {
+ if n.l|n.r != 0 {
+ if !seen.Test(uint32(i)) {
+ panic(fmt.Errorf("children of unknown node %d->%v", i, n))
+ }
+ if n.l.Target() == uint32(i) || n.r.Target() == uint32(i) {
+ panic(fmt.Errorf("self-loop on node %d", i))
+ }
+ }
+ }
+}
+
+// CheckEmpty checks that a poset is completely empty.
+// It can be used for debugging purposes, as a poset is supposed to
+// be empty after it's fully rolled back through Undo.
+func (po *poset) CheckEmpty() error {
+ if len(po.nodes) != 1 {
+ return fmt.Errorf("non-empty nodes list: %v", po.nodes)
+ }
+ if len(po.values) != 0 {
+ return fmt.Errorf("non-empty value map: %v", po.values)
+ }
+ if len(po.roots) != 0 {
+ return fmt.Errorf("non-empty root list: %v", po.roots)
+ }
+ if len(po.constants) != 0 {
+ return fmt.Errorf("non-empty constants: %v", po.constants)
+ }
+ if len(po.undo) != 0 {
+ return fmt.Errorf("non-empty undo list: %v", po.undo)
+ }
+ if po.lastidx != 0 {
+ return fmt.Errorf("lastidx index is not zero: %v", po.lastidx)
+ }
+ for _, bs := range po.noneq {
+ for _, x := range bs {
+ if x != 0 {
+ return fmt.Errorf("non-empty noneq map")
+ }
+ }
+ }
+ return nil
+}
+
+// DotDump dumps the poset in graphviz format to file fn, with the specified title.
+func (po *poset) DotDump(fn string, title string) error {
+ f, err := os.Create(fn)
+ if err != nil {
+ return err
+ }
+ defer f.Close()
+
+ // Create reverse index mapping (taking aliases into account)
+ names := make(map[uint32]string)
+ for id, i := range po.values {
+ s := names[i]
+ if s == "" {
+ s = fmt.Sprintf("v%d", id)
+ } else {
+ s += fmt.Sprintf(", v%d", id)
+ }
+ names[i] = s
+ }
+
+ // Create reverse constant mapping
+ consts := make(map[uint32]int64)
+ for val, idx := range po.constants {
+ consts[idx] = val
+ }
+
+ fmt.Fprintf(f, "digraph poset {\n")
+ fmt.Fprintf(f, "\tedge [ fontsize=10 ]\n")
+ for ridx, r := range po.roots {
+ fmt.Fprintf(f, "\tsubgraph root%d {\n", ridx)
+ po.dfs(r, false, func(i uint32) bool {
+ if val, ok := consts[i]; ok {
+ // Constant
+ var vals string
+ if po.flags&posetFlagUnsigned != 0 {
+ vals = fmt.Sprint(uint64(val))
+ } else {
+ vals = fmt.Sprint(int64(val))
+ }
+ fmt.Fprintf(f, "\t\tnode%d [shape=box style=filled fillcolor=cadetblue1 label=<%s <font point-size=\"6\">%s [%d]</font>>]\n",
+ i, vals, names[i], i)
+ } else {
+ // Normal SSA value
+ fmt.Fprintf(f, "\t\tnode%d [label=<%s <font point-size=\"6\">[%d]</font>>]\n", i, names[i], i)
+ }
+ chl, chr := po.children(i)
+ for _, ch := range []posetEdge{chl, chr} {
+ if ch != 0 {
+ if ch.Strict() {
+ fmt.Fprintf(f, "\t\tnode%d -> node%d [label=\" <\" color=\"red\"]\n", i, ch.Target())
+ } else {
+ fmt.Fprintf(f, "\t\tnode%d -> node%d [label=\" <=\" color=\"green\"]\n", i, ch.Target())
+ }
+ }
+ }
+ return false
+ })
+ fmt.Fprintf(f, "\t}\n")
+ }
+ fmt.Fprintf(f, "\tlabelloc=\"t\"\n")
+ fmt.Fprintf(f, "\tlabeldistance=\"3.0\"\n")
+ fmt.Fprintf(f, "\tlabel=%q\n", title)
+ fmt.Fprintf(f, "}\n")
+ return nil
+}
+
+// Ordered reports whether n1<n2. It returns false either when it is
+// certain that n1<n2 is false, or if there is not enough information
+// to tell.
+// Complexity is O(n).
+func (po *poset) Ordered(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call Ordered with n1==n2")
+ }
+
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+ if !f1 || !f2 {
+ return false
+ }
+
+ return i1 != i2 && po.reaches(i1, i2, true)
+}
+
+// OrderedOrEqual reports whether n1<=n2. It returns false either when it is
+// certain that n1<=n2 is false, or if there is not enough information
+// to tell.
+// Complexity is O(n).
+func (po *poset) OrderedOrEqual(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call Ordered with n1==n2")
+ }
+
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+ if !f1 || !f2 {
+ return false
+ }
+
+ return i1 == i2 || po.reaches(i1, i2, false)
+}
+
+// Equal reports whether n1==n2. It returns false either when it is
+// certain that n1==n2 is false, or if there is not enough information
+// to tell.
+// Complexity is O(1).
+func (po *poset) Equal(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call Equal with n1==n2")
+ }
+
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+ return f1 && f2 && i1 == i2
+}
+
+// NonEqual reports whether n1!=n2. It returns false either when it is
+// certain that n1!=n2 is false, or if there is not enough information
+// to tell.
+// Complexity is O(n) (because it internally calls Ordered to see if we
+// can infer n1!=n2 from n1<n2 or n2<n1).
+func (po *poset) NonEqual(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call NonEqual with n1==n2")
+ }
+
+ // If we never saw the nodes before, we don't
+ // have a recorded non-equality.
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+ if !f1 || !f2 {
+ return false
+ }
+
+ // Check if we recorded inequality
+ if po.isnoneq(i1, i2) {
+ return true
+ }
+
+ // Check if n1<n2 or n2<n1, in which case we can infer that n1!=n2
+ if po.Ordered(n1, n2) || po.Ordered(n2, n1) {
+ return true
+ }
+
+ return false
+}
+
+// setOrder records that n1<n2 or n1<=n2 (depending on strict). Returns false
+// if this is a contradiction.
+// Implements SetOrder() and SetOrderOrEqual()
+func (po *poset) setOrder(n1, n2 *Value, strict bool) bool {
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+
+ switch {
+ case !f1 && !f2:
+ // Neither n1 nor n2 are in the poset, so they are not related
+ // in any way to existing nodes.
+ // Create a new DAG to record the relation.
+ i1, i2 = po.newnode(n1), po.newnode(n2)
+ po.roots = append(po.roots, i1)
+ po.upush(undoNewRoot, i1, 0)
+ po.addchild(i1, i2, strict)
+
+ case f1 && !f2:
+ // n1 is in one of the DAGs, while n2 is not. Add n2 as children
+ // of n1.
+ i2 = po.newnode(n2)
+ po.addchild(i1, i2, strict)
+
+ case !f1 && f2:
+ // n1 is not in any DAG but n2 is. If n2 is a root, we can put
+ // n1 in its place as a root; otherwise, we need to create a new
+ // extra root to record the relation.
+ i1 = po.newnode(n1)
+
+ if po.isroot(i2) {
+ po.changeroot(i2, i1)
+ po.upush(undoChangeRoot, i1, newedge(i2, strict))
+ po.addchild(i1, i2, strict)
+ return true
+ }
+
+ // Search for i2's root; this requires a O(n) search on all
+ // DAGs
+ r := po.findroot(i2)
+
+ // Re-parent as follows:
+ //
+ // extra
+ // r / \
+ // \ ===> r i1
+ // i2 \ /
+ // i2
+ //
+ extra := po.newnode(nil)
+ po.changeroot(r, extra)
+ po.upush(undoChangeRoot, extra, newedge(r, false))
+ po.addchild(extra, r, false)
+ po.addchild(extra, i1, false)
+ po.addchild(i1, i2, strict)
+
+ case f1 && f2:
+ // If the nodes are aliased, fail only if we're setting a strict order
+ // (that is, we cannot set n1<n2 if n1==n2).
+ if i1 == i2 {
+ return !strict
+ }
+
+ // If we are trying to record n1<=n2 but we learned that n1!=n2,
+ // record n1<n2, as it provides more information.
+ if !strict && po.isnoneq(i1, i2) {
+ strict = true
+ }
+
+ // Both n1 and n2 are in the poset. This is the complex part of the algorithm
+ // as we need to find many different cases and DAG shapes.
+
+ // Check if n1 somehow reaches n2
+ if po.reaches(i1, i2, false) {
+ // This is the table of all cases we need to handle:
+ //
+ // DAG New Action
+ // ---------------------------------------------------
+ // #1: N1<=X<=N2 | N1<=N2 | do nothing
+ // #2: N1<=X<=N2 | N1<N2 | add strict edge (N1<N2)
+ // #3: N1<X<N2 | N1<=N2 | do nothing (we already know more)
+ // #4: N1<X<N2 | N1<N2 | do nothing
+
+ // Check if we're in case #2
+ if strict && !po.reaches(i1, i2, true) {
+ po.addchild(i1, i2, true)
+ return true
+ }
+
+ // Case #1, #3, or #4: nothing to do
+ return true
+ }
+
+ // Check if n2 somehow reaches n1
+ if po.reaches(i2, i1, false) {
+ // This is the table of all cases we need to handle:
+ //
+ // DAG New Action
+ // ---------------------------------------------------
+ // #5: N2<=X<=N1 | N1<=N2 | collapse path (learn that N1=X=N2)
+ // #6: N2<=X<=N1 | N1<N2 | contradiction
+ // #7: N2<X<N1 | N1<=N2 | contradiction in the path
+ // #8: N2<X<N1 | N1<N2 | contradiction
+
+ if strict {
+ // Cases #6 and #8: contradiction
+ return false
+ }
+
+ // We're in case #5 or #7. Try to collapse path, and that will
+ // fail if it realizes that we are in case #7.
+ return po.collapsepath(n2, n1)
+ }
+
+ // We don't know of any existing relation between n1 and n2. They could
+ // be part of the same DAG or not.
+ // Find their roots to check whether they are in the same DAG.
+ r1, r2 := po.findroot(i1), po.findroot(i2)
+ if r1 != r2 {
+ // We need to merge the two DAGs to record a relation between the nodes
+ po.mergeroot(r1, r2)
+ }
+
+ // Connect n1 and n2
+ po.addchild(i1, i2, strict)
+ }
+
+ return true
+}
+
+// SetOrder records that n1<n2. Returns false if this is a contradiction
+// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
+func (po *poset) SetOrder(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call SetOrder with n1==n2")
+ }
+ return po.setOrder(n1, n2, true)
+}
+
+// SetOrderOrEqual records that n1<=n2. Returns false if this is a contradiction
+// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
+func (po *poset) SetOrderOrEqual(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call SetOrder with n1==n2")
+ }
+ return po.setOrder(n1, n2, false)
+}
+
+// SetEqual records that n1==n2. Returns false if this is a contradiction
+// (that is, if it is already recorded that n1<n2 or n2<n1).
+// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
+func (po *poset) SetEqual(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call Add with n1==n2")
+ }
+
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+
+ switch {
+ case !f1 && !f2:
+ i1 = po.newnode(n1)
+ po.roots = append(po.roots, i1)
+ po.upush(undoNewRoot, i1, 0)
+ po.aliasnewnode(n1, n2)
+ case f1 && !f2:
+ po.aliasnewnode(n1, n2)
+ case !f1 && f2:
+ po.aliasnewnode(n2, n1)
+ case f1 && f2:
+ if i1 == i2 {
+ // Already aliased, ignore
+ return true
+ }
+
+ // If we recorded that n1!=n2, this is a contradiction.
+ if po.isnoneq(i1, i2) {
+ return false
+ }
+
+ // If we already knew that n1<=n2, we can collapse the path to
+ // record n1==n2 (and vice versa).
+ if po.reaches(i1, i2, false) {
+ return po.collapsepath(n1, n2)
+ }
+ if po.reaches(i2, i1, false) {
+ return po.collapsepath(n2, n1)
+ }
+
+ r1 := po.findroot(i1)
+ r2 := po.findroot(i2)
+ if r1 != r2 {
+ // Merge the two DAGs so we can record relations between the nodes
+ po.mergeroot(r1, r2)
+ }
+
+ // Set n2 as alias of n1. This will also update all the references
+ // to n2 to become references to n1
+ i2s := newBitset(int(po.lastidx) + 1)
+ i2s.Set(i2)
+ po.aliasnodes(n1, i2s)
+ }
+ return true
+}
+
+// SetNonEqual records that n1!=n2. Returns false if this is a contradiction
+// (that is, if it is already recorded that n1==n2).
+// Complexity is O(n).
+func (po *poset) SetNonEqual(n1, n2 *Value) bool {
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+ if n1.ID == n2.ID {
+ panic("should not call SetNonEqual with n1==n2")
+ }
+
+ // Check whether the nodes are already in the poset
+ i1, f1 := po.lookup(n1)
+ i2, f2 := po.lookup(n2)
+
+ // If either node wasn't present, we just record the new relation
+ // and exit.
+ if !f1 || !f2 {
+ po.setnoneq(n1, n2)
+ return true
+ }
+
+ // See if we already know this, in which case there's nothing to do.
+ if po.isnoneq(i1, i2) {
+ return true
+ }
+
+ // Check if we're contradicting an existing equality relation
+ if po.Equal(n1, n2) {
+ return false
+ }
+
+ // Record non-equality
+ po.setnoneq(n1, n2)
+
+ // If we know that i1<=i2 but not i1<i2, learn that as we
+ // now know that they are not equal. Do the same for i2<=i1.
+ // Do this check only if both nodes were already in the DAG,
+ // otherwise there cannot be an existing relation.
+ if po.reaches(i1, i2, false) && !po.reaches(i1, i2, true) {
+ po.addchild(i1, i2, true)
+ }
+ if po.reaches(i2, i1, false) && !po.reaches(i2, i1, true) {
+ po.addchild(i2, i1, true)
+ }
+
+ return true
+}
+
+// Checkpoint saves the current state of the DAG so that it's possible
+// to later undo this state.
+// Complexity is O(1).
+func (po *poset) Checkpoint() {
+ po.undo = append(po.undo, posetUndo{typ: undoCheckpoint})
+}
+
+// Undo restores the state of the poset to the previous checkpoint.
+// Complexity depends on the type of operations that were performed
+// since the last checkpoint; each Set* operation creates an undo
+// pass which Undo has to revert with a worst-case complexity of O(n).
+func (po *poset) Undo() {
+ if len(po.undo) == 0 {
+ panic("empty undo stack")
+ }
+ if debugPoset {
+ defer po.CheckIntegrity()
+ }
+
+ for len(po.undo) > 0 {
+ pass := po.undo[len(po.undo)-1]
+ po.undo = po.undo[:len(po.undo)-1]
+
+ switch pass.typ {
+ case undoCheckpoint:
+ return
+
+ case undoSetChl:
+ po.setchl(pass.idx, pass.edge)
+
+ case undoSetChr:
+ po.setchr(pass.idx, pass.edge)
+
+ case undoNonEqual:
+ po.noneq[uint32(pass.ID)].Clear(pass.idx)
+
+ case undoNewNode:
+ if pass.idx != po.lastidx {
+ panic("invalid newnode index")
+ }
+ if pass.ID != 0 {
+ if po.values[pass.ID] != pass.idx {
+ panic("invalid newnode undo pass")
+ }
+ delete(po.values, pass.ID)
+ }
+ po.setchl(pass.idx, 0)
+ po.setchr(pass.idx, 0)
+ po.nodes = po.nodes[:pass.idx]
+ po.lastidx--
+
+ case undoNewConstant:
+ // FIXME: remove this O(n) loop
+ var val int64
+ var i uint32
+ for val, i = range po.constants {
+ if i == pass.idx {
+ break
+ }
+ }
+ if i != pass.idx {
+ panic("constant not found in undo pass")
+ }
+ if pass.ID == 0 {
+ delete(po.constants, val)
+ } else {
+ // Restore previous index as constant node
+ // (also restoring the invariant on correct bounds)
+ oldidx := uint32(pass.ID)
+ po.constants[val] = oldidx
+ }
+
+ case undoAliasNode:
+ ID, prev := pass.ID, pass.idx
+ cur := po.values[ID]
+ if prev == 0 {
+ // Born as an alias, die as an alias
+ delete(po.values, ID)
+ } else {
+ if cur == prev {
+ panic("invalid aliasnode undo pass")
+ }
+ // Give it back previous value
+ po.values[ID] = prev
+ }
+
+ case undoNewRoot:
+ i := pass.idx
+ l, r := po.children(i)
+ if l|r != 0 {
+ panic("non-empty root in undo newroot")
+ }
+ po.removeroot(i)
+
+ case undoChangeRoot:
+ i := pass.idx
+ l, r := po.children(i)
+ if l|r != 0 {
+ panic("non-empty root in undo changeroot")
+ }
+ po.changeroot(i, pass.edge.Target())
+
+ case undoMergeRoot:
+ i := pass.idx
+ l, r := po.children(i)
+ po.changeroot(i, l.Target())
+ po.roots = append(po.roots, r.Target())
+
+ default:
+ panic(pass.typ)
+ }
+ }
+
+ if debugPoset && po.CheckEmpty() != nil {
+ panic("poset not empty at the end of undo")
+ }
+}