summaryrefslogtreecommitdiffstats
path: root/src/runtime/mbitmap_noallocheaders.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
commitf6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch)
tree7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/runtime/mbitmap_noallocheaders.go
parentInitial commit. (diff)
downloadgolang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz
golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/mbitmap_noallocheaders.go')
-rw-r--r--src/runtime/mbitmap_noallocheaders.go938
1 files changed, 938 insertions, 0 deletions
diff --git a/src/runtime/mbitmap_noallocheaders.go b/src/runtime/mbitmap_noallocheaders.go
new file mode 100644
index 0000000..383993a
--- /dev/null
+++ b/src/runtime/mbitmap_noallocheaders.go
@@ -0,0 +1,938 @@
+// Copyright 2023 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !goexperiment.allocheaders
+
+// Garbage collector: type and heap bitmaps.
+//
+// Stack, data, and bss bitmaps
+//
+// Stack frames and global variables in the data and bss sections are
+// described by bitmaps with 1 bit per pointer-sized word. A "1" bit
+// means the word is a live pointer to be visited by the GC (referred to
+// as "pointer"). A "0" bit means the word should be ignored by GC
+// (referred to as "scalar", though it could be a dead pointer value).
+//
+// Heap bitmap
+//
+// The heap bitmap comprises 1 bit for each pointer-sized word in the heap,
+// recording whether a pointer is stored in that word or not. This bitmap
+// is stored in the heapArena metadata backing each heap arena.
+// That is, if ha is the heapArena for the arena starting at "start",
+// then ha.bitmap[0] holds the 64 bits for the 64 words "start"
+// through start+63*ptrSize, ha.bitmap[1] holds the entries for
+// start+64*ptrSize through start+127*ptrSize, and so on.
+// Bits correspond to words in little-endian order. ha.bitmap[0]&1 represents
+// the word at "start", ha.bitmap[0]>>1&1 represents the word at start+8, etc.
+// (For 32-bit platforms, s/64/32/.)
+//
+// We also keep a noMorePtrs bitmap which allows us to stop scanning
+// the heap bitmap early in certain situations. If ha.noMorePtrs[i]>>j&1
+// is 1, then the object containing the last word described by ha.bitmap[8*i+j]
+// has no more pointers beyond those described by ha.bitmap[8*i+j].
+// If ha.noMorePtrs[i]>>j&1 is set, the entries in ha.bitmap[8*i+j+1] and
+// beyond must all be zero until the start of the next object.
+//
+// The bitmap for noscan spans is set to all zero at span allocation time.
+//
+// The bitmap for unallocated objects in scannable spans is not maintained
+// (can be junk).
+
+package runtime
+
+import (
+ "internal/abi"
+ "internal/goarch"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+const (
+ // For compatibility with the allocheaders GOEXPERIMENT.
+ mallocHeaderSize = 0
+ minSizeForMallocHeader = ^uintptr(0)
+)
+
+// For compatibility with the allocheaders GOEXPERIMENT.
+//
+//go:nosplit
+func heapBitsInSpan(_ uintptr) bool {
+ return false
+}
+
+// heapArenaPtrScalar contains the per-heapArena pointer/scalar metadata for the GC.
+type heapArenaPtrScalar struct {
+ // bitmap stores the pointer/scalar bitmap for the words in
+ // this arena. See mbitmap.go for a description.
+ // This array uses 1 bit per word of heap, or 1.6% of the heap size (for 64-bit).
+ bitmap [heapArenaBitmapWords]uintptr
+
+ // If the ith bit of noMorePtrs is true, then there are no more
+ // pointers for the object containing the word described by the
+ // high bit of bitmap[i].
+ // In that case, bitmap[i+1], ... must be zero until the start
+ // of the next object.
+ // We never operate on these entries using bit-parallel techniques,
+ // so it is ok if they are small. Also, they can't be bigger than
+ // uint16 because at that size a single noMorePtrs entry
+ // represents 8K of memory, the minimum size of a span. Any larger
+ // and we'd have to worry about concurrent updates.
+ // This array uses 1 bit per word of bitmap, or .024% of the heap size (for 64-bit).
+ noMorePtrs [heapArenaBitmapWords / 8]uint8
+}
+
+// heapBits provides access to the bitmap bits for a single heap word.
+// The methods on heapBits take value receivers so that the compiler
+// can more easily inline calls to those methods and registerize the
+// struct fields independently.
+type heapBits struct {
+ // heapBits will report on pointers in the range [addr,addr+size).
+ // The low bit of mask contains the pointerness of the word at addr
+ // (assuming valid>0).
+ addr, size uintptr
+
+ // The next few pointer bits representing words starting at addr.
+ // Those bits already returned by next() are zeroed.
+ mask uintptr
+ // Number of bits in mask that are valid. mask is always less than 1<<valid.
+ valid uintptr
+}
+
+// heapBitsForAddr returns the heapBits for the address addr.
+// The caller must ensure [addr,addr+size) is in an allocated span.
+// In particular, be careful not to point past the end of an object.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func heapBitsForAddr(addr, size uintptr) heapBits {
+ // Find arena
+ ai := arenaIndex(addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+
+ // Word index in arena.
+ word := addr / goarch.PtrSize % heapArenaWords
+
+ // Word index and bit offset in bitmap array.
+ idx := word / ptrBits
+ off := word % ptrBits
+
+ // Grab relevant bits of bitmap.
+ mask := ha.bitmap[idx] >> off
+ valid := ptrBits - off
+
+ // Process depending on where the object ends.
+ nptr := size / goarch.PtrSize
+ if nptr < valid {
+ // Bits for this object end before the end of this bitmap word.
+ // Squash bits for the following objects.
+ mask &= 1<<(nptr&(ptrBits-1)) - 1
+ valid = nptr
+ } else if nptr == valid {
+ // Bits for this object end at exactly the end of this bitmap word.
+ // All good.
+ } else {
+ // Bits for this object extend into the next bitmap word. See if there
+ // may be any pointers recorded there.
+ if uintptr(ha.noMorePtrs[idx/8])>>(idx%8)&1 != 0 {
+ // No more pointers in this object after this bitmap word.
+ // Update size so we know not to look there.
+ size = valid * goarch.PtrSize
+ }
+ }
+
+ return heapBits{addr: addr, size: size, mask: mask, valid: valid}
+}
+
+// Returns the (absolute) address of the next known pointer and
+// a heapBits iterator representing any remaining pointers.
+// If there are no more pointers, returns address 0.
+// Note that next does not modify h. The caller must record the result.
+//
+// nosplit because it is used during write barriers and must not be preempted.
+//
+//go:nosplit
+func (h heapBits) next() (heapBits, uintptr) {
+ for {
+ if h.mask != 0 {
+ var i int
+ if goarch.PtrSize == 8 {
+ i = sys.TrailingZeros64(uint64(h.mask))
+ } else {
+ i = sys.TrailingZeros32(uint32(h.mask))
+ }
+ h.mask ^= uintptr(1) << (i & (ptrBits - 1))
+ return h, h.addr + uintptr(i)*goarch.PtrSize
+ }
+
+ // Skip words that we've already processed.
+ h.addr += h.valid * goarch.PtrSize
+ h.size -= h.valid * goarch.PtrSize
+ if h.size == 0 {
+ return h, 0 // no more pointers
+ }
+
+ // Grab more bits and try again.
+ h = heapBitsForAddr(h.addr, h.size)
+ }
+}
+
+// nextFast is like next, but can return 0 even when there are more pointers
+// to be found. Callers should call next if nextFast returns 0 as its second
+// return value.
+//
+// if addr, h = h.nextFast(); addr == 0 {
+// if addr, h = h.next(); addr == 0 {
+// ... no more pointers ...
+// }
+// }
+// ... process pointer at addr ...
+//
+// nextFast is designed to be inlineable.
+//
+//go:nosplit
+func (h heapBits) nextFast() (heapBits, uintptr) {
+ // TESTQ/JEQ
+ if h.mask == 0 {
+ return h, 0
+ }
+ // BSFQ
+ var i int
+ if goarch.PtrSize == 8 {
+ i = sys.TrailingZeros64(uint64(h.mask))
+ } else {
+ i = sys.TrailingZeros32(uint32(h.mask))
+ }
+ // BTCQ
+ h.mask ^= uintptr(1) << (i & (ptrBits - 1))
+ // LEAQ (XX)(XX*8)
+ return h, h.addr + uintptr(i)*goarch.PtrSize
+}
+
+// bulkBarrierPreWrite executes a write barrier
+// for every pointer slot in the memory range [src, src+size),
+// using pointer/scalar information from [dst, dst+size).
+// This executes the write barriers necessary before a memmove.
+// src, dst, and size must be pointer-aligned.
+// The range [dst, dst+size) must lie within a single object.
+// It does not perform the actual writes.
+//
+// As a special case, src == 0 indicates that this is being used for a
+// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
+// barrier.
+//
+// Callers should call bulkBarrierPreWrite immediately before
+// calling memmove(dst, src, size). This function is marked nosplit
+// to avoid being preempted; the GC must not stop the goroutine
+// between the memmove and the execution of the barriers.
+// The caller is also responsible for cgo pointer checks if this
+// may be writing Go pointers into non-Go memory.
+//
+// The pointer bitmap is not maintained for allocations containing
+// no pointers at all; any caller of bulkBarrierPreWrite must first
+// make sure the underlying allocation contains pointers, usually
+// by checking typ.PtrBytes.
+//
+// The type of the space can be provided purely as an optimization,
+// however it is not used with GOEXPERIMENT=noallocheaders.
+//
+// Callers must perform cgo checks if goexperiment.CgoCheck2.
+//
+//go:nosplit
+func bulkBarrierPreWrite(dst, src, size uintptr, _ *abi.Type) {
+ if (dst|src|size)&(goarch.PtrSize-1) != 0 {
+ throw("bulkBarrierPreWrite: unaligned arguments")
+ }
+ if !writeBarrier.enabled {
+ return
+ }
+ if s := spanOf(dst); s == nil {
+ // If dst is a global, use the data or BSS bitmaps to
+ // execute write barriers.
+ for _, datap := range activeModules() {
+ if datap.data <= dst && dst < datap.edata {
+ bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
+ return
+ }
+ }
+ for _, datap := range activeModules() {
+ if datap.bss <= dst && dst < datap.ebss {
+ bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
+ return
+ }
+ }
+ return
+ } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst {
+ // dst was heap memory at some point, but isn't now.
+ // It can't be a global. It must be either our stack,
+ // or in the case of direct channel sends, it could be
+ // another stack. Either way, no need for barriers.
+ // This will also catch if dst is in a freed span,
+ // though that should never have.
+ return
+ }
+
+ buf := &getg().m.p.ptr().wbBuf
+ h := heapBitsForAddr(dst, size)
+ if src == 0 {
+ for {
+ var addr uintptr
+ if h, addr = h.next(); addr == 0 {
+ break
+ }
+ dstx := (*uintptr)(unsafe.Pointer(addr))
+ p := buf.get1()
+ p[0] = *dstx
+ }
+ } else {
+ for {
+ var addr uintptr
+ if h, addr = h.next(); addr == 0 {
+ break
+ }
+ dstx := (*uintptr)(unsafe.Pointer(addr))
+ srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst)))
+ p := buf.get2()
+ p[0] = *dstx
+ p[1] = *srcx
+ }
+ }
+}
+
+// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
+// does not execute write barriers for [dst, dst+size).
+//
+// In addition to the requirements of bulkBarrierPreWrite
+// callers need to ensure [dst, dst+size) is zeroed.
+//
+// This is used for special cases where e.g. dst was just
+// created and zeroed with malloc.
+//
+// The type of the space can be provided purely as an optimization,
+// however it is not used with GOEXPERIMENT=noallocheaders.
+//
+//go:nosplit
+func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr, _ *abi.Type) {
+ if (dst|src|size)&(goarch.PtrSize-1) != 0 {
+ throw("bulkBarrierPreWrite: unaligned arguments")
+ }
+ if !writeBarrier.enabled {
+ return
+ }
+ buf := &getg().m.p.ptr().wbBuf
+ h := heapBitsForAddr(dst, size)
+ for {
+ var addr uintptr
+ if h, addr = h.next(); addr == 0 {
+ break
+ }
+ srcx := (*uintptr)(unsafe.Pointer(addr - dst + src))
+ p := buf.get1()
+ p[0] = *srcx
+ }
+}
+
+// initHeapBits initializes the heap bitmap for a span.
+// If this is a span of single pointer allocations, it initializes all
+// words to pointer. If force is true, clears all bits.
+func (s *mspan) initHeapBits(forceClear bool) {
+ if forceClear || s.spanclass.noscan() {
+ // Set all the pointer bits to zero. We do this once
+ // when the span is allocated so we don't have to do it
+ // for each object allocation.
+ base := s.base()
+ size := s.npages * pageSize
+ h := writeHeapBitsForAddr(base)
+ h.flush(base, size)
+ return
+ }
+ isPtrs := goarch.PtrSize == 8 && s.elemsize == goarch.PtrSize
+ if !isPtrs {
+ return // nothing to do
+ }
+ h := writeHeapBitsForAddr(s.base())
+ size := s.npages * pageSize
+ nptrs := size / goarch.PtrSize
+ for i := uintptr(0); i < nptrs; i += ptrBits {
+ h = h.write(^uintptr(0), ptrBits)
+ }
+ h.flush(s.base(), size)
+}
+
+type writeHeapBits struct {
+ addr uintptr // address that the low bit of mask represents the pointer state of.
+ mask uintptr // some pointer bits starting at the address addr.
+ valid uintptr // number of bits in buf that are valid (including low)
+ low uintptr // number of low-order bits to not overwrite
+}
+
+func writeHeapBitsForAddr(addr uintptr) (h writeHeapBits) {
+ // We start writing bits maybe in the middle of a heap bitmap word.
+ // Remember how many bits into the word we started, so we can be sure
+ // not to overwrite the previous bits.
+ h.low = addr / goarch.PtrSize % ptrBits
+
+ // round down to heap word that starts the bitmap word.
+ h.addr = addr - h.low*goarch.PtrSize
+
+ // We don't have any bits yet.
+ h.mask = 0
+ h.valid = h.low
+
+ return
+}
+
+// write appends the pointerness of the next valid pointer slots
+// using the low valid bits of bits. 1=pointer, 0=scalar.
+func (h writeHeapBits) write(bits, valid uintptr) writeHeapBits {
+ if h.valid+valid <= ptrBits {
+ // Fast path - just accumulate the bits.
+ h.mask |= bits << h.valid
+ h.valid += valid
+ return h
+ }
+ // Too many bits to fit in this word. Write the current word
+ // out and move on to the next word.
+
+ data := h.mask | bits<<h.valid // mask for this word
+ h.mask = bits >> (ptrBits - h.valid) // leftover for next word
+ h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them
+
+ // Flush mask to the memory bitmap.
+ // TODO: figure out how to cache arena lookup.
+ ai := arenaIndex(h.addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
+ m := uintptr(1)<<h.low - 1
+ ha.bitmap[idx] = ha.bitmap[idx]&m | data
+ // Note: no synchronization required for this write because
+ // the allocator has exclusive access to the page, and the bitmap
+ // entries are all for a single page. Also, visibility of these
+ // writes is guaranteed by the publication barrier in mallocgc.
+
+ // Clear noMorePtrs bit, since we're going to be writing bits
+ // into the following word.
+ ha.noMorePtrs[idx/8] &^= uint8(1) << (idx % 8)
+ // Note: same as above
+
+ // Move to next word of bitmap.
+ h.addr += ptrBits * goarch.PtrSize
+ h.low = 0
+ return h
+}
+
+// Add padding of size bytes.
+func (h writeHeapBits) pad(size uintptr) writeHeapBits {
+ if size == 0 {
+ return h
+ }
+ words := size / goarch.PtrSize
+ for words > ptrBits {
+ h = h.write(0, ptrBits)
+ words -= ptrBits
+ }
+ return h.write(0, words)
+}
+
+// Flush the bits that have been written, and add zeros as needed
+// to cover the full object [addr, addr+size).
+func (h writeHeapBits) flush(addr, size uintptr) {
+ // zeros counts the number of bits needed to represent the object minus the
+ // number of bits we've already written. This is the number of 0 bits
+ // that need to be added.
+ zeros := (addr+size-h.addr)/goarch.PtrSize - h.valid
+
+ // Add zero bits up to the bitmap word boundary
+ if zeros > 0 {
+ z := ptrBits - h.valid
+ if z > zeros {
+ z = zeros
+ }
+ h.valid += z
+ zeros -= z
+ }
+
+ // Find word in bitmap that we're going to write.
+ ai := arenaIndex(h.addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
+
+ // Write remaining bits.
+ if h.valid != h.low {
+ m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low"
+ m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid"
+ ha.bitmap[idx] = ha.bitmap[idx]&m | h.mask
+ }
+ if zeros == 0 {
+ return
+ }
+
+ // Record in the noMorePtrs map that there won't be any more 1 bits,
+ // so readers can stop early.
+ ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8)
+
+ // Advance to next bitmap word.
+ h.addr += ptrBits * goarch.PtrSize
+
+ // Continue on writing zeros for the rest of the object.
+ // For standard use of the ptr bits this is not required, as
+ // the bits are read from the beginning of the object. Some uses,
+ // like noscan spans, oblets, bulk write barriers, and cgocheck, might
+ // start mid-object, so these writes are still required.
+ for {
+ // Write zero bits.
+ ai := arenaIndex(h.addr)
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
+ if zeros < ptrBits {
+ ha.bitmap[idx] &^= uintptr(1)<<zeros - 1
+ break
+ } else if zeros == ptrBits {
+ ha.bitmap[idx] = 0
+ break
+ } else {
+ ha.bitmap[idx] = 0
+ zeros -= ptrBits
+ }
+ ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8)
+ h.addr += ptrBits * goarch.PtrSize
+ }
+}
+
+// heapBitsSetType records that the new allocation [x, x+size)
+// holds in [x, x+dataSize) one or more values of type typ.
+// (The number of values is given by dataSize / typ.Size.)
+// If dataSize < size, the fragment [x+dataSize, x+size) is
+// recorded as non-pointer data.
+// It is known that the type has pointers somewhere;
+// malloc does not call heapBitsSetType when there are no pointers,
+// because all free objects are marked as noscan during
+// heapBitsSweepSpan.
+//
+// There can only be one allocation from a given span active at a time,
+// and the bitmap for a span always falls on word boundaries,
+// so there are no write-write races for access to the heap bitmap.
+// Hence, heapBitsSetType can access the bitmap without atomics.
+//
+// There can be read-write races between heapBitsSetType and things
+// that read the heap bitmap like scanobject. However, since
+// heapBitsSetType is only used for objects that have not yet been
+// made reachable, readers will ignore bits being modified by this
+// function. This does mean this function cannot transiently modify
+// bits that belong to neighboring objects. Also, on weakly-ordered
+// machines, callers must execute a store/store (publication) barrier
+// between calling this function and making the object reachable.
+func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
+ const doubleCheck = false // slow but helpful; enable to test modifications to this code
+
+ if doubleCheck && dataSize%typ.Size_ != 0 {
+ throw("heapBitsSetType: dataSize not a multiple of typ.Size")
+ }
+
+ if goarch.PtrSize == 8 && size == goarch.PtrSize {
+ // It's one word and it has pointers, it must be a pointer.
+ // Since all allocated one-word objects are pointers
+ // (non-pointers are aggregated into tinySize allocations),
+ // (*mspan).initHeapBits sets the pointer bits for us.
+ // Nothing to do here.
+ if doubleCheck {
+ h, addr := heapBitsForAddr(x, size).next()
+ if addr != x {
+ throw("heapBitsSetType: pointer bit missing")
+ }
+ _, addr = h.next()
+ if addr != 0 {
+ throw("heapBitsSetType: second pointer bit found")
+ }
+ }
+ return
+ }
+
+ h := writeHeapBitsForAddr(x)
+
+ // Handle GC program.
+ if typ.Kind_&kindGCProg != 0 {
+ // Expand the gc program into the storage we're going to use for the actual object.
+ obj := (*uint8)(unsafe.Pointer(x))
+ n := runGCProg(addb(typ.GCData, 4), obj)
+ // Use the expanded program to set the heap bits.
+ for i := uintptr(0); true; i += typ.Size_ {
+ // Copy expanded program to heap bitmap.
+ p := obj
+ j := n
+ for j > 8 {
+ h = h.write(uintptr(*p), 8)
+ p = add1(p)
+ j -= 8
+ }
+ h = h.write(uintptr(*p), j)
+
+ if i+typ.Size_ == dataSize {
+ break // no padding after last element
+ }
+
+ // Pad with zeros to the start of the next element.
+ h = h.pad(typ.Size_ - n*goarch.PtrSize)
+ }
+
+ h.flush(x, size)
+
+ // Erase the expanded GC program.
+ memclrNoHeapPointers(unsafe.Pointer(obj), (n+7)/8)
+ return
+ }
+
+ // Note about sizes:
+ //
+ // typ.Size is the number of words in the object,
+ // and typ.PtrBytes is the number of words in the prefix
+ // of the object that contains pointers. That is, the final
+ // typ.Size - typ.PtrBytes words contain no pointers.
+ // This allows optimization of a common pattern where
+ // an object has a small header followed by a large scalar
+ // buffer. If we know the pointers are over, we don't have
+ // to scan the buffer's heap bitmap at all.
+ // The 1-bit ptrmasks are sized to contain only bits for
+ // the typ.PtrBytes prefix, zero padded out to a full byte
+ // of bitmap. If there is more room in the allocated object,
+ // that space is pointerless. The noMorePtrs bitmap will prevent
+ // scanning large pointerless tails of an object.
+ //
+ // Replicated copies are not as nice: if there is an array of
+ // objects with scalar tails, all but the last tail does have to
+ // be initialized, because there is no way to say "skip forward".
+
+ ptrs := typ.PtrBytes / goarch.PtrSize
+ if typ.Size_ == dataSize { // Single element
+ if ptrs <= ptrBits { // Single small element
+ m := readUintptr(typ.GCData)
+ h = h.write(m, ptrs)
+ } else { // Single large element
+ p := typ.GCData
+ for {
+ h = h.write(readUintptr(p), ptrBits)
+ p = addb(p, ptrBits/8)
+ ptrs -= ptrBits
+ if ptrs <= ptrBits {
+ break
+ }
+ }
+ m := readUintptr(p)
+ h = h.write(m, ptrs)
+ }
+ } else { // Repeated element
+ words := typ.Size_ / goarch.PtrSize // total words, including scalar tail
+ if words <= ptrBits { // Repeated small element
+ n := dataSize / typ.Size_
+ m := readUintptr(typ.GCData)
+ // Make larger unit to repeat
+ for words <= ptrBits/2 {
+ if n&1 != 0 {
+ h = h.write(m, words)
+ }
+ n /= 2
+ m |= m << words
+ ptrs += words
+ words *= 2
+ if n == 1 {
+ break
+ }
+ }
+ for n > 1 {
+ h = h.write(m, words)
+ n--
+ }
+ h = h.write(m, ptrs)
+ } else { // Repeated large element
+ for i := uintptr(0); true; i += typ.Size_ {
+ p := typ.GCData
+ j := ptrs
+ for j > ptrBits {
+ h = h.write(readUintptr(p), ptrBits)
+ p = addb(p, ptrBits/8)
+ j -= ptrBits
+ }
+ m := readUintptr(p)
+ h = h.write(m, j)
+ if i+typ.Size_ == dataSize {
+ break // don't need the trailing nonptr bits on the last element.
+ }
+ // Pad with zeros to the start of the next element.
+ h = h.pad(typ.Size_ - typ.PtrBytes)
+ }
+ }
+ }
+ h.flush(x, size)
+
+ if doubleCheck {
+ h := heapBitsForAddr(x, size)
+ for i := uintptr(0); i < size; i += goarch.PtrSize {
+ // Compute the pointer bit we want at offset i.
+ want := false
+ if i < dataSize {
+ off := i % typ.Size_
+ if off < typ.PtrBytes {
+ j := off / goarch.PtrSize
+ want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
+ }
+ }
+ if want {
+ var addr uintptr
+ h, addr = h.next()
+ if addr != x+i {
+ throw("heapBitsSetType: pointer entry not correct")
+ }
+ }
+ }
+ if _, addr := h.next(); addr != 0 {
+ throw("heapBitsSetType: extra pointer")
+ }
+ }
+}
+
+// For goexperiment.AllocHeaders
+func heapSetType(x, dataSize uintptr, typ *_type, header **_type, span *mspan) (scanSize uintptr) {
+ return 0
+}
+
+// Testing.
+
+// Returns GC type info for the pointer stored in ep for testing.
+// If ep points to the stack, only static live information will be returned
+// (i.e. not for objects which are only dynamically live stack objects).
+func getgcmask(ep any) (mask []byte) {
+ e := *efaceOf(&ep)
+ p := e.data
+ t := e._type
+ // data or bss
+ for _, datap := range activeModules() {
+ // data
+ if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
+ bitmap := datap.gcdatamask.bytedata
+ n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - datap.data) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
+ }
+ return
+ }
+
+ // bss
+ if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
+ bitmap := datap.gcbssmask.bytedata
+ n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - datap.bss) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
+ }
+ return
+ }
+ }
+
+ // heap
+ if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 {
+ if s.spanclass.noscan() {
+ return nil
+ }
+ n := s.elemsize
+ hbits := heapBitsForAddr(base, n)
+ mask = make([]byte, n/goarch.PtrSize)
+ for {
+ var addr uintptr
+ if hbits, addr = hbits.next(); addr == 0 {
+ break
+ }
+ mask[(addr-base)/goarch.PtrSize] = 1
+ }
+ // Callers expect this mask to end at the last pointer.
+ for len(mask) > 0 && mask[len(mask)-1] == 0 {
+ mask = mask[:len(mask)-1]
+ }
+
+ // Make sure we keep ep alive. We may have stopped referencing
+ // ep's data pointer sometime before this point and it's possible
+ // for that memory to get freed.
+ KeepAlive(ep)
+ return
+ }
+
+ // stack
+ if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi {
+ found := false
+ var u unwinder
+ for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() {
+ if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp {
+ found = true
+ break
+ }
+ }
+ if found {
+ locals, _, _ := u.frame.getStackMap(false)
+ if locals.n == 0 {
+ return
+ }
+ size := uintptr(locals.n) * goarch.PtrSize
+ n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
+ mask = make([]byte, n/goarch.PtrSize)
+ for i := uintptr(0); i < n; i += goarch.PtrSize {
+ off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize
+ mask[i/goarch.PtrSize] = locals.ptrbit(off)
+ }
+ }
+ return
+ }
+
+ // otherwise, not something the GC knows about.
+ // possibly read-only data, like malloc(0).
+ // must not have pointers
+ return
+}
+
+// userArenaHeapBitsSetType is the equivalent of heapBitsSetType but for
+// non-slice-backing-store Go values allocated in a user arena chunk. It
+// sets up the heap bitmap for the value with type typ allocated at address ptr.
+// base is the base address of the arena chunk.
+func userArenaHeapBitsSetType(typ *_type, ptr unsafe.Pointer, s *mspan) {
+ base := s.base()
+ h := writeHeapBitsForAddr(uintptr(ptr))
+
+ // Our last allocation might have ended right at a noMorePtrs mark,
+ // which we would not have erased. We need to erase that mark here,
+ // because we're going to start adding new heap bitmap bits.
+ // We only need to clear one mark, because below we make sure to
+ // pad out the bits with zeroes and only write one noMorePtrs bit
+ // for each new object.
+ // (This is only necessary at noMorePtrs boundaries, as noMorePtrs
+ // marks within an object allocated with newAt will be erased by
+ // the normal writeHeapBitsForAddr mechanism.)
+ //
+ // Note that we skip this if this is the first allocation in the
+ // arena because there's definitely no previous noMorePtrs mark
+ // (in fact, we *must* do this, because we're going to try to back
+ // up a pointer to fix this up).
+ if uintptr(ptr)%(8*goarch.PtrSize*goarch.PtrSize) == 0 && uintptr(ptr) != base {
+ // Back up one pointer and rewrite that pointer. That will
+ // cause the writeHeapBits implementation to clear the
+ // noMorePtrs bit we need to clear.
+ r := heapBitsForAddr(uintptr(ptr)-goarch.PtrSize, goarch.PtrSize)
+ _, p := r.next()
+ b := uintptr(0)
+ if p == uintptr(ptr)-goarch.PtrSize {
+ b = 1
+ }
+ h = writeHeapBitsForAddr(uintptr(ptr) - goarch.PtrSize)
+ h = h.write(b, 1)
+ }
+
+ p := typ.GCData // start of 1-bit pointer mask (or GC program)
+ var gcProgBits uintptr
+ if typ.Kind_&kindGCProg != 0 {
+ // Expand gc program, using the object itself for storage.
+ gcProgBits = runGCProg(addb(p, 4), (*byte)(ptr))
+ p = (*byte)(ptr)
+ }
+ nb := typ.PtrBytes / goarch.PtrSize
+
+ for i := uintptr(0); i < nb; i += ptrBits {
+ k := nb - i
+ if k > ptrBits {
+ k = ptrBits
+ }
+ h = h.write(readUintptr(addb(p, i/8)), k)
+ }
+ // Note: we call pad here to ensure we emit explicit 0 bits
+ // for the pointerless tail of the object. This ensures that
+ // there's only a single noMorePtrs mark for the next object
+ // to clear. We don't need to do this to clear stale noMorePtrs
+ // markers from previous uses because arena chunk pointer bitmaps
+ // are always fully cleared when reused.
+ h = h.pad(typ.Size_ - typ.PtrBytes)
+ h.flush(uintptr(ptr), typ.Size_)
+
+ if typ.Kind_&kindGCProg != 0 {
+ // Zero out temporary ptrmask buffer inside object.
+ memclrNoHeapPointers(ptr, (gcProgBits+7)/8)
+ }
+
+ // Double-check that the bitmap was written out correctly.
+ //
+ // Derived from heapBitsSetType.
+ const doubleCheck = false
+ if doubleCheck {
+ size := typ.Size_
+ x := uintptr(ptr)
+ h := heapBitsForAddr(x, size)
+ for i := uintptr(0); i < size; i += goarch.PtrSize {
+ // Compute the pointer bit we want at offset i.
+ want := false
+ off := i % typ.Size_
+ if off < typ.PtrBytes {
+ j := off / goarch.PtrSize
+ want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
+ }
+ if want {
+ var addr uintptr
+ h, addr = h.next()
+ if addr != x+i {
+ throw("userArenaHeapBitsSetType: pointer entry not correct")
+ }
+ }
+ }
+ if _, addr := h.next(); addr != 0 {
+ throw("userArenaHeapBitsSetType: extra pointer")
+ }
+ }
+}
+
+// For goexperiment.AllocHeaders.
+type typePointers struct {
+ addr uintptr
+}
+
+// For goexperiment.AllocHeaders.
+//
+//go:nosplit
+func (span *mspan) typePointersOf(addr, size uintptr) typePointers {
+ panic("not implemented")
+}
+
+// For goexperiment.AllocHeaders.
+//
+//go:nosplit
+func (span *mspan) typePointersOfUnchecked(addr uintptr) typePointers {
+ panic("not implemented")
+}
+
+// For goexperiment.AllocHeaders.
+//
+//go:nosplit
+func (tp typePointers) nextFast() (typePointers, uintptr) {
+ panic("not implemented")
+}
+
+// For goexperiment.AllocHeaders.
+//
+//go:nosplit
+func (tp typePointers) next(limit uintptr) (typePointers, uintptr) {
+ panic("not implemented")
+}
+
+// For goexperiment.AllocHeaders.
+//
+//go:nosplit
+func (tp typePointers) fastForward(n, limit uintptr) typePointers {
+ panic("not implemented")
+}
+
+// For goexperiment.AllocHeaders, to pass TestIntendedInlining.
+func (s *mspan) writeUserArenaHeapBits() {
+ panic("not implemented")
+}
+
+// For goexperiment.AllocHeaders, to pass TestIntendedInlining.
+func heapBitsSlice() {
+ panic("not implemented")
+}