summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/liveness/plive.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/liveness/plive.go')
-rw-r--r--src/cmd/compile/internal/liveness/plive.go1548
1 files changed, 1548 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/liveness/plive.go b/src/cmd/compile/internal/liveness/plive.go
new file mode 100644
index 0000000..e4dbfa9
--- /dev/null
+++ b/src/cmd/compile/internal/liveness/plive.go
@@ -0,0 +1,1548 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Garbage collector liveness bitmap generation.
+
+// The command line flag -live causes this code to print debug information.
+// The levels are:
+//
+// -live (aka -live=1): print liveness lists as code warnings at safe points
+// -live=2: print an assembly listing with liveness annotations
+//
+// Each level includes the earlier output as well.
+
+package liveness
+
+import (
+ "fmt"
+ "os"
+ "sort"
+ "strings"
+
+ "cmd/compile/internal/abi"
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/bitvec"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/objw"
+ "cmd/compile/internal/reflectdata"
+ "cmd/compile/internal/ssa"
+ "cmd/compile/internal/typebits"
+ "cmd/compile/internal/types"
+ "cmd/internal/notsha256"
+ "cmd/internal/obj"
+ "cmd/internal/src"
+
+ rtabi "internal/abi"
+)
+
+// OpVarDef is an annotation for the liveness analysis, marking a place
+// where a complete initialization (definition) of a variable begins.
+// Since the liveness analysis can see initialization of single-word
+// variables quite easy, OpVarDef is only needed for multi-word
+// variables satisfying isfat(n.Type). For simplicity though, buildssa
+// emits OpVarDef regardless of variable width.
+//
+// An 'OpVarDef x' annotation in the instruction stream tells the liveness
+// analysis to behave as though the variable x is being initialized at that
+// point in the instruction stream. The OpVarDef must appear before the
+// actual (multi-instruction) initialization, and it must also appear after
+// any uses of the previous value, if any. For example, if compiling:
+//
+// x = x[1:]
+//
+// it is important to generate code like:
+//
+// base, len, cap = pieces of x[1:]
+// OpVarDef x
+// x = {base, len, cap}
+//
+// If instead the generated code looked like:
+//
+// OpVarDef x
+// base, len, cap = pieces of x[1:]
+// x = {base, len, cap}
+//
+// then the liveness analysis would decide the previous value of x was
+// unnecessary even though it is about to be used by the x[1:] computation.
+// Similarly, if the generated code looked like:
+//
+// base, len, cap = pieces of x[1:]
+// x = {base, len, cap}
+// OpVarDef x
+//
+// then the liveness analysis will not preserve the new value of x, because
+// the OpVarDef appears to have "overwritten" it.
+//
+// OpVarDef is a bit of a kludge to work around the fact that the instruction
+// stream is working on single-word values but the liveness analysis
+// wants to work on individual variables, which might be multi-word
+// aggregates. It might make sense at some point to look into letting
+// the liveness analysis work on single-word values as well, although
+// there are complications around interface values, slices, and strings,
+// all of which cannot be treated as individual words.
+
+// blockEffects summarizes the liveness effects on an SSA block.
+type blockEffects struct {
+ // Computed during Liveness.prologue using only the content of
+ // individual blocks:
+ //
+ // uevar: upward exposed variables (used before set in block)
+ // varkill: killed variables (set in block)
+ uevar bitvec.BitVec
+ varkill bitvec.BitVec
+
+ // Computed during Liveness.solve using control flow information:
+ //
+ // livein: variables live at block entry
+ // liveout: variables live at block exit
+ livein bitvec.BitVec
+ liveout bitvec.BitVec
+}
+
+// A collection of global state used by liveness analysis.
+type liveness struct {
+ fn *ir.Func
+ f *ssa.Func
+ vars []*ir.Name
+ idx map[*ir.Name]int32
+ stkptrsize int64
+
+ be []blockEffects
+
+ // allUnsafe indicates that all points in this function are
+ // unsafe-points.
+ allUnsafe bool
+ // unsafePoints bit i is set if Value ID i is an unsafe-point
+ // (preemption is not allowed). Only valid if !allUnsafe.
+ unsafePoints bitvec.BitVec
+ // unsafeBlocks bit i is set if Block ID i is an unsafe-point
+ // (preemption is not allowed on any end-of-block
+ // instructions). Only valid if !allUnsafe.
+ unsafeBlocks bitvec.BitVec
+
+ // An array with a bit vector for each safe point in the
+ // current Block during liveness.epilogue. Indexed in Value
+ // order for that block. Additionally, for the entry block
+ // livevars[0] is the entry bitmap. liveness.compact moves
+ // these to stackMaps.
+ livevars []bitvec.BitVec
+
+ // livenessMap maps from safe points (i.e., CALLs) to their
+ // liveness map indexes.
+ livenessMap Map
+ stackMapSet bvecSet
+ stackMaps []bitvec.BitVec
+
+ cache progeffectscache
+
+ // partLiveArgs includes input arguments (PPARAM) that may
+ // be partially live. That is, it is considered live because
+ // a part of it is used, but we may not initialize all parts.
+ partLiveArgs map[*ir.Name]bool
+
+ doClobber bool // Whether to clobber dead stack slots in this function.
+ noClobberArgs bool // Do not clobber function arguments
+}
+
+// Map maps from *ssa.Value to StackMapIndex.
+// Also keeps track of unsafe ssa.Values and ssa.Blocks.
+// (unsafe = can't be interrupted during GC.)
+type Map struct {
+ Vals map[ssa.ID]objw.StackMapIndex
+ UnsafeVals map[ssa.ID]bool
+ UnsafeBlocks map[ssa.ID]bool
+ // The set of live, pointer-containing variables at the DeferReturn
+ // call (only set when open-coded defers are used).
+ DeferReturn objw.StackMapIndex
+}
+
+func (m *Map) reset() {
+ if m.Vals == nil {
+ m.Vals = make(map[ssa.ID]objw.StackMapIndex)
+ m.UnsafeVals = make(map[ssa.ID]bool)
+ m.UnsafeBlocks = make(map[ssa.ID]bool)
+ } else {
+ for k := range m.Vals {
+ delete(m.Vals, k)
+ }
+ for k := range m.UnsafeVals {
+ delete(m.UnsafeVals, k)
+ }
+ for k := range m.UnsafeBlocks {
+ delete(m.UnsafeBlocks, k)
+ }
+ }
+ m.DeferReturn = objw.StackMapDontCare
+}
+
+func (m *Map) set(v *ssa.Value, i objw.StackMapIndex) {
+ m.Vals[v.ID] = i
+}
+func (m *Map) setUnsafeVal(v *ssa.Value) {
+ m.UnsafeVals[v.ID] = true
+}
+func (m *Map) setUnsafeBlock(b *ssa.Block) {
+ m.UnsafeBlocks[b.ID] = true
+}
+
+func (m Map) Get(v *ssa.Value) objw.StackMapIndex {
+ // If v isn't in the map, then it's a "don't care".
+ if idx, ok := m.Vals[v.ID]; ok {
+ return idx
+ }
+ return objw.StackMapDontCare
+}
+func (m Map) GetUnsafe(v *ssa.Value) bool {
+ // default is safe
+ return m.UnsafeVals[v.ID]
+}
+func (m Map) GetUnsafeBlock(b *ssa.Block) bool {
+ // default is safe
+ return m.UnsafeBlocks[b.ID]
+}
+
+type progeffectscache struct {
+ retuevar []int32
+ tailuevar []int32
+ initialized bool
+}
+
+// shouldTrack reports whether the liveness analysis
+// should track the variable n.
+// We don't care about variables that have no pointers,
+// nor do we care about non-local variables,
+// nor do we care about empty structs (handled by the pointer check),
+// nor do we care about the fake PAUTOHEAP variables.
+func shouldTrack(n *ir.Name) bool {
+ return (n.Class == ir.PAUTO && n.Esc() != ir.EscHeap || n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT) && n.Type().HasPointers()
+}
+
+// getvariables returns the list of on-stack variables that we need to track
+// and a map for looking up indices by *Node.
+func getvariables(fn *ir.Func) ([]*ir.Name, map[*ir.Name]int32) {
+ var vars []*ir.Name
+ for _, n := range fn.Dcl {
+ if shouldTrack(n) {
+ vars = append(vars, n)
+ }
+ }
+ idx := make(map[*ir.Name]int32, len(vars))
+ for i, n := range vars {
+ idx[n] = int32(i)
+ }
+ return vars, idx
+}
+
+func (lv *liveness) initcache() {
+ if lv.cache.initialized {
+ base.Fatalf("liveness cache initialized twice")
+ return
+ }
+ lv.cache.initialized = true
+
+ for i, node := range lv.vars {
+ switch node.Class {
+ case ir.PPARAM:
+ // A return instruction with a p.to is a tail return, which brings
+ // the stack pointer back up (if it ever went down) and then jumps
+ // to a new function entirely. That form of instruction must read
+ // all the parameters for correctness, and similarly it must not
+ // read the out arguments - they won't be set until the new
+ // function runs.
+ lv.cache.tailuevar = append(lv.cache.tailuevar, int32(i))
+
+ case ir.PPARAMOUT:
+ // All results are live at every return point.
+ // Note that this point is after escaping return values
+ // are copied back to the stack using their PAUTOHEAP references.
+ lv.cache.retuevar = append(lv.cache.retuevar, int32(i))
+ }
+ }
+}
+
+// A liveEffect is a set of flags that describe an instruction's
+// liveness effects on a variable.
+//
+// The possible flags are:
+//
+// uevar - used by the instruction
+// varkill - killed by the instruction (set)
+//
+// A kill happens after the use (for an instruction that updates a value, for example).
+type liveEffect int
+
+const (
+ uevar liveEffect = 1 << iota
+ varkill
+)
+
+// valueEffects returns the index of a variable in lv.vars and the
+// liveness effects v has on that variable.
+// If v does not affect any tracked variables, it returns -1, 0.
+func (lv *liveness) valueEffects(v *ssa.Value) (int32, liveEffect) {
+ n, e := affectedVar(v)
+ if e == 0 || n == nil { // cheapest checks first
+ return -1, 0
+ }
+ // AllocFrame has dropped unused variables from
+ // lv.fn.Func.Dcl, but they might still be referenced by
+ // OpVarFoo pseudo-ops. Ignore them to prevent "lost track of
+ // variable" ICEs (issue 19632).
+ switch v.Op {
+ case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive:
+ if !n.Used() {
+ return -1, 0
+ }
+ }
+
+ if n.Class == ir.PPARAM && !n.Addrtaken() && n.Type().Size() > int64(types.PtrSize) {
+ // Only aggregate-typed arguments that are not address-taken can be
+ // partially live.
+ lv.partLiveArgs[n] = true
+ }
+
+ var effect liveEffect
+ // Read is a read, obviously.
+ //
+ // Addr is a read also, as any subsequent holder of the pointer must be able
+ // to see all the values (including initialization) written so far.
+ // This also prevents a variable from "coming back from the dead" and presenting
+ // stale pointers to the garbage collector. See issue 28445.
+ if e&(ssa.SymRead|ssa.SymAddr) != 0 {
+ effect |= uevar
+ }
+ if e&ssa.SymWrite != 0 && (!isfat(n.Type()) || v.Op == ssa.OpVarDef) {
+ effect |= varkill
+ }
+
+ if effect == 0 {
+ return -1, 0
+ }
+
+ if pos, ok := lv.idx[n]; ok {
+ return pos, effect
+ }
+ return -1, 0
+}
+
+// affectedVar returns the *ir.Name node affected by v.
+func affectedVar(v *ssa.Value) (*ir.Name, ssa.SymEffect) {
+ // Special cases.
+ switch v.Op {
+ case ssa.OpLoadReg:
+ n, _ := ssa.AutoVar(v.Args[0])
+ return n, ssa.SymRead
+ case ssa.OpStoreReg:
+ n, _ := ssa.AutoVar(v)
+ return n, ssa.SymWrite
+
+ case ssa.OpArgIntReg:
+ // This forces the spill slot for the register to be live at function entry.
+ // one of the following holds for a function F with pointer-valued register arg X:
+ // 0. No GC (so an uninitialized spill slot is okay)
+ // 1. GC at entry of F. GC is precise, but the spills around morestack initialize X's spill slot
+ // 2. Stack growth at entry of F. Same as GC.
+ // 3. GC occurs within F itself. This has to be from preemption, and thus GC is conservative.
+ // a. X is in a register -- then X is seen, and the spill slot is also scanned conservatively.
+ // b. X is spilled -- the spill slot is initialized, and scanned conservatively
+ // c. X is not live -- the spill slot is scanned conservatively, and it may contain X from an earlier spill.
+ // 4. GC within G, transitively called from F
+ // a. X is live at call site, therefore is spilled, to its spill slot (which is live because of subsequent LoadReg).
+ // b. X is not live at call site -- but neither is its spill slot.
+ n, _ := ssa.AutoVar(v)
+ return n, ssa.SymRead
+
+ case ssa.OpVarLive:
+ return v.Aux.(*ir.Name), ssa.SymRead
+ case ssa.OpVarDef:
+ return v.Aux.(*ir.Name), ssa.SymWrite
+ case ssa.OpKeepAlive:
+ n, _ := ssa.AutoVar(v.Args[0])
+ return n, ssa.SymRead
+ }
+
+ e := v.Op.SymEffect()
+ if e == 0 {
+ return nil, 0
+ }
+
+ switch a := v.Aux.(type) {
+ case nil, *obj.LSym:
+ // ok, but no node
+ return nil, e
+ case *ir.Name:
+ return a, e
+ default:
+ base.Fatalf("weird aux: %s", v.LongString())
+ return nil, e
+ }
+}
+
+type livenessFuncCache struct {
+ be []blockEffects
+ livenessMap Map
+}
+
+// Constructs a new liveness structure used to hold the global state of the
+// liveness computation. The cfg argument is a slice of *BasicBlocks and the
+// vars argument is a slice of *Nodes.
+func newliveness(fn *ir.Func, f *ssa.Func, vars []*ir.Name, idx map[*ir.Name]int32, stkptrsize int64) *liveness {
+ lv := &liveness{
+ fn: fn,
+ f: f,
+ vars: vars,
+ idx: idx,
+ stkptrsize: stkptrsize,
+ }
+
+ // Significant sources of allocation are kept in the ssa.Cache
+ // and reused. Surprisingly, the bit vectors themselves aren't
+ // a major source of allocation, but the liveness maps are.
+ if lc, _ := f.Cache.Liveness.(*livenessFuncCache); lc == nil {
+ // Prep the cache so liveness can fill it later.
+ f.Cache.Liveness = new(livenessFuncCache)
+ } else {
+ if cap(lc.be) >= f.NumBlocks() {
+ lv.be = lc.be[:f.NumBlocks()]
+ }
+ lv.livenessMap = Map{
+ Vals: lc.livenessMap.Vals,
+ UnsafeVals: lc.livenessMap.UnsafeVals,
+ UnsafeBlocks: lc.livenessMap.UnsafeBlocks,
+ DeferReturn: objw.StackMapDontCare,
+ }
+ lc.livenessMap.Vals = nil
+ lc.livenessMap.UnsafeVals = nil
+ lc.livenessMap.UnsafeBlocks = nil
+ }
+ if lv.be == nil {
+ lv.be = make([]blockEffects, f.NumBlocks())
+ }
+
+ nblocks := int32(len(f.Blocks))
+ nvars := int32(len(vars))
+ bulk := bitvec.NewBulk(nvars, nblocks*7)
+ for _, b := range f.Blocks {
+ be := lv.blockEffects(b)
+
+ be.uevar = bulk.Next()
+ be.varkill = bulk.Next()
+ be.livein = bulk.Next()
+ be.liveout = bulk.Next()
+ }
+ lv.livenessMap.reset()
+
+ lv.markUnsafePoints()
+
+ lv.partLiveArgs = make(map[*ir.Name]bool)
+
+ lv.enableClobber()
+
+ return lv
+}
+
+func (lv *liveness) blockEffects(b *ssa.Block) *blockEffects {
+ return &lv.be[b.ID]
+}
+
+// Generates live pointer value maps for arguments and local variables. The
+// this argument and the in arguments are always assumed live. The vars
+// argument is a slice of *Nodes.
+func (lv *liveness) pointerMap(liveout bitvec.BitVec, vars []*ir.Name, args, locals bitvec.BitVec) {
+ for i := int32(0); ; i++ {
+ i = liveout.Next(i)
+ if i < 0 {
+ break
+ }
+ node := vars[i]
+ switch node.Class {
+ case ir.PPARAM, ir.PPARAMOUT:
+ if !node.IsOutputParamInRegisters() {
+ if node.FrameOffset() < 0 {
+ lv.f.Fatalf("Node %v has frameoffset %d\n", node.Sym().Name, node.FrameOffset())
+ }
+ typebits.SetNoCheck(node.Type(), node.FrameOffset(), args)
+ break
+ }
+ fallthrough // PPARAMOUT in registers acts memory-allocates like an AUTO
+ case ir.PAUTO:
+ typebits.Set(node.Type(), node.FrameOffset()+lv.stkptrsize, locals)
+ }
+ }
+}
+
+// IsUnsafe indicates that all points in this function are
+// unsafe-points.
+func IsUnsafe(f *ssa.Func) bool {
+ // The runtime assumes the only safe-points are function
+ // prologues (because that's how it used to be). We could and
+ // should improve that, but for now keep consider all points
+ // in the runtime unsafe. obj will add prologues and their
+ // safe-points.
+ //
+ // go:nosplit functions are similar. Since safe points used to
+ // be coupled with stack checks, go:nosplit often actually
+ // means "no safe points in this function".
+ return base.Flag.CompilingRuntime || f.NoSplit
+}
+
+// markUnsafePoints finds unsafe points and computes lv.unsafePoints.
+func (lv *liveness) markUnsafePoints() {
+ if IsUnsafe(lv.f) {
+ // No complex analysis necessary.
+ lv.allUnsafe = true
+ return
+ }
+
+ lv.unsafePoints = bitvec.New(int32(lv.f.NumValues()))
+ lv.unsafeBlocks = bitvec.New(int32(lv.f.NumBlocks()))
+
+ // Mark architecture-specific unsafe points.
+ for _, b := range lv.f.Blocks {
+ for _, v := range b.Values {
+ if v.Op.UnsafePoint() {
+ lv.unsafePoints.Set(int32(v.ID))
+ }
+ }
+ }
+
+ for _, b := range lv.f.Blocks {
+ for _, v := range b.Values {
+ if v.Op != ssa.OpWBend {
+ continue
+ }
+ // WBend appears at the start of a block, like this:
+ // ...
+ // if wbEnabled: goto C else D
+ // C:
+ // ... some write barrier enabled code ...
+ // goto B
+ // D:
+ // ... some write barrier disabled code ...
+ // goto B
+ // B:
+ // m1 = Phi mem_C mem_D
+ // m2 = store operation ... m1
+ // m3 = store operation ... m2
+ // m4 = WBend m3
+
+ // Find first memory op in the block, which should be a Phi.
+ m := v
+ for {
+ m = m.MemoryArg()
+ if m.Block != b {
+ lv.f.Fatalf("can't find Phi before write barrier end mark %v", v)
+ }
+ if m.Op == ssa.OpPhi {
+ break
+ }
+ }
+ // Find the two predecessor blocks (write barrier on and write barrier off)
+ if len(m.Args) != 2 {
+ lv.f.Fatalf("phi before write barrier end mark has %d args, want 2", len(m.Args))
+ }
+ c := b.Preds[0].Block()
+ d := b.Preds[1].Block()
+
+ // Find their common predecessor block (the one that branches based on wb on/off).
+ // It might be a diamond pattern, or one of the blocks in the diamond pattern might
+ // be missing.
+ var decisionBlock *ssa.Block
+ if len(c.Preds) == 1 && c.Preds[0].Block() == d {
+ decisionBlock = d
+ } else if len(d.Preds) == 1 && d.Preds[0].Block() == c {
+ decisionBlock = c
+ } else if len(c.Preds) == 1 && len(d.Preds) == 1 && c.Preds[0].Block() == d.Preds[0].Block() {
+ decisionBlock = c.Preds[0].Block()
+ } else {
+ lv.f.Fatalf("can't find write barrier pattern %v", v)
+ }
+ if len(decisionBlock.Succs) != 2 {
+ lv.f.Fatalf("common predecessor block the wrong type %s", decisionBlock.Kind)
+ }
+
+ // Flow backwards from the control value to find the
+ // flag load. We don't know what lowered ops we're
+ // looking for, but all current arches produce a
+ // single op that does the memory load from the flag
+ // address, so we look for that.
+ var load *ssa.Value
+ v := decisionBlock.Controls[0]
+ for {
+ if v.MemoryArg() != nil {
+ // Single instruction to load (and maybe compare) the write barrier flag.
+ if sym, ok := v.Aux.(*obj.LSym); ok && sym == ir.Syms.WriteBarrier {
+ load = v
+ break
+ }
+ // Some architectures have to materialize the address separate from
+ // the load.
+ if sym, ok := v.Args[0].Aux.(*obj.LSym); ok && sym == ir.Syms.WriteBarrier {
+ load = v
+ break
+ }
+ v.Fatalf("load of write barrier flag not from correct global: %s", v.LongString())
+ }
+ // Common case: just flow backwards.
+ if len(v.Args) == 1 || len(v.Args) == 2 && v.Args[0] == v.Args[1] {
+ // Note: 386 lowers Neq32 to (TESTL cond cond),
+ v = v.Args[0]
+ continue
+ }
+ v.Fatalf("write barrier control value has more than one argument: %s", v.LongString())
+ }
+
+ // Mark everything after the load unsafe.
+ found := false
+ for _, v := range decisionBlock.Values {
+ if found {
+ lv.unsafePoints.Set(int32(v.ID))
+ }
+ found = found || v == load
+ }
+ lv.unsafeBlocks.Set(int32(decisionBlock.ID))
+
+ // Mark the write barrier on/off blocks as unsafe.
+ for _, e := range decisionBlock.Succs {
+ x := e.Block()
+ if x == b {
+ continue
+ }
+ for _, v := range x.Values {
+ lv.unsafePoints.Set(int32(v.ID))
+ }
+ lv.unsafeBlocks.Set(int32(x.ID))
+ }
+
+ // Mark from the join point up to the WBend as unsafe.
+ for _, v := range b.Values {
+ if v.Op == ssa.OpWBend {
+ break
+ }
+ lv.unsafePoints.Set(int32(v.ID))
+ }
+ }
+ }
+}
+
+// Returns true for instructions that must have a stack map.
+//
+// This does not necessarily mean the instruction is a safe-point. In
+// particular, call Values can have a stack map in case the callee
+// grows the stack, but not themselves be a safe-point.
+func (lv *liveness) hasStackMap(v *ssa.Value) bool {
+ if !v.Op.IsCall() {
+ return false
+ }
+ // wbZero and wbCopy are write barriers and
+ // deeply non-preemptible. They are unsafe points and
+ // hence should not have liveness maps.
+ if sym, ok := v.Aux.(*ssa.AuxCall); ok && (sym.Fn == ir.Syms.WBZero || sym.Fn == ir.Syms.WBMove) {
+ return false
+ }
+ return true
+}
+
+// Initializes the sets for solving the live variables. Visits all the
+// instructions in each basic block to summarizes the information at each basic
+// block
+func (lv *liveness) prologue() {
+ lv.initcache()
+
+ for _, b := range lv.f.Blocks {
+ be := lv.blockEffects(b)
+
+ // Walk the block instructions backward and update the block
+ // effects with the each prog effects.
+ for j := len(b.Values) - 1; j >= 0; j-- {
+ pos, e := lv.valueEffects(b.Values[j])
+ if e&varkill != 0 {
+ be.varkill.Set(pos)
+ be.uevar.Unset(pos)
+ }
+ if e&uevar != 0 {
+ be.uevar.Set(pos)
+ }
+ }
+ }
+}
+
+// Solve the liveness dataflow equations.
+func (lv *liveness) solve() {
+ // These temporary bitvectors exist to avoid successive allocations and
+ // frees within the loop.
+ nvars := int32(len(lv.vars))
+ newlivein := bitvec.New(nvars)
+ newliveout := bitvec.New(nvars)
+
+ // Walk blocks in postorder ordering. This improves convergence.
+ po := lv.f.Postorder()
+
+ // Iterate through the blocks in reverse round-robin fashion. A work
+ // queue might be slightly faster. As is, the number of iterations is
+ // so low that it hardly seems to be worth the complexity.
+
+ for change := true; change; {
+ change = false
+ for _, b := range po {
+ be := lv.blockEffects(b)
+
+ newliveout.Clear()
+ switch b.Kind {
+ case ssa.BlockRet:
+ for _, pos := range lv.cache.retuevar {
+ newliveout.Set(pos)
+ }
+ case ssa.BlockRetJmp:
+ for _, pos := range lv.cache.tailuevar {
+ newliveout.Set(pos)
+ }
+ case ssa.BlockExit:
+ // panic exit - nothing to do
+ default:
+ // A variable is live on output from this block
+ // if it is live on input to some successor.
+ //
+ // out[b] = \bigcup_{s \in succ[b]} in[s]
+ newliveout.Copy(lv.blockEffects(b.Succs[0].Block()).livein)
+ for _, succ := range b.Succs[1:] {
+ newliveout.Or(newliveout, lv.blockEffects(succ.Block()).livein)
+ }
+ }
+
+ if !be.liveout.Eq(newliveout) {
+ change = true
+ be.liveout.Copy(newliveout)
+ }
+
+ // A variable is live on input to this block
+ // if it is used by this block, or live on output from this block and
+ // not set by the code in this block.
+ //
+ // in[b] = uevar[b] \cup (out[b] \setminus varkill[b])
+ newlivein.AndNot(be.liveout, be.varkill)
+ be.livein.Or(newlivein, be.uevar)
+ }
+ }
+}
+
+// Visits all instructions in a basic block and computes a bit vector of live
+// variables at each safe point locations.
+func (lv *liveness) epilogue() {
+ nvars := int32(len(lv.vars))
+ liveout := bitvec.New(nvars)
+ livedefer := bitvec.New(nvars) // always-live variables
+
+ // If there is a defer (that could recover), then all output
+ // parameters are live all the time. In addition, any locals
+ // that are pointers to heap-allocated output parameters are
+ // also always live (post-deferreturn code needs these
+ // pointers to copy values back to the stack).
+ // TODO: if the output parameter is heap-allocated, then we
+ // don't need to keep the stack copy live?
+ if lv.fn.HasDefer() {
+ for i, n := range lv.vars {
+ if n.Class == ir.PPARAMOUT {
+ if n.IsOutputParamHeapAddr() {
+ // Just to be paranoid. Heap addresses are PAUTOs.
+ base.Fatalf("variable %v both output param and heap output param", n)
+ }
+ if n.Heapaddr != nil {
+ // If this variable moved to the heap, then
+ // its stack copy is not live.
+ continue
+ }
+ // Note: zeroing is handled by zeroResults in walk.go.
+ livedefer.Set(int32(i))
+ }
+ if n.IsOutputParamHeapAddr() {
+ // This variable will be overwritten early in the function
+ // prologue (from the result of a mallocgc) but we need to
+ // zero it in case that malloc causes a stack scan.
+ n.SetNeedzero(true)
+ livedefer.Set(int32(i))
+ }
+ if n.OpenDeferSlot() {
+ // Open-coded defer args slots must be live
+ // everywhere in a function, since a panic can
+ // occur (almost) anywhere. Because it is live
+ // everywhere, it must be zeroed on entry.
+ livedefer.Set(int32(i))
+ // It was already marked as Needzero when created.
+ if !n.Needzero() {
+ base.Fatalf("all pointer-containing defer arg slots should have Needzero set")
+ }
+ }
+ }
+ }
+
+ // We must analyze the entry block first. The runtime assumes
+ // the function entry map is index 0. Conveniently, layout
+ // already ensured that the entry block is first.
+ if lv.f.Entry != lv.f.Blocks[0] {
+ lv.f.Fatalf("entry block must be first")
+ }
+
+ {
+ // Reserve an entry for function entry.
+ live := bitvec.New(nvars)
+ lv.livevars = append(lv.livevars, live)
+ }
+
+ for _, b := range lv.f.Blocks {
+ be := lv.blockEffects(b)
+
+ // Walk forward through the basic block instructions and
+ // allocate liveness maps for those instructions that need them.
+ for _, v := range b.Values {
+ if !lv.hasStackMap(v) {
+ continue
+ }
+
+ live := bitvec.New(nvars)
+ lv.livevars = append(lv.livevars, live)
+ }
+
+ // walk backward, construct maps at each safe point
+ index := int32(len(lv.livevars) - 1)
+
+ liveout.Copy(be.liveout)
+ for i := len(b.Values) - 1; i >= 0; i-- {
+ v := b.Values[i]
+
+ if lv.hasStackMap(v) {
+ // Found an interesting instruction, record the
+ // corresponding liveness information.
+
+ live := &lv.livevars[index]
+ live.Or(*live, liveout)
+ live.Or(*live, livedefer) // only for non-entry safe points
+ index--
+ }
+
+ // Update liveness information.
+ pos, e := lv.valueEffects(v)
+ if e&varkill != 0 {
+ liveout.Unset(pos)
+ }
+ if e&uevar != 0 {
+ liveout.Set(pos)
+ }
+ }
+
+ if b == lv.f.Entry {
+ if index != 0 {
+ base.Fatalf("bad index for entry point: %v", index)
+ }
+
+ // Check to make sure only input variables are live.
+ for i, n := range lv.vars {
+ if !liveout.Get(int32(i)) {
+ continue
+ }
+ if n.Class == ir.PPARAM {
+ continue // ok
+ }
+ base.FatalfAt(n.Pos(), "bad live variable at entry of %v: %L", lv.fn.Nname, n)
+ }
+
+ // Record live variables.
+ live := &lv.livevars[index]
+ live.Or(*live, liveout)
+ }
+
+ if lv.doClobber {
+ lv.clobber(b)
+ }
+
+ // The liveness maps for this block are now complete. Compact them.
+ lv.compact(b)
+ }
+
+ // If we have an open-coded deferreturn call, make a liveness map for it.
+ if lv.fn.OpenCodedDeferDisallowed() {
+ lv.livenessMap.DeferReturn = objw.StackMapDontCare
+ } else {
+ idx, _ := lv.stackMapSet.add(livedefer)
+ lv.livenessMap.DeferReturn = objw.StackMapIndex(idx)
+ }
+
+ // Done compacting. Throw out the stack map set.
+ lv.stackMaps = lv.stackMapSet.extractUnique()
+ lv.stackMapSet = bvecSet{}
+
+ // Useful sanity check: on entry to the function,
+ // the only things that can possibly be live are the
+ // input parameters.
+ for j, n := range lv.vars {
+ if n.Class != ir.PPARAM && lv.stackMaps[0].Get(int32(j)) {
+ lv.f.Fatalf("%v %L recorded as live on entry", lv.fn.Nname, n)
+ }
+ }
+}
+
+// Compact coalesces identical bitmaps from lv.livevars into the sets
+// lv.stackMapSet.
+//
+// Compact clears lv.livevars.
+//
+// There are actually two lists of bitmaps, one list for the local variables and one
+// list for the function arguments. Both lists are indexed by the same PCDATA
+// index, so the corresponding pairs must be considered together when
+// merging duplicates. The argument bitmaps change much less often during
+// function execution than the local variable bitmaps, so it is possible that
+// we could introduce a separate PCDATA index for arguments vs locals and
+// then compact the set of argument bitmaps separately from the set of
+// local variable bitmaps. As of 2014-04-02, doing this to the godoc binary
+// is actually a net loss: we save about 50k of argument bitmaps but the new
+// PCDATA tables cost about 100k. So for now we keep using a single index for
+// both bitmap lists.
+func (lv *liveness) compact(b *ssa.Block) {
+ pos := 0
+ if b == lv.f.Entry {
+ // Handle entry stack map.
+ lv.stackMapSet.add(lv.livevars[0])
+ pos++
+ }
+ for _, v := range b.Values {
+ if lv.hasStackMap(v) {
+ idx, _ := lv.stackMapSet.add(lv.livevars[pos])
+ pos++
+ lv.livenessMap.set(v, objw.StackMapIndex(idx))
+ }
+ if lv.allUnsafe || v.Op != ssa.OpClobber && lv.unsafePoints.Get(int32(v.ID)) {
+ lv.livenessMap.setUnsafeVal(v)
+ }
+ }
+ if lv.allUnsafe || lv.unsafeBlocks.Get(int32(b.ID)) {
+ lv.livenessMap.setUnsafeBlock(b)
+ }
+
+ // Reset livevars.
+ lv.livevars = lv.livevars[:0]
+}
+
+func (lv *liveness) enableClobber() {
+ // The clobberdead experiment inserts code to clobber pointer slots in all
+ // the dead variables (locals and args) at every synchronous safepoint.
+ if !base.Flag.ClobberDead {
+ return
+ }
+ if lv.fn.Pragma&ir.CgoUnsafeArgs != 0 {
+ // C or assembly code uses the exact frame layout. Don't clobber.
+ return
+ }
+ if len(lv.vars) > 10000 || len(lv.f.Blocks) > 10000 {
+ // Be careful to avoid doing too much work.
+ // Bail if >10000 variables or >10000 blocks.
+ // Otherwise, giant functions make this experiment generate too much code.
+ return
+ }
+ if lv.f.Name == "forkAndExecInChild" {
+ // forkAndExecInChild calls vfork on some platforms.
+ // The code we add here clobbers parts of the stack in the child.
+ // When the parent resumes, it is using the same stack frame. But the
+ // child has clobbered stack variables that the parent needs. Boom!
+ // In particular, the sys argument gets clobbered.
+ return
+ }
+ if lv.f.Name == "wbBufFlush" ||
+ ((lv.f.Name == "callReflect" || lv.f.Name == "callMethod") && lv.fn.ABIWrapper()) {
+ // runtime.wbBufFlush must not modify its arguments. See the comments
+ // in runtime/mwbbuf.go:wbBufFlush.
+ //
+ // reflect.callReflect and reflect.callMethod are called from special
+ // functions makeFuncStub and methodValueCall. The runtime expects
+ // that it can find the first argument (ctxt) at 0(SP) in makeFuncStub
+ // and methodValueCall's frame (see runtime/traceback.go:getArgInfo).
+ // Normally callReflect and callMethod already do not modify the
+ // argument, and keep it alive. But the compiler-generated ABI wrappers
+ // don't do that. Special case the wrappers to not clobber its arguments.
+ lv.noClobberArgs = true
+ }
+ if h := os.Getenv("GOCLOBBERDEADHASH"); h != "" {
+ // Clobber only functions where the hash of the function name matches a pattern.
+ // Useful for binary searching for a miscompiled function.
+ hstr := ""
+ for _, b := range notsha256.Sum256([]byte(lv.f.Name)) {
+ hstr += fmt.Sprintf("%08b", b)
+ }
+ if !strings.HasSuffix(hstr, h) {
+ return
+ }
+ fmt.Printf("\t\t\tCLOBBERDEAD %s\n", lv.f.Name)
+ }
+ lv.doClobber = true
+}
+
+// Inserts code to clobber pointer slots in all the dead variables (locals and args)
+// at every synchronous safepoint in b.
+func (lv *liveness) clobber(b *ssa.Block) {
+ // Copy block's values to a temporary.
+ oldSched := append([]*ssa.Value{}, b.Values...)
+ b.Values = b.Values[:0]
+ idx := 0
+
+ // Clobber pointer slots in all dead variables at entry.
+ if b == lv.f.Entry {
+ for len(oldSched) > 0 && len(oldSched[0].Args) == 0 {
+ // Skip argless ops. We need to skip at least
+ // the lowered ClosurePtr op, because it
+ // really wants to be first. This will also
+ // skip ops like InitMem and SP, which are ok.
+ b.Values = append(b.Values, oldSched[0])
+ oldSched = oldSched[1:]
+ }
+ clobber(lv, b, lv.livevars[0])
+ idx++
+ }
+
+ // Copy values into schedule, adding clobbering around safepoints.
+ for _, v := range oldSched {
+ if !lv.hasStackMap(v) {
+ b.Values = append(b.Values, v)
+ continue
+ }
+ clobber(lv, b, lv.livevars[idx])
+ b.Values = append(b.Values, v)
+ idx++
+ }
+}
+
+// clobber generates code to clobber pointer slots in all dead variables
+// (those not marked in live). Clobbering instructions are added to the end
+// of b.Values.
+func clobber(lv *liveness, b *ssa.Block, live bitvec.BitVec) {
+ for i, n := range lv.vars {
+ if !live.Get(int32(i)) && !n.Addrtaken() && !n.OpenDeferSlot() && !n.IsOutputParamHeapAddr() {
+ // Don't clobber stack objects (address-taken). They are
+ // tracked dynamically.
+ // Also don't clobber slots that are live for defers (see
+ // the code setting livedefer in epilogue).
+ if lv.noClobberArgs && n.Class == ir.PPARAM {
+ continue
+ }
+ clobberVar(b, n)
+ }
+ }
+}
+
+// clobberVar generates code to trash the pointers in v.
+// Clobbering instructions are added to the end of b.Values.
+func clobberVar(b *ssa.Block, v *ir.Name) {
+ clobberWalk(b, v, 0, v.Type())
+}
+
+// b = block to which we append instructions
+// v = variable
+// offset = offset of (sub-portion of) variable to clobber (in bytes)
+// t = type of sub-portion of v.
+func clobberWalk(b *ssa.Block, v *ir.Name, offset int64, t *types.Type) {
+ if !t.HasPointers() {
+ return
+ }
+ switch t.Kind() {
+ case types.TPTR,
+ types.TUNSAFEPTR,
+ types.TFUNC,
+ types.TCHAN,
+ types.TMAP:
+ clobberPtr(b, v, offset)
+
+ case types.TSTRING:
+ // struct { byte *str; int len; }
+ clobberPtr(b, v, offset)
+
+ case types.TINTER:
+ // struct { Itab *tab; void *data; }
+ // or, when isnilinter(t)==true:
+ // struct { Type *type; void *data; }
+ clobberPtr(b, v, offset)
+ clobberPtr(b, v, offset+int64(types.PtrSize))
+
+ case types.TSLICE:
+ // struct { byte *array; int len; int cap; }
+ clobberPtr(b, v, offset)
+
+ case types.TARRAY:
+ for i := int64(0); i < t.NumElem(); i++ {
+ clobberWalk(b, v, offset+i*t.Elem().Size(), t.Elem())
+ }
+
+ case types.TSTRUCT:
+ for _, t1 := range t.Fields() {
+ clobberWalk(b, v, offset+t1.Offset, t1.Type)
+ }
+
+ default:
+ base.Fatalf("clobberWalk: unexpected type, %v", t)
+ }
+}
+
+// clobberPtr generates a clobber of the pointer at offset offset in v.
+// The clobber instruction is added at the end of b.
+func clobberPtr(b *ssa.Block, v *ir.Name, offset int64) {
+ b.NewValue0IA(src.NoXPos, ssa.OpClobber, types.TypeVoid, offset, v)
+}
+
+func (lv *liveness) showlive(v *ssa.Value, live bitvec.BitVec) {
+ if base.Flag.Live == 0 || ir.FuncName(lv.fn) == "init" || strings.HasPrefix(ir.FuncName(lv.fn), ".") {
+ return
+ }
+ if lv.fn.Wrapper() || lv.fn.Dupok() {
+ // Skip reporting liveness information for compiler-generated wrappers.
+ return
+ }
+ if !(v == nil || v.Op.IsCall()) {
+ // Historically we only printed this information at
+ // calls. Keep doing so.
+ return
+ }
+ if live.IsEmpty() {
+ return
+ }
+
+ pos := lv.fn.Nname.Pos()
+ if v != nil {
+ pos = v.Pos
+ }
+
+ s := "live at "
+ if v == nil {
+ s += fmt.Sprintf("entry to %s:", ir.FuncName(lv.fn))
+ } else if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil {
+ fn := sym.Fn.Name
+ if pos := strings.Index(fn, "."); pos >= 0 {
+ fn = fn[pos+1:]
+ }
+ s += fmt.Sprintf("call to %s:", fn)
+ } else {
+ s += "indirect call:"
+ }
+
+ // Sort variable names for display. Variables aren't in any particular order, and
+ // the order can change by architecture, particularly with differences in regabi.
+ var names []string
+ for j, n := range lv.vars {
+ if live.Get(int32(j)) {
+ names = append(names, n.Sym().Name)
+ }
+ }
+ sort.Strings(names)
+ for _, v := range names {
+ s += " " + v
+ }
+
+ base.WarnfAt(pos, s)
+}
+
+func (lv *liveness) printbvec(printed bool, name string, live bitvec.BitVec) bool {
+ if live.IsEmpty() {
+ return printed
+ }
+
+ if !printed {
+ fmt.Printf("\t")
+ } else {
+ fmt.Printf(" ")
+ }
+ fmt.Printf("%s=", name)
+
+ comma := ""
+ for i, n := range lv.vars {
+ if !live.Get(int32(i)) {
+ continue
+ }
+ fmt.Printf("%s%s", comma, n.Sym().Name)
+ comma = ","
+ }
+ return true
+}
+
+// printeffect is like printbvec, but for valueEffects.
+func (lv *liveness) printeffect(printed bool, name string, pos int32, x bool) bool {
+ if !x {
+ return printed
+ }
+ if !printed {
+ fmt.Printf("\t")
+ } else {
+ fmt.Printf(" ")
+ }
+ fmt.Printf("%s=", name)
+ if x {
+ fmt.Printf("%s", lv.vars[pos].Sym().Name)
+ }
+
+ return true
+}
+
+// Prints the computed liveness information and inputs, for debugging.
+// This format synthesizes the information used during the multiple passes
+// into a single presentation.
+func (lv *liveness) printDebug() {
+ fmt.Printf("liveness: %s\n", ir.FuncName(lv.fn))
+
+ for i, b := range lv.f.Blocks {
+ if i > 0 {
+ fmt.Printf("\n")
+ }
+
+ // bb#0 pred=1,2 succ=3,4
+ fmt.Printf("bb#%d pred=", b.ID)
+ for j, pred := range b.Preds {
+ if j > 0 {
+ fmt.Printf(",")
+ }
+ fmt.Printf("%d", pred.Block().ID)
+ }
+ fmt.Printf(" succ=")
+ for j, succ := range b.Succs {
+ if j > 0 {
+ fmt.Printf(",")
+ }
+ fmt.Printf("%d", succ.Block().ID)
+ }
+ fmt.Printf("\n")
+
+ be := lv.blockEffects(b)
+
+ // initial settings
+ printed := false
+ printed = lv.printbvec(printed, "uevar", be.uevar)
+ printed = lv.printbvec(printed, "livein", be.livein)
+ if printed {
+ fmt.Printf("\n")
+ }
+
+ // program listing, with individual effects listed
+
+ if b == lv.f.Entry {
+ live := lv.stackMaps[0]
+ fmt.Printf("(%s) function entry\n", base.FmtPos(lv.fn.Nname.Pos()))
+ fmt.Printf("\tlive=")
+ printed = false
+ for j, n := range lv.vars {
+ if !live.Get(int32(j)) {
+ continue
+ }
+ if printed {
+ fmt.Printf(",")
+ }
+ fmt.Printf("%v", n)
+ printed = true
+ }
+ fmt.Printf("\n")
+ }
+
+ for _, v := range b.Values {
+ fmt.Printf("(%s) %v\n", base.FmtPos(v.Pos), v.LongString())
+
+ pcdata := lv.livenessMap.Get(v)
+
+ pos, effect := lv.valueEffects(v)
+ printed = false
+ printed = lv.printeffect(printed, "uevar", pos, effect&uevar != 0)
+ printed = lv.printeffect(printed, "varkill", pos, effect&varkill != 0)
+ if printed {
+ fmt.Printf("\n")
+ }
+
+ if pcdata.StackMapValid() {
+ fmt.Printf("\tlive=")
+ printed = false
+ if pcdata.StackMapValid() {
+ live := lv.stackMaps[pcdata]
+ for j, n := range lv.vars {
+ if !live.Get(int32(j)) {
+ continue
+ }
+ if printed {
+ fmt.Printf(",")
+ }
+ fmt.Printf("%v", n)
+ printed = true
+ }
+ }
+ fmt.Printf("\n")
+ }
+
+ if lv.livenessMap.GetUnsafe(v) {
+ fmt.Printf("\tunsafe-point\n")
+ }
+ }
+ if lv.livenessMap.GetUnsafeBlock(b) {
+ fmt.Printf("\tunsafe-block\n")
+ }
+
+ // bb bitsets
+ fmt.Printf("end\n")
+ printed = false
+ printed = lv.printbvec(printed, "varkill", be.varkill)
+ printed = lv.printbvec(printed, "liveout", be.liveout)
+ if printed {
+ fmt.Printf("\n")
+ }
+ }
+
+ fmt.Printf("\n")
+}
+
+// Dumps a slice of bitmaps to a symbol as a sequence of uint32 values. The
+// first word dumped is the total number of bitmaps. The second word is the
+// length of the bitmaps. All bitmaps are assumed to be of equal length. The
+// remaining bytes are the raw bitmaps.
+func (lv *liveness) emit() (argsSym, liveSym *obj.LSym) {
+ // Size args bitmaps to be just large enough to hold the largest pointer.
+ // First, find the largest Xoffset node we care about.
+ // (Nodes without pointers aren't in lv.vars; see ShouldTrack.)
+ var maxArgNode *ir.Name
+ for _, n := range lv.vars {
+ switch n.Class {
+ case ir.PPARAM, ir.PPARAMOUT:
+ if !n.IsOutputParamInRegisters() {
+ if maxArgNode == nil || n.FrameOffset() > maxArgNode.FrameOffset() {
+ maxArgNode = n
+ }
+ }
+ }
+ }
+ // Next, find the offset of the largest pointer in the largest node.
+ var maxArgs int64
+ if maxArgNode != nil {
+ maxArgs = maxArgNode.FrameOffset() + types.PtrDataSize(maxArgNode.Type())
+ }
+
+ // Size locals bitmaps to be stkptrsize sized.
+ // We cannot shrink them to only hold the largest pointer,
+ // because their size is used to calculate the beginning
+ // of the local variables frame.
+ // Further discussion in https://golang.org/cl/104175.
+ // TODO: consider trimming leading zeros.
+ // This would require shifting all bitmaps.
+ maxLocals := lv.stkptrsize
+
+ // Temporary symbols for encoding bitmaps.
+ var argsSymTmp, liveSymTmp obj.LSym
+
+ args := bitvec.New(int32(maxArgs / int64(types.PtrSize)))
+ aoff := objw.Uint32(&argsSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
+ aoff = objw.Uint32(&argsSymTmp, aoff, uint32(args.N)) // number of bits in each bitmap
+
+ locals := bitvec.New(int32(maxLocals / int64(types.PtrSize)))
+ loff := objw.Uint32(&liveSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
+ loff = objw.Uint32(&liveSymTmp, loff, uint32(locals.N)) // number of bits in each bitmap
+
+ for _, live := range lv.stackMaps {
+ args.Clear()
+ locals.Clear()
+
+ lv.pointerMap(live, lv.vars, args, locals)
+
+ aoff = objw.BitVec(&argsSymTmp, aoff, args)
+ loff = objw.BitVec(&liveSymTmp, loff, locals)
+ }
+
+ // These symbols will be added to Ctxt.Data by addGCLocals
+ // after parallel compilation is done.
+ return base.Ctxt.GCLocalsSym(argsSymTmp.P), base.Ctxt.GCLocalsSym(liveSymTmp.P)
+}
+
+// Entry pointer for Compute analysis. Solves for the Compute of
+// pointer variables in the function and emits a runtime data
+// structure read by the garbage collector.
+// Returns a map from GC safe points to their corresponding stack map index,
+// and a map that contains all input parameters that may be partially live.
+func Compute(curfn *ir.Func, f *ssa.Func, stkptrsize int64, pp *objw.Progs) (Map, map[*ir.Name]bool) {
+ // Construct the global liveness state.
+ vars, idx := getvariables(curfn)
+ lv := newliveness(curfn, f, vars, idx, stkptrsize)
+
+ // Run the dataflow framework.
+ lv.prologue()
+ lv.solve()
+ lv.epilogue()
+ if base.Flag.Live > 0 {
+ lv.showlive(nil, lv.stackMaps[0])
+ for _, b := range f.Blocks {
+ for _, val := range b.Values {
+ if idx := lv.livenessMap.Get(val); idx.StackMapValid() {
+ lv.showlive(val, lv.stackMaps[idx])
+ }
+ }
+ }
+ }
+ if base.Flag.Live >= 2 {
+ lv.printDebug()
+ }
+
+ // Update the function cache.
+ {
+ cache := f.Cache.Liveness.(*livenessFuncCache)
+ if cap(lv.be) < 2000 { // Threshold from ssa.Cache slices.
+ for i := range lv.be {
+ lv.be[i] = blockEffects{}
+ }
+ cache.be = lv.be
+ }
+ if len(lv.livenessMap.Vals) < 2000 {
+ cache.livenessMap = lv.livenessMap
+ }
+ }
+
+ // Emit the live pointer map data structures
+ ls := curfn.LSym
+ fninfo := ls.Func()
+ fninfo.GCArgs, fninfo.GCLocals = lv.emit()
+
+ p := pp.Prog(obj.AFUNCDATA)
+ p.From.SetConst(rtabi.FUNCDATA_ArgsPointerMaps)
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = fninfo.GCArgs
+
+ p = pp.Prog(obj.AFUNCDATA)
+ p.From.SetConst(rtabi.FUNCDATA_LocalsPointerMaps)
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = fninfo.GCLocals
+
+ if x := lv.emitStackObjects(); x != nil {
+ p := pp.Prog(obj.AFUNCDATA)
+ p.From.SetConst(rtabi.FUNCDATA_StackObjects)
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = x
+ }
+
+ return lv.livenessMap, lv.partLiveArgs
+}
+
+func (lv *liveness) emitStackObjects() *obj.LSym {
+ var vars []*ir.Name
+ for _, n := range lv.fn.Dcl {
+ if shouldTrack(n) && n.Addrtaken() && n.Esc() != ir.EscHeap {
+ vars = append(vars, n)
+ }
+ }
+ if len(vars) == 0 {
+ return nil
+ }
+
+ // Sort variables from lowest to highest address.
+ sort.Slice(vars, func(i, j int) bool { return vars[i].FrameOffset() < vars[j].FrameOffset() })
+
+ // Populate the stack object data.
+ // Format must match runtime/stack.go:stackObjectRecord.
+ x := base.Ctxt.Lookup(lv.fn.LSym.Name + ".stkobj")
+ x.Set(obj.AttrContentAddressable, true)
+ lv.fn.LSym.Func().StackObjects = x
+ off := 0
+ off = objw.Uintptr(x, off, uint64(len(vars)))
+ for _, v := range vars {
+ // Note: arguments and return values have non-negative Xoffset,
+ // in which case the offset is relative to argp.
+ // Locals have a negative Xoffset, in which case the offset is relative to varp.
+ // We already limit the frame size, so the offset and the object size
+ // should not be too big.
+ frameOffset := v.FrameOffset()
+ if frameOffset != int64(int32(frameOffset)) {
+ base.Fatalf("frame offset too big: %v %d", v, frameOffset)
+ }
+ off = objw.Uint32(x, off, uint32(frameOffset))
+
+ t := v.Type()
+ sz := t.Size()
+ if sz != int64(int32(sz)) {
+ base.Fatalf("stack object too big: %v of type %v, size %d", v, t, sz)
+ }
+ lsym, useGCProg, ptrdata := reflectdata.GCSym(t)
+ if useGCProg {
+ ptrdata = -ptrdata
+ }
+ off = objw.Uint32(x, off, uint32(sz))
+ off = objw.Uint32(x, off, uint32(ptrdata))
+ off = objw.SymPtrOff(x, off, lsym)
+ }
+
+ if base.Flag.Live != 0 {
+ for _, v := range vars {
+ base.WarnfAt(v.Pos(), "stack object %v %v", v, v.Type())
+ }
+ }
+
+ return x
+}
+
+// isfat reports whether a variable of type t needs multiple assignments to initialize.
+// For example:
+//
+// type T struct { x, y int }
+// x := T{x: 0, y: 1}
+//
+// Then we need:
+//
+// var t T
+// t.x = 0
+// t.y = 1
+//
+// to fully initialize t.
+func isfat(t *types.Type) bool {
+ if t != nil {
+ switch t.Kind() {
+ case types.TSLICE, types.TSTRING,
+ types.TINTER: // maybe remove later
+ return true
+ case types.TARRAY:
+ // Array of 1 element, check if element is fat
+ if t.NumElem() == 1 {
+ return isfat(t.Elem())
+ }
+ return true
+ case types.TSTRUCT:
+ // Struct with 1 field, check if field is fat
+ if t.NumFields() == 1 {
+ return isfat(t.Field(0).Type)
+ }
+ return true
+ }
+ }
+
+ return false
+}
+
+// WriteFuncMap writes the pointer bitmaps for bodyless function fn's
+// inputs and outputs as the value of symbol <fn>.args_stackmap.
+// If fn has outputs, two bitmaps are written, otherwise just one.
+func WriteFuncMap(fn *ir.Func, abiInfo *abi.ABIParamResultInfo) {
+ if ir.FuncName(fn) == "_" || fn.Sym().Linkname != "" {
+ return
+ }
+ nptr := int(abiInfo.ArgWidth() / int64(types.PtrSize))
+ bv := bitvec.New(int32(nptr))
+
+ for _, p := range abiInfo.InParams() {
+ typebits.SetNoCheck(p.Type, p.FrameOffset(abiInfo), bv)
+ }
+
+ nbitmap := 1
+ if fn.Type().NumResults() > 0 {
+ nbitmap = 2
+ }
+ lsym := base.Ctxt.Lookup(fn.LSym.Name + ".args_stackmap")
+ off := objw.Uint32(lsym, 0, uint32(nbitmap))
+ off = objw.Uint32(lsym, off, uint32(bv.N))
+ off = objw.BitVec(lsym, off, bv)
+
+ if fn.Type().NumResults() > 0 {
+ for _, p := range abiInfo.OutParams() {
+ if len(p.Registers) == 0 {
+ typebits.SetNoCheck(p.Type, p.FrameOffset(abiInfo), bv)
+ }
+ }
+ off = objw.BitVec(lsym, off, bv)
+ }
+
+ objw.Global(lsym, int32(off), obj.RODATA|obj.LOCAL)
+}