summaryrefslogtreecommitdiffstats
path: root/src/strconv/ftoaryu.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
commitf6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch)
tree7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/strconv/ftoaryu.go
parentInitial commit. (diff)
downloadgolang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz
golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/strconv/ftoaryu.go')
-rw-r--r--src/strconv/ftoaryu.go569
1 files changed, 569 insertions, 0 deletions
diff --git a/src/strconv/ftoaryu.go b/src/strconv/ftoaryu.go
new file mode 100644
index 0000000..2e7bf71
--- /dev/null
+++ b/src/strconv/ftoaryu.go
@@ -0,0 +1,569 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package strconv
+
+import (
+ "math/bits"
+)
+
+// binary to decimal conversion using the Ryū algorithm.
+//
+// See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369)
+//
+// Fixed precision formatting is a variant of the original paper's
+// algorithm, where a single multiplication by 10^k is required,
+// sharing the same rounding guarantees.
+
+// ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits.
+func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) {
+ if prec < 0 {
+ panic("ryuFtoaFixed32 called with negative prec")
+ }
+ if prec > 9 {
+ panic("ryuFtoaFixed32 called with prec > 9")
+ }
+ // Zero input.
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // Renormalize to a 25-bit mantissa.
+ e2 := exp
+ if b := bits.Len32(mant); b < 25 {
+ mant <<= uint(25 - b)
+ e2 += b - 25
+ }
+ // Choose an exponent such that rounded mant*(2^e2)*(10^q) has
+ // at least prec decimal digits, i.e
+ // mant*(2^e2)*(10^q) >= 10^(prec-1)
+ // Because mant >= 2^24, it is enough to choose:
+ // 2^(e2+24) >= 10^(-q+prec-1)
+ // or q = -mulByLog2Log10(e2+24) + prec - 1
+ q := -mulByLog2Log10(e2+24) + prec - 1
+
+ // Now compute mant*(2^e2)*(10^q).
+ // Is it an exact computation?
+ // Only small positive powers of 10 are exact (5^28 has 66 bits).
+ exact := q <= 27 && q >= 0
+
+ di, dexp2, d0 := mult64bitPow10(mant, e2, q)
+ if dexp2 >= 0 {
+ panic("not enough significant bits after mult64bitPow10")
+ }
+ // As a special case, computation might still be exact, if exponent
+ // was negative and if it amounts to computing an exact division.
+ // In that case, we ignore all lower bits.
+ // Note that division by 10^11 cannot be exact as 5^11 has 26 bits.
+ if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) {
+ exact = true
+ d0 = true
+ }
+ // Remove extra lower bits and keep rounding info.
+ extra := uint(-dexp2)
+ extraMask := uint32(1<<extra - 1)
+
+ di, dfrac := di>>extra, di&extraMask
+ roundUp := false
+ if exact {
+ // If we computed an exact product, d + 1/2
+ // should round to d+1 if 'd' is odd.
+ roundUp = dfrac > 1<<(extra-1) ||
+ (dfrac == 1<<(extra-1) && !d0) ||
+ (dfrac == 1<<(extra-1) && d0 && di&1 == 1)
+ } else {
+ // otherwise, d+1/2 always rounds up because
+ // we truncated below.
+ roundUp = dfrac>>(extra-1) == 1
+ }
+ if dfrac != 0 {
+ d0 = false
+ }
+ // Proceed to the requested number of digits
+ formatDecimal(d, uint64(di), !d0, roundUp, prec)
+ // Adjust exponent
+ d.dp -= q
+}
+
+// ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits.
+func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) {
+ if prec > 18 {
+ panic("ryuFtoaFixed64 called with prec > 18")
+ }
+ // Zero input.
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // Renormalize to a 55-bit mantissa.
+ e2 := exp
+ if b := bits.Len64(mant); b < 55 {
+ mant = mant << uint(55-b)
+ e2 += b - 55
+ }
+ // Choose an exponent such that rounded mant*(2^e2)*(10^q) has
+ // at least prec decimal digits, i.e
+ // mant*(2^e2)*(10^q) >= 10^(prec-1)
+ // Because mant >= 2^54, it is enough to choose:
+ // 2^(e2+54) >= 10^(-q+prec-1)
+ // or q = -mulByLog2Log10(e2+54) + prec - 1
+ //
+ // The minimal required exponent is -mulByLog2Log10(1025)+18 = -291
+ // The maximal required exponent is mulByLog2Log10(1074)+18 = 342
+ q := -mulByLog2Log10(e2+54) + prec - 1
+
+ // Now compute mant*(2^e2)*(10^q).
+ // Is it an exact computation?
+ // Only small positive powers of 10 are exact (5^55 has 128 bits).
+ exact := q <= 55 && q >= 0
+
+ di, dexp2, d0 := mult128bitPow10(mant, e2, q)
+ if dexp2 >= 0 {
+ panic("not enough significant bits after mult128bitPow10")
+ }
+ // As a special case, computation might still be exact, if exponent
+ // was negative and if it amounts to computing an exact division.
+ // In that case, we ignore all lower bits.
+ // Note that division by 10^23 cannot be exact as 5^23 has 54 bits.
+ if q < 0 && q >= -22 && divisibleByPower5(mant, -q) {
+ exact = true
+ d0 = true
+ }
+ // Remove extra lower bits and keep rounding info.
+ extra := uint(-dexp2)
+ extraMask := uint64(1<<extra - 1)
+
+ di, dfrac := di>>extra, di&extraMask
+ roundUp := false
+ if exact {
+ // If we computed an exact product, d + 1/2
+ // should round to d+1 if 'd' is odd.
+ roundUp = dfrac > 1<<(extra-1) ||
+ (dfrac == 1<<(extra-1) && !d0) ||
+ (dfrac == 1<<(extra-1) && d0 && di&1 == 1)
+ } else {
+ // otherwise, d+1/2 always rounds up because
+ // we truncated below.
+ roundUp = dfrac>>(extra-1) == 1
+ }
+ if dfrac != 0 {
+ d0 = false
+ }
+ // Proceed to the requested number of digits
+ formatDecimal(d, di, !d0, roundUp, prec)
+ // Adjust exponent
+ d.dp -= q
+}
+
+var uint64pow10 = [...]uint64{
+ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+}
+
+// formatDecimal fills d with at most prec decimal digits
+// of mantissa m. The boolean trunc indicates whether m
+// is truncated compared to the original number being formatted.
+func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) {
+ max := uint64pow10[prec]
+ trimmed := 0
+ for m >= max {
+ a, b := m/10, m%10
+ m = a
+ trimmed++
+ if b > 5 {
+ roundUp = true
+ } else if b < 5 {
+ roundUp = false
+ } else { // b == 5
+ // round up if there are trailing digits,
+ // or if the new value of m is odd (round-to-even convention)
+ roundUp = trunc || m&1 == 1
+ }
+ if b != 0 {
+ trunc = true
+ }
+ }
+ if roundUp {
+ m++
+ }
+ if m >= max {
+ // Happens if di was originally 99999....xx
+ m /= 10
+ trimmed++
+ }
+ // render digits (similar to formatBits)
+ n := uint(prec)
+ d.nd = prec
+ v := m
+ for v >= 100 {
+ var v1, v2 uint64
+ if v>>32 == 0 {
+ v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100)
+ } else {
+ v1, v2 = v/100, v%100
+ }
+ n -= 2
+ d.d[n+1] = smallsString[2*v2+1]
+ d.d[n+0] = smallsString[2*v2+0]
+ v = v1
+ }
+ if v > 0 {
+ n--
+ d.d[n] = smallsString[2*v+1]
+ }
+ if v >= 10 {
+ n--
+ d.d[n] = smallsString[2*v]
+ }
+ for d.d[d.nd-1] == '0' {
+ d.nd--
+ trimmed++
+ }
+ d.dp = d.nd + trimmed
+}
+
+// ryuFtoaShortest formats mant*2^exp with prec decimal digits.
+func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) {
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // If input is an exact integer with fewer bits than the mantissa,
+ // the previous and next integer are not admissible representations.
+ if exp <= 0 && bits.TrailingZeros64(mant) >= -exp {
+ mant >>= uint(-exp)
+ ryuDigits(d, mant, mant, mant, true, false)
+ return
+ }
+ ml, mc, mu, e2 := computeBounds(mant, exp, flt)
+ if e2 == 0 {
+ ryuDigits(d, ml, mc, mu, true, false)
+ return
+ }
+ // Find 10^q *larger* than 2^-e2
+ q := mulByLog2Log10(-e2) + 1
+
+ // We are going to multiply by 10^q using 128-bit arithmetic.
+ // The exponent is the same for all 3 numbers.
+ var dl, dc, du uint64
+ var dl0, dc0, du0 bool
+ if flt == &float32info {
+ var dl32, dc32, du32 uint32
+ dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q)
+ dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q)
+ du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q)
+ dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32)
+ } else {
+ dl, _, dl0 = mult128bitPow10(ml, e2, q)
+ dc, _, dc0 = mult128bitPow10(mc, e2, q)
+ du, e2, du0 = mult128bitPow10(mu, e2, q)
+ }
+ if e2 >= 0 {
+ panic("not enough significant bits after mult128bitPow10")
+ }
+ // Is it an exact computation?
+ if q > 55 {
+ // Large positive powers of ten are not exact
+ dl0, dc0, du0 = false, false, false
+ }
+ if q < 0 && q >= -24 {
+ // Division by a power of ten may be exact.
+ // (note that 5^25 is a 59-bit number so division by 5^25 is never exact).
+ if divisibleByPower5(ml, -q) {
+ dl0 = true
+ }
+ if divisibleByPower5(mc, -q) {
+ dc0 = true
+ }
+ if divisibleByPower5(mu, -q) {
+ du0 = true
+ }
+ }
+ // Express the results (dl, dc, du)*2^e2 as integers.
+ // Extra bits must be removed and rounding hints computed.
+ extra := uint(-e2)
+ extraMask := uint64(1<<extra - 1)
+ // Now compute the floored, integral base 10 mantissas.
+ dl, fracl := dl>>extra, dl&extraMask
+ dc, fracc := dc>>extra, dc&extraMask
+ du, fracu := du>>extra, du&extraMask
+ // Is it allowed to use 'du' as a result?
+ // It is always allowed when it is truncated, but also
+ // if it is exact and the original binary mantissa is even
+ // When disallowed, we can subtract 1.
+ uok := !du0 || fracu > 0
+ if du0 && fracu == 0 {
+ uok = mant&1 == 0
+ }
+ if !uok {
+ du--
+ }
+ // Is 'dc' the correctly rounded base 10 mantissa?
+ // The correct rounding might be dc+1
+ cup := false // don't round up.
+ if dc0 {
+ // If we computed an exact product, the half integer
+ // should round to next (even) integer if 'dc' is odd.
+ cup = fracc > 1<<(extra-1) ||
+ (fracc == 1<<(extra-1) && dc&1 == 1)
+ } else {
+ // otherwise, the result is a lower truncation of the ideal
+ // result.
+ cup = fracc>>(extra-1) == 1
+ }
+ // Is 'dl' an allowed representation?
+ // Only if it is an exact value, and if the original binary mantissa
+ // was even.
+ lok := dl0 && fracl == 0 && (mant&1 == 0)
+ if !lok {
+ dl++
+ }
+ // We need to remember whether the trimmed digits of 'dc' are zero.
+ c0 := dc0 && fracc == 0
+ // render digits
+ ryuDigits(d, dl, dc, du, c0, cup)
+ d.dp -= q
+}
+
+// mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in
+// the range -1600 <= x && x <= +1600.
+//
+// The range restriction lets us work in faster integer arithmetic instead of
+// slower floating point arithmetic. Correctness is verified by unit tests.
+func mulByLog2Log10(x int) int {
+ // log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18
+ return (x * 78913) >> 18
+}
+
+// mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in
+// the range -500 <= x && x <= +500.
+//
+// The range restriction lets us work in faster integer arithmetic instead of
+// slower floating point arithmetic. Correctness is verified by unit tests.
+func mulByLog10Log2(x int) int {
+ // log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15
+ return (x * 108853) >> 15
+}
+
+// computeBounds returns a floating-point vector (l, c, u)×2^e2
+// where the mantissas are 55-bit (or 26-bit) integers, describing the interval
+// represented by the input float64 or float32.
+func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) {
+ if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) {
+ // regular case (or denormals)
+ lower, central, upper = 2*mant-1, 2*mant, 2*mant+1
+ e2 = exp - 1
+ return
+ } else {
+ // border of an exponent
+ lower, central, upper = 4*mant-1, 4*mant, 4*mant+2
+ e2 = exp - 2
+ return
+ }
+}
+
+func ryuDigits(d *decimalSlice, lower, central, upper uint64,
+ c0, cup bool) {
+ lhi, llo := divmod1e9(lower)
+ chi, clo := divmod1e9(central)
+ uhi, ulo := divmod1e9(upper)
+ if uhi == 0 {
+ // only low digits (for denormals)
+ ryuDigits32(d, llo, clo, ulo, c0, cup, 8)
+ } else if lhi < uhi {
+ // truncate 9 digits at once.
+ if llo != 0 {
+ lhi++
+ }
+ c0 = c0 && clo == 0
+ cup = (clo > 5e8) || (clo == 5e8 && cup)
+ ryuDigits32(d, lhi, chi, uhi, c0, cup, 8)
+ d.dp += 9
+ } else {
+ d.nd = 0
+ // emit high part
+ n := uint(9)
+ for v := chi; v > 0; {
+ v1, v2 := v/10, v%10
+ v = v1
+ n--
+ d.d[n] = byte(v2 + '0')
+ }
+ d.d = d.d[n:]
+ d.nd = int(9 - n)
+ // emit low part
+ ryuDigits32(d, llo, clo, ulo,
+ c0, cup, d.nd+8)
+ }
+ // trim trailing zeros
+ for d.nd > 0 && d.d[d.nd-1] == '0' {
+ d.nd--
+ }
+ // trim initial zeros
+ for d.nd > 0 && d.d[0] == '0' {
+ d.nd--
+ d.dp--
+ d.d = d.d[1:]
+ }
+}
+
+// ryuDigits32 emits decimal digits for a number less than 1e9.
+func ryuDigits32(d *decimalSlice, lower, central, upper uint32,
+ c0, cup bool, endindex int) {
+ if upper == 0 {
+ d.dp = endindex + 1
+ return
+ }
+ trimmed := 0
+ // Remember last trimmed digit to check for round-up.
+ // c0 will be used to remember zeroness of following digits.
+ cNextDigit := 0
+ for upper > 0 {
+ // Repeatedly compute:
+ // l = Ceil(lower / 10^k)
+ // c = Round(central / 10^k)
+ // u = Floor(upper / 10^k)
+ // and stop when c goes out of the (l, u) interval.
+ l := (lower + 9) / 10
+ c, cdigit := central/10, central%10
+ u := upper / 10
+ if l > u {
+ // don't trim the last digit as it is forbidden to go below l
+ // other, trim and exit now.
+ break
+ }
+ // Check that we didn't cross the lower boundary.
+ // The case where l < u but c == l-1 is essentially impossible,
+ // but may happen if:
+ // lower = ..11
+ // central = ..19
+ // upper = ..31
+ // and means that 'central' is very close but less than
+ // an integer ending with many zeros, and usually
+ // the "round-up" logic hides the problem.
+ if l == c+1 && c < u {
+ c++
+ cdigit = 0
+ cup = false
+ }
+ trimmed++
+ // Remember trimmed digits of c
+ c0 = c0 && cNextDigit == 0
+ cNextDigit = int(cdigit)
+ lower, central, upper = l, c, u
+ }
+ // should we round up?
+ if trimmed > 0 {
+ cup = cNextDigit > 5 ||
+ (cNextDigit == 5 && !c0) ||
+ (cNextDigit == 5 && c0 && central&1 == 1)
+ }
+ if central < upper && cup {
+ central++
+ }
+ // We know where the number ends, fill directly
+ endindex -= trimmed
+ v := central
+ n := endindex
+ for n > d.nd {
+ v1, v2 := v/100, v%100
+ d.d[n] = smallsString[2*v2+1]
+ d.d[n-1] = smallsString[2*v2+0]
+ n -= 2
+ v = v1
+ }
+ if n == d.nd {
+ d.d[n] = byte(v + '0')
+ }
+ d.nd = endindex + 1
+ d.dp = d.nd + trimmed
+}
+
+// mult64bitPow10 takes a floating-point input with a 25-bit
+// mantissa and multiplies it with 10^q. The resulting mantissa
+// is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables.
+// It is typically 31 or 32-bit wide.
+// The returned boolean is true if all trimmed bits were zero.
+//
+// That is:
+//
+// m*2^e2 * round(10^q) = resM * 2^resE + ε
+// exact = ε == 0
+func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) {
+ if q == 0 {
+ // P == 1<<63
+ return m << 6, e2 - 6, true
+ }
+ if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
+ // This never happens due to the range of float32/float64 exponent
+ panic("mult64bitPow10: power of 10 is out of range")
+ }
+ pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1]
+ if q < 0 {
+ // Inverse powers of ten must be rounded up.
+ pow += 1
+ }
+ hi, lo := bits.Mul64(uint64(m), pow)
+ e2 += mulByLog10Log2(q) - 63 + 57
+ return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0
+}
+
+// mult128bitPow10 takes a floating-point input with a 55-bit
+// mantissa and multiplies it with 10^q. The resulting mantissa
+// is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables.
+// It is typically 63 or 64-bit wide.
+// The returned boolean is true is all trimmed bits were zero.
+//
+// That is:
+//
+// m*2^e2 * round(10^q) = resM * 2^resE + ε
+// exact = ε == 0
+func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) {
+ if q == 0 {
+ // P == 1<<127
+ return m << 8, e2 - 8, true
+ }
+ if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
+ // This never happens due to the range of float32/float64 exponent
+ panic("mult128bitPow10: power of 10 is out of range")
+ }
+ pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10]
+ if q < 0 {
+ // Inverse powers of ten must be rounded up.
+ pow[0] += 1
+ }
+ e2 += mulByLog10Log2(q) - 127 + 119
+
+ // long multiplication
+ l1, l0 := bits.Mul64(m, pow[0])
+ h1, h0 := bits.Mul64(m, pow[1])
+ mid, carry := bits.Add64(l1, h0, 0)
+ h1 += carry
+ return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0
+}
+
+func divisibleByPower5(m uint64, k int) bool {
+ if m == 0 {
+ return true
+ }
+ for i := 0; i < k; i++ {
+ if m%5 != 0 {
+ return false
+ }
+ m /= 5
+ }
+ return true
+}
+
+// divmod1e9 computes quotient and remainder of division by 1e9,
+// avoiding runtime uint64 division on 32-bit platforms.
+func divmod1e9(x uint64) (uint32, uint32) {
+ if !host32bit {
+ return uint32(x / 1e9), uint32(x % 1e9)
+ }
+ // Use the same sequence of operations as the amd64 compiler.
+ hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9
+ q := hi >> 28
+ return uint32(q), uint32(x - q*1e9)
+}