diff options
Diffstat (limited to 'src/cmd/compile/internal/compare/compare.go')
-rw-r--r-- | src/cmd/compile/internal/compare/compare.go | 381 |
1 files changed, 381 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/compare/compare.go b/src/cmd/compile/internal/compare/compare.go new file mode 100644 index 0000000..e165cd6 --- /dev/null +++ b/src/cmd/compile/internal/compare/compare.go @@ -0,0 +1,381 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package compare contains code for generating comparison +// routines for structs, strings and interfaces. +package compare + +import ( + "cmd/compile/internal/base" + "cmd/compile/internal/ir" + "cmd/compile/internal/typecheck" + "cmd/compile/internal/types" + "fmt" + "math/bits" + "sort" +) + +// IsRegularMemory reports whether t can be compared/hashed as regular memory. +func IsRegularMemory(t *types.Type) bool { + a, _ := types.AlgType(t) + return a == types.AMEM +} + +// Memrun finds runs of struct fields for which memory-only algs are appropriate. +// t is the parent struct type, and start is the field index at which to start the run. +// size is the length in bytes of the memory included in the run. +// next is the index just after the end of the memory run. +func Memrun(t *types.Type, start int) (size int64, next int) { + next = start + for { + next++ + if next == t.NumFields() { + break + } + // Stop run after a padded field. + if types.IsPaddedField(t, next-1) { + break + } + // Also, stop before a blank or non-memory field. + if f := t.Field(next); f.Sym.IsBlank() || !IsRegularMemory(f.Type) { + break + } + // For issue 46283, don't combine fields if the resulting load would + // require a larger alignment than the component fields. + if base.Ctxt.Arch.Alignment > 1 { + align := t.Alignment() + if off := t.Field(start).Offset; off&(align-1) != 0 { + // Offset is less aligned than the containing type. + // Use offset to determine alignment. + align = 1 << uint(bits.TrailingZeros64(uint64(off))) + } + size := t.Field(next).End() - t.Field(start).Offset + if size > align { + break + } + } + } + return t.Field(next-1).End() - t.Field(start).Offset, next +} + +// EqCanPanic reports whether == on type t could panic (has an interface somewhere). +// t must be comparable. +func EqCanPanic(t *types.Type) bool { + switch t.Kind() { + default: + return false + case types.TINTER: + return true + case types.TARRAY: + return EqCanPanic(t.Elem()) + case types.TSTRUCT: + for _, f := range t.Fields() { + if !f.Sym.IsBlank() && EqCanPanic(f.Type) { + return true + } + } + return false + } +} + +// EqStructCost returns the cost of an equality comparison of two structs. +// +// The cost is determined using an algorithm which takes into consideration +// the size of the registers in the current architecture and the size of the +// memory-only fields in the struct. +func EqStructCost(t *types.Type) int64 { + cost := int64(0) + + for i, fields := 0, t.Fields(); i < len(fields); { + f := fields[i] + + // Skip blank-named fields. + if f.Sym.IsBlank() { + i++ + continue + } + + n, _, next := eqStructFieldCost(t, i) + + cost += n + i = next + } + + return cost +} + +// eqStructFieldCost returns the cost of an equality comparison of two struct fields. +// t is the parent struct type, and i is the index of the field in the parent struct type. +// eqStructFieldCost may compute the cost of several adjacent fields at once. It returns +// the cost, the size of the set of fields it computed the cost for (in bytes), and the +// index of the first field not part of the set of fields for which the cost +// has already been calculated. +func eqStructFieldCost(t *types.Type, i int) (int64, int64, int) { + var ( + cost = int64(0) + regSize = int64(types.RegSize) + + size int64 + next int + ) + + if base.Ctxt.Arch.CanMergeLoads { + // If we can merge adjacent loads then we can calculate the cost of the + // comparison using the size of the memory run and the size of the registers. + size, next = Memrun(t, i) + cost = size / regSize + if size%regSize != 0 { + cost++ + } + return cost, size, next + } + + // If we cannot merge adjacent loads then we have to use the size of the + // field and take into account the type to determine how many loads and compares + // are needed. + ft := t.Field(i).Type + size = ft.Size() + next = i + 1 + + return calculateCostForType(ft), size, next +} + +func calculateCostForType(t *types.Type) int64 { + var cost int64 + switch t.Kind() { + case types.TSTRUCT: + return EqStructCost(t) + case types.TSLICE: + // Slices are not comparable. + base.Fatalf("eqStructFieldCost: unexpected slice type") + case types.TARRAY: + elemCost := calculateCostForType(t.Elem()) + cost = t.NumElem() * elemCost + case types.TSTRING, types.TINTER, types.TCOMPLEX64, types.TCOMPLEX128: + cost = 2 + case types.TINT64, types.TUINT64: + cost = 8 / int64(types.RegSize) + default: + cost = 1 + } + return cost +} + +// EqStruct compares two structs np and nq for equality. +// It works by building a list of boolean conditions to satisfy. +// Conditions must be evaluated in the returned order and +// properly short-circuited by the caller. +// The first return value is the flattened list of conditions, +// the second value is a boolean indicating whether any of the +// comparisons could panic. +func EqStruct(t *types.Type, np, nq ir.Node) ([]ir.Node, bool) { + // The conditions are a list-of-lists. Conditions are reorderable + // within each inner list. The outer lists must be evaluated in order. + var conds [][]ir.Node + conds = append(conds, []ir.Node{}) + and := func(n ir.Node) { + i := len(conds) - 1 + conds[i] = append(conds[i], n) + } + + // Walk the struct using memequal for runs of AMEM + // and calling specific equality tests for the others. + for i, fields := 0, t.Fields(); i < len(fields); { + f := fields[i] + + // Skip blank-named fields. + if f.Sym.IsBlank() { + i++ + continue + } + + typeCanPanic := EqCanPanic(f.Type) + + // Compare non-memory fields with field equality. + if !IsRegularMemory(f.Type) { + if typeCanPanic { + // Enforce ordering by starting a new set of reorderable conditions. + conds = append(conds, []ir.Node{}) + } + switch { + case f.Type.IsString(): + p := typecheck.DotField(base.Pos, typecheck.Expr(np), i) + q := typecheck.DotField(base.Pos, typecheck.Expr(nq), i) + eqlen, eqmem := EqString(p, q) + and(eqlen) + and(eqmem) + default: + and(eqfield(np, nq, i)) + } + if typeCanPanic { + // Also enforce ordering after something that can panic. + conds = append(conds, []ir.Node{}) + } + i++ + continue + } + + cost, size, next := eqStructFieldCost(t, i) + if cost <= 4 { + // Cost of 4 or less: use plain field equality. + for j := i; j < next; j++ { + and(eqfield(np, nq, j)) + } + } else { + // Higher cost: use memequal. + cc := eqmem(np, nq, i, size) + and(cc) + } + i = next + } + + // Sort conditions to put runtime calls last. + // Preserve the rest of the ordering. + var flatConds []ir.Node + for _, c := range conds { + isCall := func(n ir.Node) bool { + return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC + } + sort.SliceStable(c, func(i, j int) bool { + return !isCall(c[i]) && isCall(c[j]) + }) + flatConds = append(flatConds, c...) + } + return flatConds, len(conds) > 1 +} + +// EqString returns the nodes +// +// len(s) == len(t) +// +// and +// +// memequal(s.ptr, t.ptr, len(s)) +// +// which can be used to construct string equality comparison. +// eqlen must be evaluated before eqmem, and shortcircuiting is required. +func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) { + s = typecheck.Conv(s, types.Types[types.TSTRING]) + t = typecheck.Conv(t, types.Types[types.TSTRING]) + sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s) + tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t) + slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR]) + tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR]) + + // Pick the 3rd arg to memequal. Both slen and tlen are fine to use, because we short + // circuit the memequal call if they aren't the same. But if one is a constant some + // memequal optimizations are easier to apply. + probablyConstant := func(n ir.Node) bool { + if n.Op() == ir.OCONVNOP { + n = n.(*ir.ConvExpr).X + } + if n.Op() == ir.OLITERAL { + return true + } + if n.Op() != ir.ONAME { + return false + } + name := n.(*ir.Name) + if name.Class != ir.PAUTO { + return false + } + if def := name.Defn; def == nil { + // n starts out as the empty string + return true + } else if def.Op() == ir.OAS && (def.(*ir.AssignStmt).Y == nil || def.(*ir.AssignStmt).Y.Op() == ir.OLITERAL) { + // n starts out as a constant string + return true + } + return false + } + cmplen := slen + if probablyConstant(t) && !probablyConstant(s) { + cmplen = tlen + } + + fn := typecheck.LookupRuntime("memequal", types.Types[types.TUINT8], types.Types[types.TUINT8]) + call := typecheck.Call(base.Pos, fn, []ir.Node{sptr, tptr, ir.Copy(cmplen)}, false).(*ir.CallExpr) + + cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen) + cmp = typecheck.Expr(cmp).(*ir.BinaryExpr) + cmp.SetType(types.Types[types.TBOOL]) + return cmp, call +} + +// EqInterface returns the nodes +// +// s.tab == t.tab (or s.typ == t.typ, as appropriate) +// +// and +// +// ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate) +// +// which can be used to construct interface equality comparison. +// eqtab must be evaluated before eqdata, and shortcircuiting is required. +func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) { + if !types.Identical(s.Type(), t.Type()) { + base.Fatalf("EqInterface %v %v", s.Type(), t.Type()) + } + // func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool) + // func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool) + var fn ir.Node + if s.Type().IsEmptyInterface() { + fn = typecheck.LookupRuntime("efaceeq") + } else { + fn = typecheck.LookupRuntime("ifaceeq") + } + + stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s) + ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t) + sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s) + tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t) + sdata.SetType(types.Types[types.TUNSAFEPTR]) + tdata.SetType(types.Types[types.TUNSAFEPTR]) + sdata.SetTypecheck(1) + tdata.SetTypecheck(1) + + call := typecheck.Call(base.Pos, fn, []ir.Node{stab, sdata, tdata}, false).(*ir.CallExpr) + + cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab) + cmp = typecheck.Expr(cmp).(*ir.BinaryExpr) + cmp.SetType(types.Types[types.TBOOL]) + return cmp, call +} + +// eqfield returns the node +// +// p.field == q.field +func eqfield(p, q ir.Node, field int) ir.Node { + nx := typecheck.DotField(base.Pos, typecheck.Expr(p), field) + ny := typecheck.DotField(base.Pos, typecheck.Expr(q), field) + return typecheck.Expr(ir.NewBinaryExpr(base.Pos, ir.OEQ, nx, ny)) +} + +// eqmem returns the node +// +// memequal(&p.field, &q.field, size) +func eqmem(p, q ir.Node, field int, size int64) ir.Node { + nx := typecheck.Expr(typecheck.NodAddr(typecheck.DotField(base.Pos, p, field))) + ny := typecheck.Expr(typecheck.NodAddr(typecheck.DotField(base.Pos, q, field))) + + fn, needsize := eqmemfunc(size, nx.Type().Elem()) + call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil) + call.Args.Append(nx) + call.Args.Append(ny) + if needsize { + call.Args.Append(ir.NewInt(base.Pos, size)) + } + + return call +} + +func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) { + switch size { + case 1, 2, 4, 8, 16: + buf := fmt.Sprintf("memequal%d", int(size)*8) + return typecheck.LookupRuntime(buf, t, t), false + } + + return typecheck.LookupRuntime("memequal", t, t), true +} |