diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:25:22 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:25:22 +0000 |
commit | f6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch) | |
tree | 7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/runtime/mbitmap_allocheaders.go | |
parent | Initial commit. (diff) | |
download | golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip |
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/mbitmap_allocheaders.go')
-rw-r--r-- | src/runtime/mbitmap_allocheaders.go | 1376 |
1 files changed, 1376 insertions, 0 deletions
diff --git a/src/runtime/mbitmap_allocheaders.go b/src/runtime/mbitmap_allocheaders.go new file mode 100644 index 0000000..1ec0553 --- /dev/null +++ b/src/runtime/mbitmap_allocheaders.go @@ -0,0 +1,1376 @@ +// Copyright 2023 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build goexperiment.allocheaders + +// Garbage collector: type and heap bitmaps. +// +// Stack, data, and bss bitmaps +// +// Stack frames and global variables in the data and bss sections are +// described by bitmaps with 1 bit per pointer-sized word. A "1" bit +// means the word is a live pointer to be visited by the GC (referred to +// as "pointer"). A "0" bit means the word should be ignored by GC +// (referred to as "scalar", though it could be a dead pointer value). +// +// Heap bitmaps +// +// The heap bitmap comprises 1 bit for each pointer-sized word in the heap, +// recording whether a pointer is stored in that word or not. This bitmap +// is stored at the end of a span for small objects and is unrolled at +// runtime from type metadata for all larger objects. Objects without +// pointers have neither a bitmap nor associated type metadata. +// +// Bits in all cases correspond to words in little-endian order. +// +// For small objects, if s is the mspan for the span starting at "start", +// then s.heapBits() returns a slice containing the bitmap for the whole span. +// That is, s.heapBits()[0] holds the goarch.PtrSize*8 bits for the first +// goarch.PtrSize*8 words from "start" through "start+63*ptrSize" in the span. +// On a related note, small objects are always small enough that their bitmap +// fits in goarch.PtrSize*8 bits, so writing out bitmap data takes two bitmap +// writes at most (because object boundaries don't generally lie on +// s.heapBits()[i] boundaries). +// +// For larger objects, if t is the type for the object starting at "start", +// within some span whose mspan is s, then the bitmap at t.GCData is "tiled" +// from "start" through "start+s.elemsize". +// Specifically, the first bit of t.GCData corresponds to the word at "start", +// the second to the word after "start", and so on up to t.PtrBytes. At t.PtrBytes, +// we skip to "start+t.Size_" and begin again from there. This process is +// repeated until we hit "start+s.elemsize". +// This tiling algorithm supports array data, since the type always refers to +// the element type of the array. Single objects are considered the same as +// single-element arrays. +// The tiling algorithm may scan data past the end of the compiler-recognized +// object, but any unused data within the allocation slot (i.e. within s.elemsize) +// is zeroed, so the GC just observes nil pointers. +// Note that this "tiled" bitmap isn't stored anywhere; it is generated on-the-fly. +// +// For objects without their own span, the type metadata is stored in the first +// word before the object at the beginning of the allocation slot. For objects +// with their own span, the type metadata is stored in the mspan. +// +// The bitmap for small unallocated objects in scannable spans is not maintained +// (can be junk). + +package runtime + +import ( + "internal/abi" + "internal/goarch" + "runtime/internal/sys" + "unsafe" +) + +const ( + // A malloc header is functionally a single type pointer, but + // we need to use 8 here to ensure 8-byte alignment of allocations + // on 32-bit platforms. It's wasteful, but a lot of code relies on + // 8-byte alignment for 8-byte atomics. + mallocHeaderSize = 8 + + // The minimum object size that has a malloc header, exclusive. + // + // The size of this value controls overheads from the malloc header. + // The minimum size is bound by writeHeapBitsSmall, which assumes that the + // pointer bitmap for objects of a size smaller than this doesn't cross + // more than one pointer-word boundary. This sets an upper-bound on this + // value at the number of bits in a uintptr, multiplied by the pointer + // size in bytes. + // + // We choose a value here that has a natural cutover point in terms of memory + // overheads. This value just happens to be the maximum possible value this + // can be. + // + // A span with heap bits in it will have 128 bytes of heap bits on 64-bit + // platforms, and 256 bytes of heap bits on 32-bit platforms. The first size + // class where malloc headers match this overhead for 64-bit platforms is + // 512 bytes (8 KiB / 512 bytes * 8 bytes-per-header = 128 bytes of overhead). + // On 32-bit platforms, this same point is the 256 byte size class + // (8 KiB / 256 bytes * 8 bytes-per-header = 256 bytes of overhead). + // + // Guaranteed to be exactly at a size class boundary. The reason this value is + // an exclusive minimum is subtle. Suppose we're allocating a 504-byte object + // and its rounded up to 512 bytes for the size class. If minSizeForMallocHeader + // is 512 and an inclusive minimum, then a comparison against minSizeForMallocHeader + // by the two values would produce different results. In other words, the comparison + // would not be invariant to size-class rounding. Eschewing this property means a + // more complex check or possibly storing additional state to determine whether a + // span has malloc headers. + minSizeForMallocHeader = goarch.PtrSize * ptrBits +) + +// heapBitsInSpan returns true if the size of an object implies its ptr/scalar +// data is stored at the end of the span, and is accessible via span.heapBits. +// +// Note: this works for both rounded-up sizes (span.elemsize) and unrounded +// type sizes because minSizeForMallocHeader is guaranteed to be at a size +// class boundary. +// +//go:nosplit +func heapBitsInSpan(userSize uintptr) bool { + // N.B. minSizeForMallocHeader is an exclusive minimum so that this function is + // invariant under size-class rounding on its input. + return userSize <= minSizeForMallocHeader +} + +// heapArenaPtrScalar contains the per-heapArena pointer/scalar metadata for the GC. +type heapArenaPtrScalar struct { + // N.B. This is no longer necessary with allocation headers. +} + +// typePointers is an iterator over the pointers in a heap object. +// +// Iteration through this type implements the tiling algorithm described at the +// top of this file. +type typePointers struct { + // elem is the address of the current array element of type typ being iterated over. + // Objects that are not arrays are treated as single-element arrays, in which case + // this value does not change. + elem uintptr + + // addr is the address the iterator is currently working from and describes + // the address of the first word referenced by mask. + addr uintptr + + // mask is a bitmask where each bit corresponds to pointer-words after addr. + // Bit 0 is the pointer-word at addr, Bit 1 is the next word, and so on. + // If a bit is 1, then there is a pointer at that word. + // nextFast and next mask out bits in this mask as their pointers are processed. + mask uintptr + + // typ is a pointer to the type information for the heap object's type. + // This may be nil if the object is in a span where heapBitsInSpan(span.elemsize) is true. + typ *_type +} + +// typePointersOf returns an iterator over all heap pointers in the range [addr, addr+size). +// +// addr and addr+size must be in the range [span.base(), span.limit). +// +// Note: addr+size must be passed as the limit argument to the iterator's next method on +// each iteration. This slightly awkward API is to allow typePointers to be destructured +// by the compiler. +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nosplit +func (span *mspan) typePointersOf(addr, size uintptr) typePointers { + base := span.objBase(addr) + tp := span.typePointersOfUnchecked(base) + if base == addr && size == span.elemsize { + return tp + } + return tp.fastForward(addr-tp.addr, addr+size) +} + +// typePointersOfUnchecked is like typePointersOf, but assumes addr is the base +// of an allocation slot in a span (the start of the object if no header, the +// header otherwise). It returns an iterator that generates all pointers +// in the range [addr, addr+span.elemsize). +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nosplit +func (span *mspan) typePointersOfUnchecked(addr uintptr) typePointers { + const doubleCheck = false + if doubleCheck && span.objBase(addr) != addr { + print("runtime: addr=", addr, " base=", span.objBase(addr), "\n") + throw("typePointersOfUnchecked consisting of non-base-address for object") + } + + spc := span.spanclass + if spc.noscan() { + return typePointers{} + } + if heapBitsInSpan(span.elemsize) { + // Handle header-less objects. + return typePointers{elem: addr, addr: addr, mask: span.heapBitsSmallForAddr(addr)} + } + + // All of these objects have a header. + var typ *_type + if spc.sizeclass() != 0 { + // Pull the allocation header from the first word of the object. + typ = *(**_type)(unsafe.Pointer(addr)) + addr += mallocHeaderSize + } else { + typ = span.largeType + } + gcdata := typ.GCData + return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ} +} + +// typePointersOfType is like typePointersOf, but assumes addr points to one or more +// contiguous instances of the provided type. The provided type must not be nil and +// it must not have its type metadata encoded as a gcprog. +// +// It returns an iterator that tiles typ.GCData starting from addr. It's the caller's +// responsibility to limit iteration. +// +// nosplit because its callers are nosplit and require all their callees to be nosplit. +// +//go:nosplit +func (span *mspan) typePointersOfType(typ *abi.Type, addr uintptr) typePointers { + const doubleCheck = false + if doubleCheck && (typ == nil || typ.Kind_&kindGCProg != 0) { + throw("bad type passed to typePointersOfType") + } + if span.spanclass.noscan() { + return typePointers{} + } + // Since we have the type, pretend we have a header. + gcdata := typ.GCData + return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ} +} + +// nextFast is the fast path of next. nextFast is written to be inlineable and, +// as the name implies, fast. +// +// Callers that are performance-critical should iterate using the following +// pattern: +// +// for { +// var addr uintptr +// if tp, addr = tp.nextFast(); addr == 0 { +// if tp, addr = tp.next(limit); addr == 0 { +// break +// } +// } +// // Use addr. +// ... +// } +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nosplit +func (tp typePointers) nextFast() (typePointers, uintptr) { + // TESTQ/JEQ + if tp.mask == 0 { + return tp, 0 + } + // BSFQ + var i int + if goarch.PtrSize == 8 { + i = sys.TrailingZeros64(uint64(tp.mask)) + } else { + i = sys.TrailingZeros32(uint32(tp.mask)) + } + // BTCQ + tp.mask ^= uintptr(1) << (i & (ptrBits - 1)) + // LEAQ (XX)(XX*8) + return tp, tp.addr + uintptr(i)*goarch.PtrSize +} + +// next advances the pointers iterator, returning the updated iterator and +// the address of the next pointer. +// +// limit must be the same each time it is passed to next. +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nosplit +func (tp typePointers) next(limit uintptr) (typePointers, uintptr) { + for { + if tp.mask != 0 { + return tp.nextFast() + } + + // Stop if we don't actually have type information. + if tp.typ == nil { + return typePointers{}, 0 + } + + // Advance to the next element if necessary. + if tp.addr+goarch.PtrSize*ptrBits >= tp.elem+tp.typ.PtrBytes { + tp.elem += tp.typ.Size_ + tp.addr = tp.elem + } else { + tp.addr += ptrBits * goarch.PtrSize + } + + // Check if we've exceeded the limit with the last update. + if tp.addr >= limit { + return typePointers{}, 0 + } + + // Grab more bits and try again. + tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8)) + if tp.addr+goarch.PtrSize*ptrBits > limit { + bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize + tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) + } + } +} + +// fastForward moves the iterator forward by n bytes. n must be a multiple +// of goarch.PtrSize. limit must be the same limit passed to next for this +// iterator. +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nosplit +func (tp typePointers) fastForward(n, limit uintptr) typePointers { + // Basic bounds check. + target := tp.addr + n + if target >= limit { + return typePointers{} + } + if tp.typ == nil { + // Handle small objects. + // Clear any bits before the target address. + tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1 + // Clear any bits past the limit. + if tp.addr+goarch.PtrSize*ptrBits > limit { + bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize + tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) + } + return tp + } + + // Move up elem and addr. + // Offsets within an element are always at a ptrBits*goarch.PtrSize boundary. + if n >= tp.typ.Size_ { + // elem needs to be moved to the element containing + // tp.addr + n. + oldelem := tp.elem + tp.elem += (tp.addr - tp.elem + n) / tp.typ.Size_ * tp.typ.Size_ + tp.addr = tp.elem + alignDown(n-(tp.elem-oldelem), ptrBits*goarch.PtrSize) + } else { + tp.addr += alignDown(n, ptrBits*goarch.PtrSize) + } + + if tp.addr-tp.elem >= tp.typ.PtrBytes { + // We're starting in the non-pointer area of an array. + // Move up to the next element. + tp.elem += tp.typ.Size_ + tp.addr = tp.elem + tp.mask = readUintptr(tp.typ.GCData) + + // We may have exceeded the limit after this. Bail just like next does. + if tp.addr >= limit { + return typePointers{} + } + } else { + // Grab the mask, but then clear any bits before the target address and any + // bits over the limit. + tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8)) + tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1 + } + if tp.addr+goarch.PtrSize*ptrBits > limit { + bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize + tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) + } + return tp +} + +// objBase returns the base pointer for the object containing addr in span. +// +// Assumes that addr points into a valid part of span (span.base() <= addr < span.limit). +// +//go:nosplit +func (span *mspan) objBase(addr uintptr) uintptr { + return span.base() + span.objIndex(addr)*span.elemsize +} + +// bulkBarrierPreWrite executes a write barrier +// for every pointer slot in the memory range [src, src+size), +// using pointer/scalar information from [dst, dst+size). +// This executes the write barriers necessary before a memmove. +// src, dst, and size must be pointer-aligned. +// The range [dst, dst+size) must lie within a single object. +// It does not perform the actual writes. +// +// As a special case, src == 0 indicates that this is being used for a +// memclr. bulkBarrierPreWrite will pass 0 for the src of each write +// barrier. +// +// Callers should call bulkBarrierPreWrite immediately before +// calling memmove(dst, src, size). This function is marked nosplit +// to avoid being preempted; the GC must not stop the goroutine +// between the memmove and the execution of the barriers. +// The caller is also responsible for cgo pointer checks if this +// may be writing Go pointers into non-Go memory. +// +// Pointer data is not maintained for allocations containing +// no pointers at all; any caller of bulkBarrierPreWrite must first +// make sure the underlying allocation contains pointers, usually +// by checking typ.PtrBytes. +// +// The typ argument is the type of the space at src and dst (and the +// element type if src and dst refer to arrays) and it is optional. +// If typ is nil, the barrier will still behave as expected and typ +// is used purely as an optimization. However, it must be used with +// care. +// +// If typ is not nil, then src and dst must point to one or more values +// of type typ. The caller must ensure that the ranges [src, src+size) +// and [dst, dst+size) refer to one or more whole values of type src and +// dst (leaving off the pointerless tail of the space is OK). If this +// precondition is not followed, this function will fail to scan the +// right pointers. +// +// When in doubt, pass nil for typ. That is safe and will always work. +// +// Callers must perform cgo checks if goexperiment.CgoCheck2. +// +//go:nosplit +func bulkBarrierPreWrite(dst, src, size uintptr, typ *abi.Type) { + if (dst|src|size)&(goarch.PtrSize-1) != 0 { + throw("bulkBarrierPreWrite: unaligned arguments") + } + if !writeBarrier.enabled { + return + } + s := spanOf(dst) + if s == nil { + // If dst is a global, use the data or BSS bitmaps to + // execute write barriers. + for _, datap := range activeModules() { + if datap.data <= dst && dst < datap.edata { + bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) + return + } + } + for _, datap := range activeModules() { + if datap.bss <= dst && dst < datap.ebss { + bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) + return + } + } + return + } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { + // dst was heap memory at some point, but isn't now. + // It can't be a global. It must be either our stack, + // or in the case of direct channel sends, it could be + // another stack. Either way, no need for barriers. + // This will also catch if dst is in a freed span, + // though that should never have. + return + } + buf := &getg().m.p.ptr().wbBuf + + // Double-check that the bitmaps generated in the two possible paths match. + const doubleCheck = false + if doubleCheck { + doubleCheckTypePointersOfType(s, typ, dst, size) + } + + var tp typePointers + if typ != nil && typ.Kind_&kindGCProg == 0 { + tp = s.typePointersOfType(typ, dst) + } else { + tp = s.typePointersOf(dst, size) + } + if src == 0 { + for { + var addr uintptr + if tp, addr = tp.next(dst + size); addr == 0 { + break + } + dstx := (*uintptr)(unsafe.Pointer(addr)) + p := buf.get1() + p[0] = *dstx + } + } else { + for { + var addr uintptr + if tp, addr = tp.next(dst + size); addr == 0 { + break + } + dstx := (*uintptr)(unsafe.Pointer(addr)) + srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst))) + p := buf.get2() + p[0] = *dstx + p[1] = *srcx + } + } +} + +// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but +// does not execute write barriers for [dst, dst+size). +// +// In addition to the requirements of bulkBarrierPreWrite +// callers need to ensure [dst, dst+size) is zeroed. +// +// This is used for special cases where e.g. dst was just +// created and zeroed with malloc. +// +// The type of the space can be provided purely as an optimization. +// See bulkBarrierPreWrite's comment for more details -- use this +// optimization with great care. +// +//go:nosplit +func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr, typ *abi.Type) { + if (dst|src|size)&(goarch.PtrSize-1) != 0 { + throw("bulkBarrierPreWrite: unaligned arguments") + } + if !writeBarrier.enabled { + return + } + buf := &getg().m.p.ptr().wbBuf + s := spanOf(dst) + + // Double-check that the bitmaps generated in the two possible paths match. + const doubleCheck = false + if doubleCheck { + doubleCheckTypePointersOfType(s, typ, dst, size) + } + + var tp typePointers + if typ != nil && typ.Kind_&kindGCProg == 0 { + tp = s.typePointersOfType(typ, dst) + } else { + tp = s.typePointersOf(dst, size) + } + for { + var addr uintptr + if tp, addr = tp.next(dst + size); addr == 0 { + break + } + srcx := (*uintptr)(unsafe.Pointer(addr - dst + src)) + p := buf.get1() + p[0] = *srcx + } +} + +// initHeapBits initializes the heap bitmap for a span. +// +// TODO(mknyszek): This should set the heap bits for single pointer +// allocations eagerly to avoid calling heapSetType at allocation time, +// just to write one bit. +func (s *mspan) initHeapBits(forceClear bool) { + if (!s.spanclass.noscan() && heapBitsInSpan(s.elemsize)) || s.isUserArenaChunk { + b := s.heapBits() + for i := range b { + b[i] = 0 + } + } +} + +// bswapIfBigEndian swaps the byte order of the uintptr on goarch.BigEndian platforms, +// and leaves it alone elsewhere. +func bswapIfBigEndian(x uintptr) uintptr { + if goarch.BigEndian { + if goarch.PtrSize == 8 { + return uintptr(sys.Bswap64(uint64(x))) + } + return uintptr(sys.Bswap32(uint32(x))) + } + return x +} + +type writeUserArenaHeapBits struct { + offset uintptr // offset in span that the low bit of mask represents the pointer state of. + mask uintptr // some pointer bits starting at the address addr. + valid uintptr // number of bits in buf that are valid (including low) + low uintptr // number of low-order bits to not overwrite +} + +func (s *mspan) writeUserArenaHeapBits(addr uintptr) (h writeUserArenaHeapBits) { + offset := addr - s.base() + + // We start writing bits maybe in the middle of a heap bitmap word. + // Remember how many bits into the word we started, so we can be sure + // not to overwrite the previous bits. + h.low = offset / goarch.PtrSize % ptrBits + + // round down to heap word that starts the bitmap word. + h.offset = offset - h.low*goarch.PtrSize + + // We don't have any bits yet. + h.mask = 0 + h.valid = h.low + + return +} + +// write appends the pointerness of the next valid pointer slots +// using the low valid bits of bits. 1=pointer, 0=scalar. +func (h writeUserArenaHeapBits) write(s *mspan, bits, valid uintptr) writeUserArenaHeapBits { + if h.valid+valid <= ptrBits { + // Fast path - just accumulate the bits. + h.mask |= bits << h.valid + h.valid += valid + return h + } + // Too many bits to fit in this word. Write the current word + // out and move on to the next word. + + data := h.mask | bits<<h.valid // mask for this word + h.mask = bits >> (ptrBits - h.valid) // leftover for next word + h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them + + // Flush mask to the memory bitmap. + idx := h.offset / (ptrBits * goarch.PtrSize) + m := uintptr(1)<<h.low - 1 + bitmap := s.heapBits() + bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx])&m | data) + // Note: no synchronization required for this write because + // the allocator has exclusive access to the page, and the bitmap + // entries are all for a single page. Also, visibility of these + // writes is guaranteed by the publication barrier in mallocgc. + + // Move to next word of bitmap. + h.offset += ptrBits * goarch.PtrSize + h.low = 0 + return h +} + +// Add padding of size bytes. +func (h writeUserArenaHeapBits) pad(s *mspan, size uintptr) writeUserArenaHeapBits { + if size == 0 { + return h + } + words := size / goarch.PtrSize + for words > ptrBits { + h = h.write(s, 0, ptrBits) + words -= ptrBits + } + return h.write(s, 0, words) +} + +// Flush the bits that have been written, and add zeros as needed +// to cover the full object [addr, addr+size). +func (h writeUserArenaHeapBits) flush(s *mspan, addr, size uintptr) { + offset := addr - s.base() + + // zeros counts the number of bits needed to represent the object minus the + // number of bits we've already written. This is the number of 0 bits + // that need to be added. + zeros := (offset+size-h.offset)/goarch.PtrSize - h.valid + + // Add zero bits up to the bitmap word boundary + if zeros > 0 { + z := ptrBits - h.valid + if z > zeros { + z = zeros + } + h.valid += z + zeros -= z + } + + // Find word in bitmap that we're going to write. + bitmap := s.heapBits() + idx := h.offset / (ptrBits * goarch.PtrSize) + + // Write remaining bits. + if h.valid != h.low { + m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low" + m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid" + bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx])&m | h.mask) + } + if zeros == 0 { + return + } + + // Advance to next bitmap word. + h.offset += ptrBits * goarch.PtrSize + + // Continue on writing zeros for the rest of the object. + // For standard use of the ptr bits this is not required, as + // the bits are read from the beginning of the object. Some uses, + // like noscan spans, oblets, bulk write barriers, and cgocheck, might + // start mid-object, so these writes are still required. + for { + // Write zero bits. + idx := h.offset / (ptrBits * goarch.PtrSize) + if zeros < ptrBits { + bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx]) &^ (uintptr(1)<<zeros - 1)) + break + } else if zeros == ptrBits { + bitmap[idx] = 0 + break + } else { + bitmap[idx] = 0 + zeros -= ptrBits + } + h.offset += ptrBits * goarch.PtrSize + } +} + +// heapBits returns the heap ptr/scalar bits stored at the end of the span for +// small object spans and heap arena spans. +// +// Note that the uintptr of each element means something different for small object +// spans and for heap arena spans. Small object spans are easy: they're never interpreted +// as anything but uintptr, so they're immune to differences in endianness. However, the +// heapBits for user arena spans is exposed through a dummy type descriptor, so the byte +// ordering needs to match the same byte ordering the compiler would emit. The compiler always +// emits the bitmap data in little endian byte ordering, so on big endian platforms these +// uintptrs will have their byte orders swapped from what they normally would be. +// +// heapBitsInSpan(span.elemsize) or span.isUserArenaChunk must be true. +// +//go:nosplit +func (span *mspan) heapBits() []uintptr { + const doubleCheck = false + + if doubleCheck && !span.isUserArenaChunk { + if span.spanclass.noscan() { + throw("heapBits called for noscan") + } + if span.elemsize > minSizeForMallocHeader { + throw("heapBits called for span class that should have a malloc header") + } + } + // Find the bitmap at the end of the span. + // + // Nearly every span with heap bits is exactly one page in size. Arenas are the only exception. + if span.npages == 1 { + // This will be inlined and constant-folded down. + return heapBitsSlice(span.base(), pageSize) + } + return heapBitsSlice(span.base(), span.npages*pageSize) +} + +// Helper for constructing a slice for the span's heap bits. +// +//go:nosplit +func heapBitsSlice(spanBase, spanSize uintptr) []uintptr { + bitmapSize := spanSize / goarch.PtrSize / 8 + elems := int(bitmapSize / goarch.PtrSize) + var sl notInHeapSlice + sl = notInHeapSlice{(*notInHeap)(unsafe.Pointer(spanBase + spanSize - bitmapSize)), elems, elems} + return *(*[]uintptr)(unsafe.Pointer(&sl)) +} + +// heapBitsSmallForAddr loads the heap bits for the object stored at addr from span.heapBits. +// +// addr must be the base pointer of an object in the span. heapBitsInSpan(span.elemsize) +// must be true. +// +//go:nosplit +func (span *mspan) heapBitsSmallForAddr(addr uintptr) uintptr { + spanSize := span.npages * pageSize + bitmapSize := spanSize / goarch.PtrSize / 8 + hbits := (*byte)(unsafe.Pointer(span.base() + spanSize - bitmapSize)) + + // These objects are always small enough that their bitmaps + // fit in a single word, so just load the word or two we need. + // + // Mirrors mspan.writeHeapBitsSmall. + // + // We should be using heapBits(), but unfortunately it introduces + // both bounds checks panics and throw which causes us to exceed + // the nosplit limit in quite a few cases. + i := (addr - span.base()) / goarch.PtrSize / ptrBits + j := (addr - span.base()) / goarch.PtrSize % ptrBits + bits := span.elemsize / goarch.PtrSize + word0 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+0)))) + word1 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+1)))) + + var read uintptr + if j+bits > ptrBits { + // Two reads. + bits0 := ptrBits - j + bits1 := bits - bits0 + read = *word0 >> j + read |= (*word1 & ((1 << bits1) - 1)) << bits0 + } else { + // One read. + read = (*word0 >> j) & ((1 << bits) - 1) + } + return read +} + +// writeHeapBitsSmall writes the heap bits for small objects whose ptr/scalar data is +// stored as a bitmap at the end of the span. +// +// Assumes dataSize is <= ptrBits*goarch.PtrSize. x must be a pointer into the span. +// heapBitsInSpan(dataSize) must be true. dataSize must be >= typ.Size_. +// +//go:nosplit +func (span *mspan) writeHeapBitsSmall(x, dataSize uintptr, typ *_type) (scanSize uintptr) { + // The objects here are always really small, so a single load is sufficient. + src0 := readUintptr(typ.GCData) + + // Create repetitions of the bitmap if we have a small array. + bits := span.elemsize / goarch.PtrSize + scanSize = typ.PtrBytes + src := src0 + switch typ.Size_ { + case goarch.PtrSize: + src = (1 << (dataSize / goarch.PtrSize)) - 1 + default: + for i := typ.Size_; i < dataSize; i += typ.Size_ { + src |= src0 << (i / goarch.PtrSize) + scanSize += typ.Size_ + } + } + + // Since we're never writing more than one uintptr's worth of bits, we're either going + // to do one or two writes. + dst := span.heapBits() + o := (x - span.base()) / goarch.PtrSize + i := o / ptrBits + j := o % ptrBits + if j+bits > ptrBits { + // Two writes. + bits0 := ptrBits - j + bits1 := bits - bits0 + dst[i+0] = dst[i+0]&(^uintptr(0)>>bits0) | (src << j) + dst[i+1] = dst[i+1]&^((1<<bits1)-1) | (src >> bits0) + } else { + // One write. + dst[i] = (dst[i] &^ (((1 << bits) - 1) << j)) | (src << j) + } + + const doubleCheck = false + if doubleCheck { + srcRead := span.heapBitsSmallForAddr(x) + if srcRead != src { + print("runtime: x=", hex(x), " i=", i, " j=", j, " bits=", bits, "\n") + print("runtime: dataSize=", dataSize, " typ.Size_=", typ.Size_, " typ.PtrBytes=", typ.PtrBytes, "\n") + print("runtime: src0=", hex(src0), " src=", hex(src), " srcRead=", hex(srcRead), "\n") + throw("bad pointer bits written for small object") + } + } + return +} + +// For !goexperiment.AllocHeaders. +func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { +} + +// heapSetType records that the new allocation [x, x+size) +// holds in [x, x+dataSize) one or more values of type typ. +// (The number of values is given by dataSize / typ.Size.) +// If dataSize < size, the fragment [x+dataSize, x+size) is +// recorded as non-pointer data. +// It is known that the type has pointers somewhere; +// malloc does not call heapSetType when there are no pointers. +// +// There can be read-write races between heapSetType and things +// that read the heap metadata like scanobject. However, since +// heapSetType is only used for objects that have not yet been +// made reachable, readers will ignore bits being modified by this +// function. This does mean this function cannot transiently modify +// shared memory that belongs to neighboring objects. Also, on weakly-ordered +// machines, callers must execute a store/store (publication) barrier +// between calling this function and making the object reachable. +func heapSetType(x, dataSize uintptr, typ *_type, header **_type, span *mspan) (scanSize uintptr) { + const doubleCheck = false + + gctyp := typ + if header == nil { + if doubleCheck && (!heapBitsInSpan(dataSize) || !heapBitsInSpan(span.elemsize)) { + throw("tried to write heap bits, but no heap bits in span") + } + // Handle the case where we have no malloc header. + scanSize = span.writeHeapBitsSmall(x, dataSize, typ) + } else { + if typ.Kind_&kindGCProg != 0 { + // Allocate space to unroll the gcprog. This space will consist of + // a dummy _type value and the unrolled gcprog. The dummy _type will + // refer to the bitmap, and the mspan will refer to the dummy _type. + if span.spanclass.sizeclass() != 0 { + throw("GCProg for type that isn't large") + } + spaceNeeded := alignUp(unsafe.Sizeof(_type{}), goarch.PtrSize) + heapBitsOff := spaceNeeded + spaceNeeded += alignUp(typ.PtrBytes/goarch.PtrSize/8, goarch.PtrSize) + npages := alignUp(spaceNeeded, pageSize) / pageSize + var progSpan *mspan + systemstack(func() { + progSpan = mheap_.allocManual(npages, spanAllocPtrScalarBits) + memclrNoHeapPointers(unsafe.Pointer(progSpan.base()), progSpan.npages*pageSize) + }) + // Write a dummy _type in the new space. + // + // We only need to write size, PtrBytes, and GCData, since that's all + // the GC cares about. + gctyp = (*_type)(unsafe.Pointer(progSpan.base())) + gctyp.Size_ = typ.Size_ + gctyp.PtrBytes = typ.PtrBytes + gctyp.GCData = (*byte)(add(unsafe.Pointer(progSpan.base()), heapBitsOff)) + gctyp.TFlag = abi.TFlagUnrolledBitmap + + // Expand the GC program into space reserved at the end of the new span. + runGCProg(addb(typ.GCData, 4), gctyp.GCData) + } + + // Write out the header. + *header = gctyp + scanSize = span.elemsize + } + + if doubleCheck { + doubleCheckHeapPointers(x, dataSize, gctyp, header, span) + + // To exercise the less common path more often, generate + // a random interior pointer and make sure iterating from + // that point works correctly too. + maxIterBytes := span.elemsize + if header == nil { + maxIterBytes = dataSize + } + off := alignUp(uintptr(cheaprand())%dataSize, goarch.PtrSize) + size := dataSize - off + if size == 0 { + off -= goarch.PtrSize + size += goarch.PtrSize + } + interior := x + off + size -= alignDown(uintptr(cheaprand())%size, goarch.PtrSize) + if size == 0 { + size = goarch.PtrSize + } + // Round up the type to the size of the type. + size = (size + gctyp.Size_ - 1) / gctyp.Size_ * gctyp.Size_ + if interior+size > x+maxIterBytes { + size = x + maxIterBytes - interior + } + doubleCheckHeapPointersInterior(x, interior, size, dataSize, gctyp, header, span) + } + return +} + +func doubleCheckHeapPointers(x, dataSize uintptr, typ *_type, header **_type, span *mspan) { + // Check that scanning the full object works. + tp := span.typePointersOfUnchecked(span.objBase(x)) + maxIterBytes := span.elemsize + if header == nil { + maxIterBytes = dataSize + } + bad := false + for i := uintptr(0); i < maxIterBytes; i += goarch.PtrSize { + // Compute the pointer bit we want at offset i. + want := false + if i < span.elemsize { + off := i % typ.Size_ + if off < typ.PtrBytes { + j := off / goarch.PtrSize + want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 + } + } + if want { + var addr uintptr + tp, addr = tp.next(x + span.elemsize) + if addr == 0 { + println("runtime: found bad iterator") + } + if addr != x+i { + print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n") + bad = true + } + } + } + if !bad { + var addr uintptr + tp, addr = tp.next(x + span.elemsize) + if addr == 0 { + return + } + println("runtime: extra pointer:", hex(addr)) + } + print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, " hasGCProg=", typ.Kind_&kindGCProg != 0, "\n") + print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, "\n") + print("runtime: typ=", unsafe.Pointer(typ), " typ.PtrBytes=", typ.PtrBytes, "\n") + print("runtime: limit=", hex(x+span.elemsize), "\n") + tp = span.typePointersOfUnchecked(x) + dumpTypePointers(tp) + for { + var addr uintptr + if tp, addr = tp.next(x + span.elemsize); addr == 0 { + println("runtime: would've stopped here") + dumpTypePointers(tp) + break + } + print("runtime: addr=", hex(addr), "\n") + dumpTypePointers(tp) + } + throw("heapSetType: pointer entry not correct") +} + +func doubleCheckHeapPointersInterior(x, interior, size, dataSize uintptr, typ *_type, header **_type, span *mspan) { + bad := false + if interior < x { + print("runtime: interior=", hex(interior), " x=", hex(x), "\n") + throw("found bad interior pointer") + } + off := interior - x + tp := span.typePointersOf(interior, size) + for i := off; i < off+size; i += goarch.PtrSize { + // Compute the pointer bit we want at offset i. + want := false + if i < span.elemsize { + off := i % typ.Size_ + if off < typ.PtrBytes { + j := off / goarch.PtrSize + want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 + } + } + if want { + var addr uintptr + tp, addr = tp.next(interior + size) + if addr == 0 { + println("runtime: found bad iterator") + bad = true + } + if addr != x+i { + print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n") + bad = true + } + } + } + if !bad { + var addr uintptr + tp, addr = tp.next(interior + size) + if addr == 0 { + return + } + println("runtime: extra pointer:", hex(addr)) + } + print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, "\n") + print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, " interior=", hex(interior), " size=", size, "\n") + print("runtime: limit=", hex(interior+size), "\n") + tp = span.typePointersOf(interior, size) + dumpTypePointers(tp) + for { + var addr uintptr + if tp, addr = tp.next(interior + size); addr == 0 { + println("runtime: would've stopped here") + dumpTypePointers(tp) + break + } + print("runtime: addr=", hex(addr), "\n") + dumpTypePointers(tp) + } + + print("runtime: want: ") + for i := off; i < off+size; i += goarch.PtrSize { + // Compute the pointer bit we want at offset i. + want := false + if i < dataSize { + off := i % typ.Size_ + if off < typ.PtrBytes { + j := off / goarch.PtrSize + want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 + } + } + if want { + print("1") + } else { + print("0") + } + } + println() + + throw("heapSetType: pointer entry not correct") +} + +//go:nosplit +func doubleCheckTypePointersOfType(s *mspan, typ *_type, addr, size uintptr) { + if typ == nil || typ.Kind_&kindGCProg != 0 { + return + } + if typ.Kind_&kindMask == kindInterface { + // Interfaces are unfortunately inconsistently handled + // when it comes to the type pointer, so it's easy to + // produce a lot of false positives here. + return + } + tp0 := s.typePointersOfType(typ, addr) + tp1 := s.typePointersOf(addr, size) + failed := false + for { + var addr0, addr1 uintptr + tp0, addr0 = tp0.next(addr + size) + tp1, addr1 = tp1.next(addr + size) + if addr0 != addr1 { + failed = true + break + } + if addr0 == 0 { + break + } + } + if failed { + tp0 := s.typePointersOfType(typ, addr) + tp1 := s.typePointersOf(addr, size) + print("runtime: addr=", hex(addr), " size=", size, "\n") + print("runtime: type=", toRType(typ).string(), "\n") + dumpTypePointers(tp0) + dumpTypePointers(tp1) + for { + var addr0, addr1 uintptr + tp0, addr0 = tp0.next(addr + size) + tp1, addr1 = tp1.next(addr + size) + print("runtime: ", hex(addr0), " ", hex(addr1), "\n") + if addr0 == 0 && addr1 == 0 { + break + } + } + throw("mismatch between typePointersOfType and typePointersOf") + } +} + +func dumpTypePointers(tp typePointers) { + print("runtime: tp.elem=", hex(tp.elem), " tp.typ=", unsafe.Pointer(tp.typ), "\n") + print("runtime: tp.addr=", hex(tp.addr), " tp.mask=") + for i := uintptr(0); i < ptrBits; i++ { + if tp.mask&(uintptr(1)<<i) != 0 { + print("1") + } else { + print("0") + } + } + println() +} + +// Testing. + +// Returns GC type info for the pointer stored in ep for testing. +// If ep points to the stack, only static live information will be returned +// (i.e. not for objects which are only dynamically live stack objects). +func getgcmask(ep any) (mask []byte) { + e := *efaceOf(&ep) + p := e.data + t := e._type + + var et *_type + if t.Kind_&kindMask != kindPtr { + throw("bad argument to getgcmask: expected type to be a pointer to the value type whose mask is being queried") + } + et = (*ptrtype)(unsafe.Pointer(t)).Elem + + // data or bss + for _, datap := range activeModules() { + // data + if datap.data <= uintptr(p) && uintptr(p) < datap.edata { + bitmap := datap.gcdatamask.bytedata + n := et.Size_ + mask = make([]byte, n/goarch.PtrSize) + for i := uintptr(0); i < n; i += goarch.PtrSize { + off := (uintptr(p) + i - datap.data) / goarch.PtrSize + mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 + } + return + } + + // bss + if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { + bitmap := datap.gcbssmask.bytedata + n := et.Size_ + mask = make([]byte, n/goarch.PtrSize) + for i := uintptr(0); i < n; i += goarch.PtrSize { + off := (uintptr(p) + i - datap.bss) / goarch.PtrSize + mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 + } + return + } + } + + // heap + if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { + if s.spanclass.noscan() { + return nil + } + limit := base + s.elemsize + + // Move the base up to the iterator's start, because + // we want to hide evidence of a malloc header from the + // caller. + tp := s.typePointersOfUnchecked(base) + base = tp.addr + + // Unroll the full bitmap the GC would actually observe. + maskFromHeap := make([]byte, (limit-base)/goarch.PtrSize) + for { + var addr uintptr + if tp, addr = tp.next(limit); addr == 0 { + break + } + maskFromHeap[(addr-base)/goarch.PtrSize] = 1 + } + + // Double-check that every part of the ptr/scalar we're not + // showing the caller is zeroed. This keeps us honest that + // that information is actually irrelevant. + for i := limit; i < s.elemsize; i++ { + if *(*byte)(unsafe.Pointer(i)) != 0 { + throw("found non-zeroed tail of allocation") + } + } + + // Callers (and a check we're about to run) expects this mask + // to end at the last pointer. + for len(maskFromHeap) > 0 && maskFromHeap[len(maskFromHeap)-1] == 0 { + maskFromHeap = maskFromHeap[:len(maskFromHeap)-1] + } + + if et.Kind_&kindGCProg == 0 { + // Unroll again, but this time from the type information. + maskFromType := make([]byte, (limit-base)/goarch.PtrSize) + tp = s.typePointersOfType(et, base) + for { + var addr uintptr + if tp, addr = tp.next(limit); addr == 0 { + break + } + maskFromType[(addr-base)/goarch.PtrSize] = 1 + } + + // Validate that the prefix of maskFromType is equal to + // maskFromHeap. maskFromType may contain more pointers than + // maskFromHeap produces because maskFromHeap may be able to + // get exact type information for certain classes of objects. + // With maskFromType, we're always just tiling the type bitmap + // through to the elemsize. + // + // It's OK if maskFromType has pointers in elemsize that extend + // past the actual populated space; we checked above that all + // that space is zeroed, so just the GC will just see nil pointers. + differs := false + for i := range maskFromHeap { + if maskFromHeap[i] != maskFromType[i] { + differs = true + break + } + } + + if differs { + print("runtime: heap mask=") + for _, b := range maskFromHeap { + print(b) + } + println() + print("runtime: type mask=") + for _, b := range maskFromType { + print(b) + } + println() + print("runtime: type=", toRType(et).string(), "\n") + throw("found two different masks from two different methods") + } + } + + // Select the heap mask to return. We may not have a type mask. + mask = maskFromHeap + + // Make sure we keep ep alive. We may have stopped referencing + // ep's data pointer sometime before this point and it's possible + // for that memory to get freed. + KeepAlive(ep) + return + } + + // stack + if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi { + found := false + var u unwinder + for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() { + if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp { + found = true + break + } + } + if found { + locals, _, _ := u.frame.getStackMap(false) + if locals.n == 0 { + return + } + size := uintptr(locals.n) * goarch.PtrSize + n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_ + mask = make([]byte, n/goarch.PtrSize) + for i := uintptr(0); i < n; i += goarch.PtrSize { + off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize + mask[i/goarch.PtrSize] = locals.ptrbit(off) + } + } + return + } + + // otherwise, not something the GC knows about. + // possibly read-only data, like malloc(0). + // must not have pointers + return +} + +// userArenaHeapBitsSetType is the equivalent of heapSetType but for +// non-slice-backing-store Go values allocated in a user arena chunk. It +// sets up the type metadata for the value with type typ allocated at address ptr. +// base is the base address of the arena chunk. +func userArenaHeapBitsSetType(typ *_type, ptr unsafe.Pointer, s *mspan) { + base := s.base() + h := s.writeUserArenaHeapBits(uintptr(ptr)) + + p := typ.GCData // start of 1-bit pointer mask (or GC program) + var gcProgBits uintptr + if typ.Kind_&kindGCProg != 0 { + // Expand gc program, using the object itself for storage. + gcProgBits = runGCProg(addb(p, 4), (*byte)(ptr)) + p = (*byte)(ptr) + } + nb := typ.PtrBytes / goarch.PtrSize + + for i := uintptr(0); i < nb; i += ptrBits { + k := nb - i + if k > ptrBits { + k = ptrBits + } + // N.B. On big endian platforms we byte swap the data that we + // read from GCData, which is always stored in little-endian order + // by the compiler. writeUserArenaHeapBits handles data in + // a platform-ordered way for efficiency, but stores back the + // data in little endian order, since we expose the bitmap through + // a dummy type. + h = h.write(s, readUintptr(addb(p, i/8)), k) + } + // Note: we call pad here to ensure we emit explicit 0 bits + // for the pointerless tail of the object. This ensures that + // there's only a single noMorePtrs mark for the next object + // to clear. We don't need to do this to clear stale noMorePtrs + // markers from previous uses because arena chunk pointer bitmaps + // are always fully cleared when reused. + h = h.pad(s, typ.Size_-typ.PtrBytes) + h.flush(s, uintptr(ptr), typ.Size_) + + if typ.Kind_&kindGCProg != 0 { + // Zero out temporary ptrmask buffer inside object. + memclrNoHeapPointers(ptr, (gcProgBits+7)/8) + } + + // Update the PtrBytes value in the type information. After this + // point, the GC will observe the new bitmap. + s.largeType.PtrBytes = uintptr(ptr) - base + typ.PtrBytes + + // Double-check that the bitmap was written out correctly. + const doubleCheck = false + if doubleCheck { + doubleCheckHeapPointersInterior(uintptr(ptr), uintptr(ptr), typ.Size_, typ.Size_, typ, &s.largeType, s) + } +} + +// For !goexperiment.AllocHeaders, to pass TestIntendedInlining. +func writeHeapBitsForAddr() { + panic("not implemented") +} + +// For !goexperiment.AllocHeaders. +type heapBits struct { +} + +// For !goexperiment.AllocHeaders. +// +//go:nosplit +func heapBitsForAddr(addr, size uintptr) heapBits { + panic("not implemented") +} + +// For !goexperiment.AllocHeaders. +// +//go:nosplit +func (h heapBits) next() (heapBits, uintptr) { + panic("not implemented") +} + +// For !goexperiment.AllocHeaders. +// +//go:nosplit +func (h heapBits) nextFast() (heapBits, uintptr) { + panic("not implemented") +} |