summaryrefslogtreecommitdiffstats
path: root/src/runtime/mbitmap_allocheaders.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
commitf6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch)
tree7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/runtime/mbitmap_allocheaders.go
parentInitial commit. (diff)
downloadgolang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz
golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/mbitmap_allocheaders.go')
-rw-r--r--src/runtime/mbitmap_allocheaders.go1376
1 files changed, 1376 insertions, 0 deletions
diff --git a/src/runtime/mbitmap_allocheaders.go b/src/runtime/mbitmap_allocheaders.go
new file mode 100644
index 0000000..1ec0553
--- /dev/null
+++ b/src/runtime/mbitmap_allocheaders.go
@@ -0,0 +1,1376 @@
+// Copyright 2023 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build goexperiment.allocheaders
+
+// Garbage collector: type and heap bitmaps.
+//
+// Stack, data, and bss bitmaps
+//
+// Stack frames and global variables in the data and bss sections are
+// described by bitmaps with 1 bit per pointer-sized word. A "1" bit
+// means the word is a live pointer to be visited by the GC (referred to
+// as "pointer"). A "0" bit means the word should be ignored by GC
+// (referred to as "scalar", though it could be a dead pointer value).
+//
+// Heap bitmaps
+//
+// The heap bitmap comprises 1 bit for each pointer-sized word in the heap,
+// recording whether a pointer is stored in that word or not. This bitmap
+// is stored at the end of a span for small objects and is unrolled at
+// runtime from type metadata for all larger objects. Objects without
+// pointers have neither a bitmap nor associated type metadata.
+//
+// Bits in all cases correspond to words in little-endian order.
+//
+// For small objects, if s is the mspan for the span starting at "start",
+// then s.heapBits() returns a slice containing the bitmap for the whole span.
+// That is, s.heapBits()[0] holds the goarch.PtrSize*8 bits for the first
+// goarch.PtrSize*8 words from "start" through "start+63*ptrSize" in the span.
+// On a related note, small objects are always small enough that their bitmap
+// fits in goarch.PtrSize*8 bits, so writing out bitmap data takes two bitmap
+// writes at most (because object boundaries don't generally lie on
+// s.heapBits()[i] boundaries).
+//
+// For larger objects, if t is the type for the object starting at "start",
+// within some span whose mspan is s, then the bitmap at t.GCData is "tiled"
+// from "start" through "start+s.elemsize".
+// Specifically, the first bit of t.GCData corresponds to the word at "start",
+// the second to the word after "start", and so on up to t.PtrBytes. At t.PtrBytes,
+// we skip to "start+t.Size_" and begin again from there. This process is
+// repeated until we hit "start+s.elemsize".
+// This tiling algorithm supports array data, since the type always refers to
+// the element type of the array. Single objects are considered the same as
+// single-element arrays.
+// The tiling algorithm may scan data past the end of the compiler-recognized
+// object, but any unused data within the allocation slot (i.e. within s.elemsize)
+// is zeroed, so the GC just observes nil pointers.
+// Note that this "tiled" bitmap isn't stored anywhere; it is generated on-the-fly.
+//
+// For objects without their own span, the type metadata is stored in the first
+// word before the object at the beginning of the allocation slot. For objects
+// with their own span, the type metadata is stored in the mspan.
+//
+// The bitmap for small unallocated objects in scannable spans is not maintained
+// (can be junk).
+
+package runtime
+
+import (
+ "internal/abi"
+ "internal/goarch"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+const (
+ // A malloc header is functionally a single type pointer, but
+ // we need to use 8 here to ensure 8-byte alignment of allocations
+ // on 32-bit platforms. It's wasteful, but a lot of code relies on
+ // 8-byte alignment for 8-byte atomics.
+ mallocHeaderSize = 8
+
+ // The minimum object size that has a malloc header, exclusive.
+ //
+ // The size of this value controls overheads from the malloc header.
+ // The minimum size is bound by writeHeapBitsSmall, which assumes that the
+ // pointer bitmap for objects of a size smaller than this doesn't cross
+ // more than one pointer-word boundary. This sets an upper-bound on this
+ // value at the number of bits in a uintptr, multiplied by the pointer
+ // size in bytes.
+ //
+ // We choose a value here that has a natural cutover point in terms of memory
+ // overheads. This value just happens to be the maximum possible value this
+ // can be.
+ //
+ // A span with heap bits in it will have 128 bytes of heap bits on 64-bit
+ // platforms, and 256 bytes of heap bits on 32-bit platforms. The first size
+ // class where malloc headers match this overhead for 64-bit platforms is
+ // 512 bytes (8 KiB / 512 bytes * 8 bytes-per-header = 128 bytes of overhead).
+ // On 32-bit platforms, this same point is the 256 byte size class
+ // (8 KiB / 256 bytes * 8 bytes-per-header = 256 bytes of overhead).
+ //
+ // Guaranteed to be exactly at a size class boundary. The reason this value is
+ // an exclusive minimum is subtle. Suppose we're allocating a 504-byte object
+ // and its rounded up to 512 bytes for the size class. If minSizeForMallocHeader
+ // is 512 and an inclusive minimum, then a comparison against minSizeForMallocHeader
+ // by the two values would produce different results. In other words, the comparison
+ // would not be invariant to size-class rounding. Eschewing this property means a
+ // more complex check or possibly storing additional state to determine whether a
+ // span has malloc headers.
+ minSizeForMallocHeader = goarch.PtrSize * ptrBits
+)
+
+// heapBitsInSpan returns true if the size of an object implies its ptr/scalar
+// data is stored at the end of the span, and is accessible via span.heapBits.
+//
+// Note: this works for both rounded-up sizes (span.elemsize) and unrounded
+// type sizes because minSizeForMallocHeader is guaranteed to be at a size
+// class boundary.
+//
+//go:nosplit
+func heapBitsInSpan(userSize uintptr) bool {
+ // N.B. minSizeForMallocHeader is an exclusive minimum so that this function is
+ // invariant under size-class rounding on its input.
+ return userSize <= minSizeForMallocHeader
+}
+
+// heapArenaPtrScalar contains the per-heapArena pointer/scalar metadata for the GC.
+type heapArenaPtrScalar struct {
+ // N.B. This is no longer necessary with allocation headers.
+}
+
+// typePointers is an iterator over the pointers in a heap object.
+//
+// Iteration through this type implements the tiling algorithm described at the
+// top of this file.
+type typePointers struct {
+ // elem is the address of the current array element of type typ being iterated over.
+ // Objects that are not arrays are treated as single-element arrays, in which case
+ // this value does not change.
+ elem uintptr
+
+ // addr is the address the iterator is currently working from and describes
+ // the address of the first word referenced by mask.
+ addr uintptr
+
+ // mask is a bitmask where each bit corresponds to pointer-words after addr.
+ // Bit 0 is the pointer-word at addr, Bit 1 is the next word, and so on.
+ // If a bit is 1, then there is a pointer at that word.
+ // nextFast and next mask out bits in this mask as their pointers are processed.
+ mask uintptr
+
+ // typ is a pointer to the type information for the heap object's type.
+ // This may be nil if the object is in a span where heapBitsInSpan(span.elemsize) is true.
+ typ *_type
+}
+
+// typePointersOf returns an iterator over all heap pointers in the range [addr, addr+size).
+//
+// addr and addr+size must be in the range [span.base(), span.limit).
+//
+// Note: addr+size must be passed as the limit argument to the iterator's next method on
+// each iteration. This slightly awkward API is to allow typePointers to be destructured
+// by the compiler.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func (span *mspan) typePointersOf(addr, size uintptr) typePointers {
+ base := span.objBase(addr)
+ tp := span.typePointersOfUnchecked(base)
+ if base == addr && size == span.elemsize {
+ return tp
+ }
+ return tp.fastForward(addr-tp.addr, addr+size)
+}
+
+// typePointersOfUnchecked is like typePointersOf, but assumes addr is the base
+// of an allocation slot in a span (the start of the object if no header, the
+// header otherwise). It returns an iterator that generates all pointers
+// in the range [addr, addr+span.elemsize).
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func (span *mspan) typePointersOfUnchecked(addr uintptr) typePointers {
+ const doubleCheck = false
+ if doubleCheck && span.objBase(addr) != addr {
+ print("runtime: addr=", addr, " base=", span.objBase(addr), "\n")
+ throw("typePointersOfUnchecked consisting of non-base-address for object")
+ }
+
+ spc := span.spanclass
+ if spc.noscan() {
+ return typePointers{}
+ }
+ if heapBitsInSpan(span.elemsize) {
+ // Handle header-less objects.
+ return typePointers{elem: addr, addr: addr, mask: span.heapBitsSmallForAddr(addr)}
+ }
+
+ // All of these objects have a header.
+ var typ *_type
+ if spc.sizeclass() != 0 {
+ // Pull the allocation header from the first word of the object.
+ typ = *(**_type)(unsafe.Pointer(addr))
+ addr += mallocHeaderSize
+ } else {
+ typ = span.largeType
+ }
+ gcdata := typ.GCData
+ return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ}
+}
+
+// typePointersOfType is like typePointersOf, but assumes addr points to one or more
+// contiguous instances of the provided type. The provided type must not be nil and
+// it must not have its type metadata encoded as a gcprog.
+//
+// It returns an iterator that tiles typ.GCData starting from addr. It's the caller's
+// responsibility to limit iteration.
+//
+// nosplit because its callers are nosplit and require all their callees to be nosplit.
+//
+//go:nosplit
+func (span *mspan) typePointersOfType(typ *abi.Type, addr uintptr) typePointers {
+ const doubleCheck = false
+ if doubleCheck && (typ == nil || typ.Kind_&kindGCProg != 0) {
+ throw("bad type passed to typePointersOfType")
+ }
+ if span.spanclass.noscan() {
+ return typePointers{}
+ }
+ // Since we have the type, pretend we have a header.
+ gcdata := typ.GCData
+ return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ}
+}
+
+// nextFast is the fast path of next. nextFast is written to be inlineable and,
+// as the name implies, fast.
+//
+// Callers that are performance-critical should iterate using the following
+// pattern:
+//
+// for {
+// var addr uintptr
+// if tp, addr = tp.nextFast(); addr == 0 {
+// if tp, addr = tp.next(limit); addr == 0 {
+// break
+// }
+// }
+// // Use addr.
+// ...
+// }
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func (tp typePointers) nextFast() (typePointers, uintptr) {
+ // TESTQ/JEQ
+ if tp.mask == 0 {
+ return tp, 0
+ }
+ // BSFQ
+ var i int
+ if goarch.PtrSize == 8 {
+ i = sys.TrailingZeros64(uint64(tp.mask))
+ } else {
+ i = sys.TrailingZeros32(uint32(tp.mask))
+ }
+ // BTCQ
+ tp.mask ^= uintptr(1) << (i & (ptrBits - 1))
+ // LEAQ (XX)(XX*8)
+ return tp, tp.addr + uintptr(i)*goarch.PtrSize
+}
+
+// next advances the pointers iterator, returning the updated iterator and
+// the address of the next pointer.
+//
+// limit must be the same each time it is passed to next.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func (tp typePointers) next(limit uintptr) (typePointers, uintptr) {
+ for {
+ if tp.mask != 0 {
+ return tp.nextFast()
+ }
+
+ // Stop if we don't actually have type information.
+ if tp.typ == nil {
+ return typePointers{}, 0
+ }
+
+ // Advance to the next element if necessary.
+ if tp.addr+goarch.PtrSize*ptrBits >= tp.elem+tp.typ.PtrBytes {
+ tp.elem += tp.typ.Size_
+ tp.addr = tp.elem
+ } else {
+ tp.addr += ptrBits * goarch.PtrSize
+ }
+
+ // Check if we've exceeded the limit with the last update.
+ if tp.addr >= limit {
+ return typePointers{}, 0
+ }
+
+ // Grab more bits and try again.
+ tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8))
+ if tp.addr+goarch.PtrSize*ptrBits > limit {
+ bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize
+ tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits)
+ }
+ }
+}
+
+// fastForward moves the iterator forward by n bytes. n must be a multiple
+// of goarch.PtrSize. limit must be the same limit passed to next for this
+// iterator.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func (tp typePointers) fastForward(n, limit uintptr) typePointers {
+ // Basic bounds check.
+ target := tp.addr + n
+ if target >= limit {
+ return typePointers{}
+ }
+ if tp.typ == nil {
+ // Handle small objects.
+ // Clear any bits before the target address.
+ tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1
+ // Clear any bits past the limit.
+ if tp.addr+goarch.PtrSize*ptrBits > limit {
+ bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize
+ tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits)
+ }
+ return tp
+ }
+
+ // Move up elem and addr.
+ // Offsets within an element are always at a ptrBits*goarch.PtrSize boundary.
+ if n >= tp.typ.Size_ {
+ // elem needs to be moved to the element containing
+ // tp.addr + n.
+ oldelem := tp.elem
+ tp.elem += (tp.addr - tp.elem + n) / tp.typ.Size_ * tp.typ.Size_
+ tp.addr = tp.elem + alignDown(n-(tp.elem-oldelem), ptrBits*goarch.PtrSize)
+ } else {
+ tp.addr += alignDown(n, ptrBits*goarch.PtrSize)
+ }
+
+ if tp.addr-tp.elem >= tp.typ.PtrBytes {
+ // We're starting in the non-pointer area of an array.
+ // Move up to the next element.
+ tp.elem += tp.typ.Size_
+ tp.addr = tp.elem
+ tp.mask = readUintptr(tp.typ.GCData)
+
+ // We may have exceeded the limit after this. Bail just like next does.
+ if tp.addr >= limit {
+ return typePointers{}
+ }
+ } else {
+ // Grab the mask, but then clear any bits before the target address and any
+ // bits over the limit.
+ tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8))
+ tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1
+ }
+ if tp.addr+goarch.PtrSize*ptrBits > limit {
+ bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize
+ tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits)
+ }
+ return tp
+}
+
+// objBase returns the base pointer for the object containing addr in span.
+//
+// Assumes that addr points into a valid part of span (span.base() <= addr < span.limit).
+//
+//go:nosplit
+func (span *mspan) objBase(addr uintptr) uintptr {
+ return span.base() + span.objIndex(addr)*span.elemsize
+}
+
+// bulkBarrierPreWrite executes a write barrier
+// for every pointer slot in the memory range [src, src+size),
+// using pointer/scalar information from [dst, dst+size).
+// This executes the write barriers necessary before a memmove.
+// src, dst, and size must be pointer-aligned.
+// The range [dst, dst+size) must lie within a single object.
+// It does not perform the actual writes.
+//
+// As a special case, src == 0 indicates that this is being used for a
+// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
+// barrier.
+//
+// Callers should call bulkBarrierPreWrite immediately before
+// calling memmove(dst, src, size). This function is marked nosplit
+// to avoid being preempted; the GC must not stop the goroutine
+// between the memmove and the execution of the barriers.
+// The caller is also responsible for cgo pointer checks if this
+// may be writing Go pointers into non-Go memory.
+//
+// Pointer data is not maintained for allocations containing
+// no pointers at all; any caller of bulkBarrierPreWrite must first
+// make sure the underlying allocation contains pointers, usually
+// by checking typ.PtrBytes.
+//
+// The typ argument is the type of the space at src and dst (and the
+// element type if src and dst refer to arrays) and it is optional.
+// If typ is nil, the barrier will still behave as expected and typ
+// is used purely as an optimization. However, it must be used with
+// care.
+//
+// If typ is not nil, then src and dst must point to one or more values
+// of type typ. The caller must ensure that the ranges [src, src+size)
+// and [dst, dst+size) refer to one or more whole values of type src and
+// dst (leaving off the pointerless tail of the space is OK). If this
+// precondition is not followed, this function will fail to scan the
+// right pointers.
+//
+// When in doubt, pass nil for typ. That is safe and will always work.
+//
+// Callers must perform cgo checks if goexperiment.CgoCheck2.
+//
+//go:nosplit
+func bulkBarrierPreWrite(dst, src, size uintptr, typ *abi.Type) {
+ if (dst|src|size)&(goarch.PtrSize-1) != 0 {
+ throw("bulkBarrierPreWrite: unaligned arguments")
+ }
+ if !writeBarrier.enabled {
+ return
+ }
+ s := spanOf(dst)
+ if s == nil {
+ // If dst is a global, use the data or BSS bitmaps to
+ // execute write barriers.
+ for _, datap := range activeModules() {
+ if datap.data <= dst && dst < datap.edata {
+ bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
+ return
+ }
+ }
+ for _, datap := range activeModules() {
+ if datap.bss <= dst && dst < datap.ebss {
+ bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
+ return
+ }
+ }
+ return
+ } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst {
+ // dst was heap memory at some point, but isn't now.
+ // It can't be a global. It must be either our stack,
+ // or in the case of direct channel sends, it could be
+ // another stack. Either way, no need for barriers.
+ // This will also catch if dst is in a freed span,
+ // though that should never have.
+ return
+ }
+ buf := &getg().m.p.ptr().wbBuf
+
+ // Double-check that the bitmaps generated in the two possible paths match.
+ const doubleCheck = false
+ if doubleCheck {
+ doubleCheckTypePointersOfType(s, typ, dst, size)
+ }
+
+ var tp typePointers
+ if typ != nil && typ.Kind_&kindGCProg == 0 {
+ tp = s.typePointersOfType(typ, dst)
+ } else {
+ tp = s.typePointersOf(dst, size)
+ }
+ if src == 0 {
+ for {
+ var addr uintptr
+ if tp, addr = tp.next(dst + size); addr == 0 {
+ break
+ }
+ dstx := (*uintptr)(unsafe.Pointer(addr))
+ p := buf.get1()
+ p[0] = *dstx
+ }
+ } else {
+ for {
+ var addr uintptr
+ if tp, addr = tp.next(dst + size); addr == 0 {
+ break
+ }
+ dstx := (*uintptr)(unsafe.Pointer(addr))
+ srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst)))
+ p := buf.get2()
+ p[0] = *dstx
+ p[1] = *srcx
+ }
+ }
+}
+
+// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
+// does not execute write barriers for [dst, dst+size).
+//
+// In addition to the requirements of bulkBarrierPreWrite
+// callers need to ensure [dst, dst+size) is zeroed.
+//
+// This is used for special cases where e.g. dst was just
+// created and zeroed with malloc.
+//
+// The type of the space can be provided purely as an optimization.
+// See bulkBarrierPreWrite's comment for more details -- use this
+// optimization with great care.
+//
+//go:nosplit
+func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr, typ *abi.Type) {
+ if (dst|src|size)&(goarch.PtrSize-1) != 0 {
+ throw("bulkBarrierPreWrite: unaligned arguments")
+ }
+ if !writeBarrier.enabled {
+ return
+ }
+ buf := &getg().m.p.ptr().wbBuf
+ s := spanOf(dst)
+
+ // Double-check that the bitmaps generated in the two possible paths match.
+ const doubleCheck = false
+ if doubleCheck {
+ doubleCheckTypePointersOfType(s, typ, dst, size)
+ }
+
+ var tp typePointers
+ if typ != nil && typ.Kind_&kindGCProg == 0 {
+ tp = s.typePointersOfType(typ, dst)
+ } else {
+ tp = s.typePointersOf(dst, size)
+ }
+ for {
+ var addr uintptr
+ if tp, addr = tp.next(dst + size); addr == 0 {
+ break
+ }
+ srcx := (*uintptr)(unsafe.Pointer(addr - dst + src))
+ p := buf.get1()
+ p[0] = *srcx
+ }
+}
+
+// initHeapBits initializes the heap bitmap for a span.
+//
+// TODO(mknyszek): This should set the heap bits for single pointer
+// allocations eagerly to avoid calling heapSetType at allocation time,
+// just to write one bit.
+func (s *mspan) initHeapBits(forceClear bool) {
+ if (!s.spanclass.noscan() && heapBitsInSpan(s.elemsize)) || s.isUserArenaChunk {
+ b := s.heapBits()
+ for i := range b {
+ b[i] = 0
+ }
+ }
+}
+
+// bswapIfBigEndian swaps the byte order of the uintptr on goarch.BigEndian platforms,
+// and leaves it alone elsewhere.
+func bswapIfBigEndian(x uintptr) uintptr {
+ if goarch.BigEndian {
+ if goarch.PtrSize == 8 {
+ return uintptr(sys.Bswap64(uint64(x)))
+ }
+ return uintptr(sys.Bswap32(uint32(x)))
+ }
+ return x
+}
+
+type writeUserArenaHeapBits struct {
+ offset uintptr // offset in span that the low bit of mask represents the pointer state of.
+ mask uintptr // some pointer bits starting at the address addr.
+ valid uintptr // number of bits in buf that are valid (including low)
+ low uintptr // number of low-order bits to not overwrite
+}
+
+func (s *mspan) writeUserArenaHeapBits(addr uintptr) (h writeUserArenaHeapBits) {
+ offset := addr - s.base()
+
+ // We start writing bits maybe in the middle of a heap bitmap word.
+ // Remember how many bits into the word we started, so we can be sure
+ // not to overwrite the previous bits.
+ h.low = offset / goarch.PtrSize % ptrBits
+
+ // round down to heap word that starts the bitmap word.
+ h.offset = offset - h.low*goarch.PtrSize
+
+ // We don't have any bits yet.
+ h.mask = 0
+ h.valid = h.low
+
+ return
+}
+
+// write appends the pointerness of the next valid pointer slots
+// using the low valid bits of bits. 1=pointer, 0=scalar.
+func (h writeUserArenaHeapBits) write(s *mspan, bits, valid uintptr) writeUserArenaHeapBits {
+ if h.valid+valid <= ptrBits {
+ // Fast path - just accumulate the bits.
+ h.mask |= bits << h.valid
+ h.valid += valid
+ return h
+ }
+ // Too many bits to fit in this word. Write the current word
+ // out and move on to the next word.
+
+ data := h.mask | bits<<h.valid // mask for this word
+ h.mask = bits >> (ptrBits - h.valid) // leftover for next word
+ h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them
+
+ // Flush mask to the memory bitmap.
+ idx := h.offset / (ptrBits * goarch.PtrSize)
+ m := uintptr(1)<<h.low - 1
+ bitmap := s.heapBits()
+ bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx])&m | data)
+ // Note: no synchronization required for this write because
+ // the allocator has exclusive access to the page, and the bitmap
+ // entries are all for a single page. Also, visibility of these
+ // writes is guaranteed by the publication barrier in mallocgc.
+
+ // Move to next word of bitmap.
+ h.offset += ptrBits * goarch.PtrSize
+ h.low = 0
+ return h
+}
+
+// Add padding of size bytes.
+func (h writeUserArenaHeapBits) pad(s *mspan, size uintptr) writeUserArenaHeapBits {
+ if size == 0 {
+ return h
+ }
+ words := size / goarch.PtrSize
+ for words > ptrBits {
+ h = h.write(s, 0, ptrBits)
+ words -= ptrBits
+ }
+ return h.write(s, 0, words)
+}
+
+// Flush the bits that have been written, and add zeros as needed
+// to cover the full object [addr, addr+size).
+func (h writeUserArenaHeapBits) flush(s *mspan, addr, size uintptr) {
+ offset := addr - s.base()
+
+ // zeros counts the number of bits needed to represent the object minus the
+ // number of bits we've already written. This is the number of 0 bits
+ // that need to be added.
+ zeros := (offset+size-h.offset)/goarch.PtrSize - h.valid
+
+ // Add zero bits up to the bitmap word boundary
+ if zeros > 0 {
+ z := ptrBits - h.valid
+ if z > zeros {
+ z = zeros
+ }
+ h.valid += z
+ zeros -= z
+ }
+
+ // Find word in bitmap that we're going to write.
+ bitmap := s.heapBits()
+ idx := h.offset / (ptrBits * goarch.PtrSize)
+
+ // Write remaining bits.
+ if h.valid != h.low {
+ m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low"
+ m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid"
+ bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx])&m | h.mask)
+ }
+ if zeros == 0 {
+ return
+ }
+
+ // Advance to next bitmap word.
+ h.offset += ptrBits * goarch.PtrSize
+
+ // Continue on writing zeros for the rest of the object.
+ // For standard use of the ptr bits this is not required, as
+ // the bits are read from the beginning of the object. Some uses,
+ // like noscan spans, oblets, bulk write barriers, and cgocheck, might
+ // start mid-object, so these writes are still required.
+ for {
+ // Write zero bits.
+ idx := h.offset / (ptrBits * goarch.PtrSize)
+ if zeros < ptrBits {
+ bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx]) &^ (uintptr(1)<<zeros - 1))
+ break
+ } else if zeros == ptrBits {
+ bitmap[idx] = 0
+ break
+ } else {
+ bitmap[idx] = 0
+ zeros -= ptrBits
+ }
+ h.offset += ptrBits * goarch.PtrSize
+ }
+}
+
+// heapBits returns the heap ptr/scalar bits stored at the end of the span for
+// small object spans and heap arena spans.
+//
+// Note that the uintptr of each element means something different for small object
+// spans and for heap arena spans. Small object spans are easy: they're never interpreted
+// as anything but uintptr, so they're immune to differences in endianness. However, the
+// heapBits for user arena spans is exposed through a dummy type descriptor, so the byte
+// ordering needs to match the same byte ordering the compiler would emit. The compiler always
+// emits the bitmap data in little endian byte ordering, so on big endian platforms these
+// uintptrs will have their byte orders swapped from what they normally would be.
+//
+// heapBitsInSpan(span.elemsize) or span.isUserArenaChunk must be true.
+//
+//go:nosplit
+func (span *mspan) heapBits() []uintptr {
+ const doubleCheck = false
+
+ if doubleCheck && !span.isUserArenaChunk {
+ if span.spanclass.noscan() {
+ throw("heapBits called for noscan")
+ }
+ if span.elemsize > minSizeForMallocHeader {
+ throw("heapBits called for span class that should have a malloc header")
+ }
+ }
+ // Find the bitmap at the end of the span.
+ //
+ // Nearly every span with heap bits is exactly one page in size. Arenas are the only exception.
+ if span.npages == 1 {
+ // This will be inlined and constant-folded down.
+ return heapBitsSlice(span.base(), pageSize)
+ }
+ return heapBitsSlice(span.base(), span.npages*pageSize)
+}
+
+// Helper for constructing a slice for the span's heap bits.
+//
+//go:nosplit
+func heapBitsSlice(spanBase, spanSize uintptr) []uintptr {
+ bitmapSize := spanSize / goarch.PtrSize / 8
+ elems := int(bitmapSize / goarch.PtrSize)
+ var sl notInHeapSlice
+ sl = notInHeapSlice{(*notInHeap)(unsafe.Pointer(spanBase + spanSize - bitmapSize)), elems, elems}
+ return *(*[]uintptr)(unsafe.Pointer(&sl))
+}
+
+// heapBitsSmallForAddr loads the heap bits for the object stored at addr from span.heapBits.
+//
+// addr must be the base pointer of an object in the span. heapBitsInSpan(span.elemsize)
+// must be true.
+//
+//go:nosplit
+func (span *mspan) heapBitsSmallForAddr(addr uintptr) uintptr {
+ spanSize := span.npages * pageSize
+ bitmapSize := spanSize / goarch.PtrSize / 8
+ hbits := (*byte)(unsafe.Pointer(span.base() + spanSize - bitmapSize))
+
+ // These objects are always small enough that their bitmaps
+ // fit in a single word, so just load the word or two we need.
+ //
+ // Mirrors mspan.writeHeapBitsSmall.
+ //
+ // We should be using heapBits(), but unfortunately it introduces
+ // both bounds checks panics and throw which causes us to exceed
+ // the nosplit limit in quite a few cases.
+ i := (addr - span.base()) / goarch.PtrSize / ptrBits
+ j := (addr - span.base()) / goarch.PtrSize % ptrBits
+ bits := span.elemsize / goarch.PtrSize
+ word0 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+0))))
+ word1 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+1))))
+
+ var read uintptr
+ if j+bits > ptrBits {
+ // Two reads.
+ bits0 := ptrBits - j
+ bits1 := bits - bits0
+ read = *word0 >> j
+ read |= (*word1 & ((1 << bits1) - 1)) << bits0
+ } else {
+ // One read.
+ read = (*word0 >> j) & ((1 << bits) - 1)
+ }
+ return read
+}
+
+// writeHeapBitsSmall writes the heap bits for small objects whose ptr/scalar data is
+// stored as a bitmap at the end of the span.
+//
+// Assumes dataSize is <= ptrBits*goarch.PtrSize. x must be a pointer into the span.
+// heapBitsInSpan(dataSize) must be true. dataSize must be >= typ.Size_.
+//
+//go:nosplit
+func (span *mspan) writeHeapBitsSmall(x, dataSize uintptr, typ *_type) (scanSize uintptr) {
+ // The objects here are always really small, so a single load is sufficient.
+ src0 := readUintptr(typ.GCData)
+
+ // Create repetitions of the bitmap if we have a small array.
+ bits := span.elemsize / goarch.PtrSize
+ scanSize = typ.PtrBytes
+ src := src0
+ switch typ.Size_ {
+ case goarch.PtrSize:
+ src = (1 << (dataSize / goarch.PtrSize)) - 1
+ default:
+ for i := typ.Size_; i < dataSize; i += typ.Size_ {
+ src |= src0 << (i / goarch.PtrSize)
+ scanSize += typ.Size_
+ }
+ }
+
+ // Since we're never writing more than one uintptr's worth of bits, we're either going
+ // to do one or two writes.
+ dst := span.heapBits()
+ o := (x - span.base()) / goarch.PtrSize
+ i := o / ptrBits
+ j := o % ptrBits
+ if j+bits > ptrBits {
+ // Two writes.
+ bits0 := ptrBits - j
+ bits1 := bits - bits0
+ dst[i+0] = dst[i+0]&(^uintptr(0)>>bits0) | (src << j)
+ dst[i+1] = dst[i+1]&^((1<<bits1)-1) | (src >> bits0)
+ } else {
+ // One write.
+ dst[i] = (dst[i] &^ (((1 << bits) - 1) << j)) | (src << j)
+ }
+
+ const doubleCheck = false
+ if doubleCheck {
+ srcRead := span.heapBitsSmallForAddr(x)
+ if srcRead != src {
+ print("runtime: x=", hex(x), " i=", i, " j=", j, " bits=", bits, "\n")
+ print("runtime: dataSize=", dataSize, " typ.Size_=", typ.Size_, " typ.PtrBytes=", typ.PtrBytes, "\n")
+ print("runtime: src0=", hex(src0), " src=", hex(src), " srcRead=", hex(srcRead), "\n")
+ throw("bad pointer bits written for small object")
+ }
+ }
+ return
+}
+
+// For !goexperiment.AllocHeaders.
+func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
+}
+
+// heapSetType records that the new allocation [x, x+size)
+// holds in [x, x+dataSize) one or more values of type typ.
+// (The number of values is given by dataSize / typ.Size.)
+// If dataSize < size, the fragment [x+dataSize, x+size) is
+// recorded as non-pointer data.
+// It is known that the type has pointers somewhere;
+// malloc does not call heapSetType when there are no pointers.
+//
+// There can be read-write races between heapSetType and things
+// that read the heap metadata like scanobject. However, since
+// heapSetType is only used for objects that have not yet been
+// made reachable, readers will ignore bits being modified by this
+// function. This does mean this function cannot transiently modify
+// shared memory that belongs to neighboring objects. Also, on weakly-ordered
+// machines, callers must execute a store/store (publication) barrier
+// between calling this function and making the object reachable.
+func heapSetType(x, dataSize uintptr, typ *_type, header **_type, span *mspan) (scanSize uintptr) {
+ const doubleCheck = false
+
+ gctyp := typ
+ if header == nil {
+ if doubleCheck && (!heapBitsInSpan(dataSize) || !heapBitsInSpan(span.elemsize)) {
+ throw("tried to write heap bits, but no heap bits in span")
+ }
+ // Handle the case where we have no malloc header.
+ scanSize = span.writeHeapBitsSmall(x, dataSize, typ)
+ } else {
+ if typ.Kind_&kindGCProg != 0 {
+ // Allocate space to unroll the gcprog. This space will consist of
+ // a dummy _type value and the unrolled gcprog. The dummy _type will
+ // refer to the bitmap, and the mspan will refer to the dummy _type.
+ if span.spanclass.sizeclass() != 0 {
+ throw("GCProg for type that isn't large")
+ }
+ spaceNeeded := alignUp(unsafe.Sizeof(_type{}), goarch.PtrSize)
+ heapBitsOff := spaceNeeded
+ spaceNeeded += alignUp(typ.PtrBytes/goarch.PtrSize/8, goarch.PtrSize)
+ npages := alignUp(spaceNeeded, pageSize) / pageSize
+ var progSpan *mspan
+ systemstack(func() {
+ progSpan = mheap_.allocManual(npages, spanAllocPtrScalarBits)
+ memclrNoHeapPointers(unsafe.Pointer(progSpan.base()), progSpan.npages*pageSize)
+ })
+ // Write a dummy _type in the new space.
+ //
+ // We only need to write size, PtrBytes, and GCData, since that's all
+ // the GC cares about.
+ gctyp = (*_type)(unsafe.Pointer(progSpan.base()))
+ gctyp.Size_ = typ.Size_
+ gctyp.PtrBytes = typ.PtrBytes
+ gctyp.GCData = (*byte)(add(unsafe.Pointer(progSpan.base()), heapBitsOff))
+ gctyp.TFlag = abi.TFlagUnrolledBitmap
+
+ // Expand the GC program into space reserved at the end of the new span.
+ runGCProg(addb(typ.GCData, 4), gctyp.GCData)
+ }
+
+ // Write out the header.
+ *header = gctyp
+ scanSize = span.elemsize
+ }
+
+ if doubleCheck {
+ doubleCheckHeapPointers(x, dataSize, gctyp, header, span)
+
+ // To exercise the less common path more often, generate
+ // a random interior pointer and make sure iterating from
+ // that point works correctly too.
+ maxIterBytes := span.elemsize
+ if header == nil {
+ maxIterBytes = dataSize
+ }
+ off := alignUp(uintptr(cheaprand())%dataSize, goarch.PtrSize)
+ size := dataSize - off
+ if size == 0 {
+ off -= goarch.PtrSize
+ size += goarch.PtrSize
+ }
+ interior := x + off
+ size -= alignDown(uintptr(cheaprand())%size, goarch.PtrSize)
+ if size == 0 {
+ size = goarch.PtrSize
+ }
+ // Round up the type to the size of the type.
+ size = (size + gctyp.Size_ - 1) / gctyp.Size_ * gctyp.Size_
+ if interior+size > x+maxIterBytes {
+ size = x + maxIterBytes - interior
+ }
+ doubleCheckHeapPointersInterior(x, interior, size, dataSize, gctyp, header, span)
+ }
+ return
+}
+
+func doubleCheckHeapPointers(x, dataSize uintptr, typ *_type, header **_type, span *mspan) {
+ // Check that scanning the full object works.
+ tp := span.typePointersOfUnchecked(span.objBase(x))
+ maxIterBytes := span.elemsize
+ if header == nil {
+ maxIterBytes = dataSize
+ }
+ bad := false
+ for i := uintptr(0); i < maxIterBytes; i += goarch.PtrSize {
+ // Compute the pointer bit we want at offset i.
+ want := false
+ if i < span.elemsize {
+ off := i % typ.Size_
+ if off < typ.PtrBytes {
+ j := off / goarch.PtrSize
+ want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
+ }
+ }
+ if want {
+ var addr uintptr
+ tp, addr = tp.next(x + span.elemsize)
+ if addr == 0 {
+ println("runtime: found bad iterator")
+ }
+ if addr != x+i {
+ print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n")
+ bad = true
+ }
+ }
+ }
+ if !bad {
+ var addr uintptr
+ tp, addr = tp.next(x + span.elemsize)
+ if addr == 0 {
+ return
+ }
+ println("runtime: extra pointer:", hex(addr))
+ }
+ print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, " hasGCProg=", typ.Kind_&kindGCProg != 0, "\n")
+ print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, "\n")
+ print("runtime: typ=", unsafe.Pointer(typ), " typ.PtrBytes=", typ.PtrBytes, "\n")
+ print("runtime: limit=", hex(x+span.elemsize), "\n")
+ tp = span.typePointersOfUnchecked(x)
+ dumpTypePointers(tp)
+ for {
+ var addr uintptr
+ if tp, addr = tp.next(x + span.elemsize); addr == 0 {
+ println("runtime: would've stopped here")
+ dumpTypePointers(tp)
+ break
+ }
+ print("runtime: addr=", hex(addr), "\n")
+ dumpTypePointers(tp)
+ }
+ throw("heapSetType: pointer entry not correct")
+}
+
+func doubleCheckHeapPointersInterior(x, interior, size, dataSize uintptr, typ *_type, header **_type, span *mspan) {
+ bad := false
+ if interior < x {
+ print("runtime: interior=", hex(interior), " x=", hex(x), "\n")
+ throw("found bad interior pointer")
+ }
+ off := interior - x
+ tp := span.typePointersOf(interior, size)
+ for i := off; i < off+size; i += goarch.PtrSize {
+ // Compute the pointer bit we want at offset i.
+ want := false
+ if i < span.elemsize {
+ off := i % typ.Size_
+ if off < typ.PtrBytes {
+ j := off / goarch.PtrSize
+ want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
+ }
+ }
+ if want {
+ var addr uintptr
+ tp, addr = tp.next(interior + size)
+ if addr == 0 {
+ println("runtime: found bad iterator")
+ bad = true
+ }
+ if addr != x+i {
+ print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n")
+ bad = true
+ }
+ }
+ }
+ if !bad {
+ var addr uintptr
+ tp, addr = tp.next(interior + size)
+ if addr == 0 {
+ return
+ }
+ println("runtime: extra pointer:", hex(addr))
+ }
+ print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, "\n")
+ print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, " interior=", hex(interior), " size=", size, "\n")
+ print("runtime: limit=", hex(interior+size), "\n")
+ tp = span.typePointersOf(interior, size)
+ dumpTypePointers(tp)
+ for {
+ var addr uintptr
+ if tp, addr = tp.next(interior + size); addr == 0 {
+ println("runtime: would've stopped here")
+ dumpTypePointers(tp)
+ break
+ }
+ print("runtime: addr=", hex(addr), "\n")
+ dumpTypePointers(tp)
+ }
+
+ print("runtime: want: ")
+ for i := off; i < off+size; i += goarch.PtrSize {
+ // Compute the pointer bit we want at offset i.
+ want := false
+ if i < dataSize {
+ off := i % typ.Size_
+ if off < typ.PtrBytes {
+ j := off / goarch.PtrSize
+ want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
+ }
+ }
+ if want {
+ print("1")
+ } else {
+ print("0")
+ }
+ }
+ println()
+
+ throw("heapSetType: pointer entry not correct")
+}
+
+//go:nosplit
+func doubleCheckTypePointersOfType(s *mspan, typ *_type, addr, size uintptr) {
+ if typ == nil || typ.Kind_&kindGCProg != 0 {
+ return
+ }
+ if typ.Kind_&kindMask == kindInterface {
+ // Interfaces are unfortunately inconsistently handled
+ // when it comes to the type pointer, so it's easy to
+ // produce a lot of false positives here.
+ return
+ }
+ tp0 := s.typePointersOfType(typ, addr)
+ tp1 := s.typePointersOf(addr, size)
+ failed := false
+ for {
+ var addr0, addr1 uintptr
+ tp0, addr0 = tp0.next(addr + size)
+ tp1, addr1 = tp1.next(addr + size)
+ if addr0 != addr1 {
+ failed = true
+ break
+ }
+ if addr0 == 0 {
+ break
+ }
+ }
+ if failed {
+ tp0 := s.typePointersOfType(typ, addr)
+ tp1 := s.typePointersOf(addr, size)
+ print("runtime: addr=", hex(addr), " size=", size, "\n")
+ print("runtime: type=", toRType(typ).string(), "\n")
+ dumpTypePointers(tp0)
+ dumpTypePointers(tp1)
+ for {
+ var addr0, addr1 uintptr
+ tp0, addr0 = tp0.next(addr + size)
+ tp1, addr1 = tp1.next(addr + size)
+ print("runtime: ", hex(addr0), " ", hex(addr1), "\n")
+ if addr0 == 0 && addr1 == 0 {
+ break
+ }
+ }
+ throw("mismatch between typePointersOfType and typePointersOf")
+ }
+}
+
+func dumpTypePointers(tp typePointers) {
+ print("runtime: tp.elem=", hex(tp.elem), " tp.typ=", unsafe.Pointer(tp.typ), "\n")
+ print("runtime: tp.addr=", hex(tp.addr), " tp.mask=")
+ for i := uintptr(0); i < ptrBits; i++ {
+ if tp.mask&(uintptr(1)<<i) != 0 {
+ print("1")
+ } else {
+ print("0")
+ }
+ }
+ println()
+}
+
+// Testing.
+
+// Returns GC type info for the pointer stored in ep for testing.
+// If ep points to the stack, only static live information will be returned
+// (i.e. not for objects which are only dynamically live stack objects).
+func getgcmask(ep any) (mask []byte) {
+ e := *efaceOf(&ep)
+ p := e.data
+ t := e._type
+
+ var et *_type
+ if t.Kind_&kindMask != kindPtr {
+ throw("bad argument to getgcmask: expected type to be a pointer to the value type whose mask is being queried")
+ }
+ et = (*ptrtype)(unsafe.Pointer(t)).Elem
+
+ // data or bss
+ for _, datap := range activeModules() {
+ // data
+ if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
+ bitmap := datap.gcdatamask.bytedata
+ n := et.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - datap.data) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
+ }
+ return
+ }
+
+ // bss
+ if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
+ bitmap := datap.gcbssmask.bytedata
+ n := et.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - datap.bss) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
+ }
+ return
+ }
+ }
+
+ // heap
+ if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 {
+ if s.spanclass.noscan() {
+ return nil
+ }
+ limit := base + s.elemsize
+
+ // Move the base up to the iterator's start, because
+ // we want to hide evidence of a malloc header from the
+ // caller.
+ tp := s.typePointersOfUnchecked(base)
+ base = tp.addr
+
+ // Unroll the full bitmap the GC would actually observe.
+ maskFromHeap := make([]byte, (limit-base)/goarch.PtrSize)
+ for {
+ var addr uintptr
+ if tp, addr = tp.next(limit); addr == 0 {
+ break
+ }
+ maskFromHeap[(addr-base)/goarch.PtrSize] = 1
+ }
+
+ // Double-check that every part of the ptr/scalar we're not
+ // showing the caller is zeroed. This keeps us honest that
+ // that information is actually irrelevant.
+ for i := limit; i < s.elemsize; i++ {
+ if *(*byte)(unsafe.Pointer(i)) != 0 {
+ throw("found non-zeroed tail of allocation")
+ }
+ }
+
+ // Callers (and a check we're about to run) expects this mask
+ // to end at the last pointer.
+ for len(maskFromHeap) > 0 && maskFromHeap[len(maskFromHeap)-1] == 0 {
+ maskFromHeap = maskFromHeap[:len(maskFromHeap)-1]
+ }
+
+ if et.Kind_&kindGCProg == 0 {
+ // Unroll again, but this time from the type information.
+ maskFromType := make([]byte, (limit-base)/goarch.PtrSize)
+ tp = s.typePointersOfType(et, base)
+ for {
+ var addr uintptr
+ if tp, addr = tp.next(limit); addr == 0 {
+ break
+ }
+ maskFromType[(addr-base)/goarch.PtrSize] = 1
+ }
+
+ // Validate that the prefix of maskFromType is equal to
+ // maskFromHeap. maskFromType may contain more pointers than
+ // maskFromHeap produces because maskFromHeap may be able to
+ // get exact type information for certain classes of objects.
+ // With maskFromType, we're always just tiling the type bitmap
+ // through to the elemsize.
+ //
+ // It's OK if maskFromType has pointers in elemsize that extend
+ // past the actual populated space; we checked above that all
+ // that space is zeroed, so just the GC will just see nil pointers.
+ differs := false
+ for i := range maskFromHeap {
+ if maskFromHeap[i] != maskFromType[i] {
+ differs = true
+ break
+ }
+ }
+
+ if differs {
+ print("runtime: heap mask=")
+ for _, b := range maskFromHeap {
+ print(b)
+ }
+ println()
+ print("runtime: type mask=")
+ for _, b := range maskFromType {
+ print(b)
+ }
+ println()
+ print("runtime: type=", toRType(et).string(), "\n")
+ throw("found two different masks from two different methods")
+ }
+ }
+
+ // Select the heap mask to return. We may not have a type mask.
+ mask = maskFromHeap
+
+ // Make sure we keep ep alive. We may have stopped referencing
+ // ep's data pointer sometime before this point and it's possible
+ // for that memory to get freed.
+ KeepAlive(ep)
+ return
+ }
+
+ // stack
+ if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi {
+ found := false
+ var u unwinder
+ for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() {
+ if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp {
+ found = true
+ break
+ }
+ }
+ if found {
+ locals, _, _ := u.frame.getStackMap(false)
+ if locals.n == 0 {
+ return
+ }
+ size := uintptr(locals.n) * goarch.PtrSize
+ n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = locals.ptrbit(off)
+ }
+ }
+ return
+ }
+
+ // otherwise, not something the GC knows about.
+ // possibly read-only data, like malloc(0).
+ // must not have pointers
+ return
+}
+
+// userArenaHeapBitsSetType is the equivalent of heapSetType but for
+// non-slice-backing-store Go values allocated in a user arena chunk. It
+// sets up the type metadata for the value with type typ allocated at address ptr.
+// base is the base address of the arena chunk.
+func userArenaHeapBitsSetType(typ *_type, ptr unsafe.Pointer, s *mspan) {
+ base := s.base()
+ h := s.writeUserArenaHeapBits(uintptr(ptr))
+
+ p := typ.GCData // start of 1-bit pointer mask (or GC program)
+ var gcProgBits uintptr
+ if typ.Kind_&kindGCProg != 0 {
+ // Expand gc program, using the object itself for storage.
+ gcProgBits = runGCProg(addb(p, 4), (*byte)(ptr))
+ p = (*byte)(ptr)
+ }
+ nb := typ.PtrBytes / goarch.PtrSize
+
+ for i := uintptr(0); i < nb; i += ptrBits {
+ k := nb - i
+ if k > ptrBits {
+ k = ptrBits
+ }
+ // N.B. On big endian platforms we byte swap the data that we
+ // read from GCData, which is always stored in little-endian order
+ // by the compiler. writeUserArenaHeapBits handles data in
+ // a platform-ordered way for efficiency, but stores back the
+ // data in little endian order, since we expose the bitmap through
+ // a dummy type.
+ h = h.write(s, readUintptr(addb(p, i/8)), k)
+ }
+ // Note: we call pad here to ensure we emit explicit 0 bits
+ // for the pointerless tail of the object. This ensures that
+ // there's only a single noMorePtrs mark for the next object
+ // to clear. We don't need to do this to clear stale noMorePtrs
+ // markers from previous uses because arena chunk pointer bitmaps
+ // are always fully cleared when reused.
+ h = h.pad(s, typ.Size_-typ.PtrBytes)
+ h.flush(s, uintptr(ptr), typ.Size_)
+
+ if typ.Kind_&kindGCProg != 0 {
+ // Zero out temporary ptrmask buffer inside object.
+ memclrNoHeapPointers(ptr, (gcProgBits+7)/8)
+ }
+
+ // Update the PtrBytes value in the type information. After this
+ // point, the GC will observe the new bitmap.
+ s.largeType.PtrBytes = uintptr(ptr) - base + typ.PtrBytes
+
+ // Double-check that the bitmap was written out correctly.
+ const doubleCheck = false
+ if doubleCheck {
+ doubleCheckHeapPointersInterior(uintptr(ptr), uintptr(ptr), typ.Size_, typ.Size_, typ, &s.largeType, s)
+ }
+}
+
+// For !goexperiment.AllocHeaders, to pass TestIntendedInlining.
+func writeHeapBitsForAddr() {
+ panic("not implemented")
+}
+
+// For !goexperiment.AllocHeaders.
+type heapBits struct {
+}
+
+// For !goexperiment.AllocHeaders.
+//
+//go:nosplit
+func heapBitsForAddr(addr, size uintptr) heapBits {
+ panic("not implemented")
+}
+
+// For !goexperiment.AllocHeaders.
+//
+//go:nosplit
+func (h heapBits) next() (heapBits, uintptr) {
+ panic("not implemented")
+}
+
+// For !goexperiment.AllocHeaders.
+//
+//go:nosplit
+func (h heapBits) nextFast() (heapBits, uintptr) {
+ panic("not implemented")
+}