summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/reflectdata/reflect.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/reflectdata/reflect.go')
-rw-r--r--src/cmd/compile/internal/reflectdata/reflect.go1898
1 files changed, 1898 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/reflectdata/reflect.go b/src/cmd/compile/internal/reflectdata/reflect.go
new file mode 100644
index 0000000..c2407af
--- /dev/null
+++ b/src/cmd/compile/internal/reflectdata/reflect.go
@@ -0,0 +1,1898 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflectdata
+
+import (
+ "encoding/binary"
+ "fmt"
+ "internal/abi"
+ "os"
+ "sort"
+ "strings"
+ "sync"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/bitvec"
+ "cmd/compile/internal/compare"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/objw"
+ "cmd/compile/internal/rttype"
+ "cmd/compile/internal/staticdata"
+ "cmd/compile/internal/typebits"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "cmd/internal/gcprog"
+ "cmd/internal/obj"
+ "cmd/internal/objabi"
+ "cmd/internal/src"
+)
+
+type ptabEntry struct {
+ s *types.Sym
+ t *types.Type
+}
+
+// runtime interface and reflection data structures
+var (
+ // protects signatset and signatslice
+ signatmu sync.Mutex
+ // Tracking which types need runtime type descriptor
+ signatset = make(map[*types.Type]struct{})
+ // Queue of types wait to be generated runtime type descriptor
+ signatslice []typeAndStr
+
+ gcsymmu sync.Mutex // protects gcsymset and gcsymslice
+ gcsymset = make(map[*types.Type]struct{})
+)
+
+type typeSig struct {
+ name *types.Sym
+ isym *obj.LSym
+ tsym *obj.LSym
+ type_ *types.Type
+ mtype *types.Type
+}
+
+// Builds a type representing a Bucket structure for
+// the given map type. This type is not visible to users -
+// we include only enough information to generate a correct GC
+// program for it.
+// Make sure this stays in sync with runtime/map.go.
+//
+// A "bucket" is a "struct" {
+// tophash [BUCKETSIZE]uint8
+// keys [BUCKETSIZE]keyType
+// elems [BUCKETSIZE]elemType
+// overflow *bucket
+// }
+const (
+ BUCKETSIZE = abi.MapBucketCount
+ MAXKEYSIZE = abi.MapMaxKeyBytes
+ MAXELEMSIZE = abi.MapMaxElemBytes
+)
+
+func commonSize() int { return int(rttype.Type.Size()) } // Sizeof(runtime._type{})
+
+func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{})
+ if t.Sym() == nil && len(methods(t)) == 0 {
+ return 0
+ }
+ return int(rttype.UncommonType.Size())
+}
+
+func makefield(name string, t *types.Type) *types.Field {
+ sym := (*types.Pkg)(nil).Lookup(name)
+ return types.NewField(src.NoXPos, sym, t)
+}
+
+// MapBucketType makes the map bucket type given the type of the map.
+func MapBucketType(t *types.Type) *types.Type {
+ if t.MapType().Bucket != nil {
+ return t.MapType().Bucket
+ }
+
+ keytype := t.Key()
+ elemtype := t.Elem()
+ types.CalcSize(keytype)
+ types.CalcSize(elemtype)
+ if keytype.Size() > MAXKEYSIZE {
+ keytype = types.NewPtr(keytype)
+ }
+ if elemtype.Size() > MAXELEMSIZE {
+ elemtype = types.NewPtr(elemtype)
+ }
+
+ field := make([]*types.Field, 0, 5)
+
+ // The first field is: uint8 topbits[BUCKETSIZE].
+ arr := types.NewArray(types.Types[types.TUINT8], BUCKETSIZE)
+ field = append(field, makefield("topbits", arr))
+
+ arr = types.NewArray(keytype, BUCKETSIZE)
+ arr.SetNoalg(true)
+ keys := makefield("keys", arr)
+ field = append(field, keys)
+
+ arr = types.NewArray(elemtype, BUCKETSIZE)
+ arr.SetNoalg(true)
+ elems := makefield("elems", arr)
+ field = append(field, elems)
+
+ // If keys and elems have no pointers, the map implementation
+ // can keep a list of overflow pointers on the side so that
+ // buckets can be marked as having no pointers.
+ // Arrange for the bucket to have no pointers by changing
+ // the type of the overflow field to uintptr in this case.
+ // See comment on hmap.overflow in runtime/map.go.
+ otyp := types.Types[types.TUNSAFEPTR]
+ if !elemtype.HasPointers() && !keytype.HasPointers() {
+ otyp = types.Types[types.TUINTPTR]
+ }
+ overflow := makefield("overflow", otyp)
+ field = append(field, overflow)
+
+ // link up fields
+ bucket := types.NewStruct(field[:])
+ bucket.SetNoalg(true)
+ types.CalcSize(bucket)
+
+ // Check invariants that map code depends on.
+ if !types.IsComparable(t.Key()) {
+ base.Fatalf("unsupported map key type for %v", t)
+ }
+ if BUCKETSIZE < 8 {
+ base.Fatalf("bucket size %d too small for proper alignment %d", BUCKETSIZE, 8)
+ }
+ if uint8(keytype.Alignment()) > BUCKETSIZE {
+ base.Fatalf("key align too big for %v", t)
+ }
+ if uint8(elemtype.Alignment()) > BUCKETSIZE {
+ base.Fatalf("elem align %d too big for %v, BUCKETSIZE=%d", elemtype.Alignment(), t, BUCKETSIZE)
+ }
+ if keytype.Size() > MAXKEYSIZE {
+ base.Fatalf("key size too large for %v", t)
+ }
+ if elemtype.Size() > MAXELEMSIZE {
+ base.Fatalf("elem size too large for %v", t)
+ }
+ if t.Key().Size() > MAXKEYSIZE && !keytype.IsPtr() {
+ base.Fatalf("key indirect incorrect for %v", t)
+ }
+ if t.Elem().Size() > MAXELEMSIZE && !elemtype.IsPtr() {
+ base.Fatalf("elem indirect incorrect for %v", t)
+ }
+ if keytype.Size()%keytype.Alignment() != 0 {
+ base.Fatalf("key size not a multiple of key align for %v", t)
+ }
+ if elemtype.Size()%elemtype.Alignment() != 0 {
+ base.Fatalf("elem size not a multiple of elem align for %v", t)
+ }
+ if uint8(bucket.Alignment())%uint8(keytype.Alignment()) != 0 {
+ base.Fatalf("bucket align not multiple of key align %v", t)
+ }
+ if uint8(bucket.Alignment())%uint8(elemtype.Alignment()) != 0 {
+ base.Fatalf("bucket align not multiple of elem align %v", t)
+ }
+ if keys.Offset%keytype.Alignment() != 0 {
+ base.Fatalf("bad alignment of keys in bmap for %v", t)
+ }
+ if elems.Offset%elemtype.Alignment() != 0 {
+ base.Fatalf("bad alignment of elems in bmap for %v", t)
+ }
+
+ // Double-check that overflow field is final memory in struct,
+ // with no padding at end.
+ if overflow.Offset != bucket.Size()-int64(types.PtrSize) {
+ base.Fatalf("bad offset of overflow in bmap for %v, overflow.Offset=%d, bucket.Size()-int64(types.PtrSize)=%d",
+ t, overflow.Offset, bucket.Size()-int64(types.PtrSize))
+ }
+
+ t.MapType().Bucket = bucket
+
+ bucket.StructType().Map = t
+ return bucket
+}
+
+var hmapType *types.Type
+
+// MapType returns a type interchangeable with runtime.hmap.
+// Make sure this stays in sync with runtime/map.go.
+func MapType() *types.Type {
+ if hmapType != nil {
+ return hmapType
+ }
+
+ // build a struct:
+ // type hmap struct {
+ // count int
+ // flags uint8
+ // B uint8
+ // noverflow uint16
+ // hash0 uint32
+ // buckets unsafe.Pointer
+ // oldbuckets unsafe.Pointer
+ // nevacuate uintptr
+ // extra unsafe.Pointer // *mapextra
+ // }
+ // must match runtime/map.go:hmap.
+ fields := []*types.Field{
+ makefield("count", types.Types[types.TINT]),
+ makefield("flags", types.Types[types.TUINT8]),
+ makefield("B", types.Types[types.TUINT8]),
+ makefield("noverflow", types.Types[types.TUINT16]),
+ makefield("hash0", types.Types[types.TUINT32]), // Used in walk.go for OMAKEMAP.
+ makefield("buckets", types.Types[types.TUNSAFEPTR]), // Used in walk.go for OMAKEMAP.
+ makefield("oldbuckets", types.Types[types.TUNSAFEPTR]),
+ makefield("nevacuate", types.Types[types.TUINTPTR]),
+ makefield("extra", types.Types[types.TUNSAFEPTR]),
+ }
+
+ n := ir.NewDeclNameAt(src.NoXPos, ir.OTYPE, ir.Pkgs.Runtime.Lookup("hmap"))
+ hmap := types.NewNamed(n)
+ n.SetType(hmap)
+ n.SetTypecheck(1)
+
+ hmap.SetUnderlying(types.NewStruct(fields))
+ types.CalcSize(hmap)
+
+ // The size of hmap should be 48 bytes on 64 bit
+ // and 28 bytes on 32 bit platforms.
+ if size := int64(8 + 5*types.PtrSize); hmap.Size() != size {
+ base.Fatalf("hmap size not correct: got %d, want %d", hmap.Size(), size)
+ }
+
+ hmapType = hmap
+ return hmap
+}
+
+var hiterType *types.Type
+
+// MapIterType returns a type interchangeable with runtime.hiter.
+// Make sure this stays in sync with runtime/map.go.
+func MapIterType() *types.Type {
+ if hiterType != nil {
+ return hiterType
+ }
+
+ hmap := MapType()
+
+ // build a struct:
+ // type hiter struct {
+ // key unsafe.Pointer // *Key
+ // elem unsafe.Pointer // *Elem
+ // t unsafe.Pointer // *MapType
+ // h *hmap
+ // buckets unsafe.Pointer
+ // bptr unsafe.Pointer // *bmap
+ // overflow unsafe.Pointer // *[]*bmap
+ // oldoverflow unsafe.Pointer // *[]*bmap
+ // startBucket uintptr
+ // offset uint8
+ // wrapped bool
+ // B uint8
+ // i uint8
+ // bucket uintptr
+ // checkBucket uintptr
+ // }
+ // must match runtime/map.go:hiter.
+ fields := []*types.Field{
+ makefield("key", types.Types[types.TUNSAFEPTR]), // Used in range.go for TMAP.
+ makefield("elem", types.Types[types.TUNSAFEPTR]), // Used in range.go for TMAP.
+ makefield("t", types.Types[types.TUNSAFEPTR]),
+ makefield("h", types.NewPtr(hmap)),
+ makefield("buckets", types.Types[types.TUNSAFEPTR]),
+ makefield("bptr", types.Types[types.TUNSAFEPTR]),
+ makefield("overflow", types.Types[types.TUNSAFEPTR]),
+ makefield("oldoverflow", types.Types[types.TUNSAFEPTR]),
+ makefield("startBucket", types.Types[types.TUINTPTR]),
+ makefield("offset", types.Types[types.TUINT8]),
+ makefield("wrapped", types.Types[types.TBOOL]),
+ makefield("B", types.Types[types.TUINT8]),
+ makefield("i", types.Types[types.TUINT8]),
+ makefield("bucket", types.Types[types.TUINTPTR]),
+ makefield("checkBucket", types.Types[types.TUINTPTR]),
+ }
+
+ // build iterator struct holding the above fields
+ n := ir.NewDeclNameAt(src.NoXPos, ir.OTYPE, ir.Pkgs.Runtime.Lookup("hiter"))
+ hiter := types.NewNamed(n)
+ n.SetType(hiter)
+ n.SetTypecheck(1)
+
+ hiter.SetUnderlying(types.NewStruct(fields))
+ types.CalcSize(hiter)
+ if hiter.Size() != int64(12*types.PtrSize) {
+ base.Fatalf("hash_iter size not correct %d %d", hiter.Size(), 12*types.PtrSize)
+ }
+
+ hiterType = hiter
+ return hiter
+}
+
+// methods returns the methods of the non-interface type t, sorted by name.
+// Generates stub functions as needed.
+func methods(t *types.Type) []*typeSig {
+ if t.HasShape() {
+ // Shape types have no methods.
+ return nil
+ }
+ // method type
+ mt := types.ReceiverBaseType(t)
+
+ if mt == nil {
+ return nil
+ }
+ typecheck.CalcMethods(mt)
+
+ // make list of methods for t,
+ // generating code if necessary.
+ var ms []*typeSig
+ for _, f := range mt.AllMethods() {
+ if f.Sym == nil {
+ base.Fatalf("method with no sym on %v", mt)
+ }
+ if !f.IsMethod() {
+ base.Fatalf("non-method on %v method %v %v", mt, f.Sym, f)
+ }
+ if f.Type.Recv() == nil {
+ base.Fatalf("receiver with no type on %v method %v %v", mt, f.Sym, f)
+ }
+ if f.Nointerface() && !t.IsFullyInstantiated() {
+ // Skip creating method wrappers if f is nointerface. But, if
+ // t is an instantiated type, we still have to call
+ // methodWrapper, because methodWrapper generates the actual
+ // generic method on the type as well.
+ continue
+ }
+
+ // get receiver type for this particular method.
+ // if pointer receiver but non-pointer t and
+ // this is not an embedded pointer inside a struct,
+ // method does not apply.
+ if !types.IsMethodApplicable(t, f) {
+ continue
+ }
+
+ sig := &typeSig{
+ name: f.Sym,
+ isym: methodWrapper(t, f, true),
+ tsym: methodWrapper(t, f, false),
+ type_: typecheck.NewMethodType(f.Type, t),
+ mtype: typecheck.NewMethodType(f.Type, nil),
+ }
+ if f.Nointerface() {
+ // In the case of a nointerface method on an instantiated
+ // type, don't actually append the typeSig.
+ continue
+ }
+ ms = append(ms, sig)
+ }
+
+ return ms
+}
+
+// imethods returns the methods of the interface type t, sorted by name.
+func imethods(t *types.Type) []*typeSig {
+ var methods []*typeSig
+ for _, f := range t.AllMethods() {
+ if f.Type.Kind() != types.TFUNC || f.Sym == nil {
+ continue
+ }
+ if f.Sym.IsBlank() {
+ base.Fatalf("unexpected blank symbol in interface method set")
+ }
+ if n := len(methods); n > 0 {
+ last := methods[n-1]
+ if !last.name.Less(f.Sym) {
+ base.Fatalf("sigcmp vs sortinter %v %v", last.name, f.Sym)
+ }
+ }
+
+ sig := &typeSig{
+ name: f.Sym,
+ mtype: f.Type,
+ type_: typecheck.NewMethodType(f.Type, nil),
+ }
+ methods = append(methods, sig)
+
+ // NOTE(rsc): Perhaps an oversight that
+ // IfaceType.Method is not in the reflect data.
+ // Generate the method body, so that compiled
+ // code can refer to it.
+ methodWrapper(t, f, false)
+ }
+
+ return methods
+}
+
+func dimportpath(p *types.Pkg) {
+ if p.Pathsym != nil {
+ return
+ }
+
+ if p == types.LocalPkg && base.Ctxt.Pkgpath == "" {
+ panic("missing pkgpath")
+ }
+
+ // If we are compiling the runtime package, there are two runtime packages around
+ // -- localpkg and Pkgs.Runtime. We don't want to produce import path symbols for
+ // both of them, so just produce one for localpkg.
+ if base.Ctxt.Pkgpath == "runtime" && p == ir.Pkgs.Runtime {
+ return
+ }
+
+ s := base.Ctxt.Lookup("type:.importpath." + p.Prefix + ".")
+ ot := dnameData(s, 0, p.Path, "", nil, false, false)
+ objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA)
+ s.Set(obj.AttrContentAddressable, true)
+ p.Pathsym = s
+}
+
+func dgopkgpath(c rttype.Cursor, pkg *types.Pkg) {
+ c = c.Field("Bytes")
+ if pkg == nil {
+ c.WritePtr(nil)
+ return
+ }
+
+ dimportpath(pkg)
+ c.WritePtr(pkg.Pathsym)
+}
+
+// dgopkgpathOff writes an offset relocation to the pkg path symbol to c.
+func dgopkgpathOff(c rttype.Cursor, pkg *types.Pkg) {
+ if pkg == nil {
+ c.WriteInt32(0)
+ return
+ }
+
+ dimportpath(pkg)
+ c.WriteSymPtrOff(pkg.Pathsym, false)
+}
+
+// dnameField dumps a reflect.name for a struct field.
+func dnameField(c rttype.Cursor, spkg *types.Pkg, ft *types.Field) {
+ if !types.IsExported(ft.Sym.Name) && ft.Sym.Pkg != spkg {
+ base.Fatalf("package mismatch for %v", ft.Sym)
+ }
+ nsym := dname(ft.Sym.Name, ft.Note, nil, types.IsExported(ft.Sym.Name), ft.Embedded != 0)
+ c.Field("Bytes").WritePtr(nsym)
+}
+
+// dnameData writes the contents of a reflect.name into s at offset ot.
+func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported, embedded bool) int {
+ if len(name) >= 1<<29 {
+ base.Fatalf("name too long: %d %s...", len(name), name[:1024])
+ }
+ if len(tag) >= 1<<29 {
+ base.Fatalf("tag too long: %d %s...", len(tag), tag[:1024])
+ }
+ var nameLen [binary.MaxVarintLen64]byte
+ nameLenLen := binary.PutUvarint(nameLen[:], uint64(len(name)))
+ var tagLen [binary.MaxVarintLen64]byte
+ tagLenLen := binary.PutUvarint(tagLen[:], uint64(len(tag)))
+
+ // Encode name and tag. See reflect/type.go for details.
+ var bits byte
+ l := 1 + nameLenLen + len(name)
+ if exported {
+ bits |= 1 << 0
+ }
+ if len(tag) > 0 {
+ l += tagLenLen + len(tag)
+ bits |= 1 << 1
+ }
+ if pkg != nil {
+ bits |= 1 << 2
+ }
+ if embedded {
+ bits |= 1 << 3
+ }
+ b := make([]byte, l)
+ b[0] = bits
+ copy(b[1:], nameLen[:nameLenLen])
+ copy(b[1+nameLenLen:], name)
+ if len(tag) > 0 {
+ tb := b[1+nameLenLen+len(name):]
+ copy(tb, tagLen[:tagLenLen])
+ copy(tb[tagLenLen:], tag)
+ }
+
+ ot = int(s.WriteBytes(base.Ctxt, int64(ot), b))
+
+ if pkg != nil {
+ c := rttype.NewCursor(s, int64(ot), types.Types[types.TUINT32])
+ dgopkgpathOff(c, pkg)
+ ot += 4
+ }
+
+ return ot
+}
+
+var dnameCount int
+
+// dname creates a reflect.name for a struct field or method.
+func dname(name, tag string, pkg *types.Pkg, exported, embedded bool) *obj.LSym {
+ // Write out data as "type:." to signal two things to the
+ // linker, first that when dynamically linking, the symbol
+ // should be moved to a relro section, and second that the
+ // contents should not be decoded as a type.
+ sname := "type:.namedata."
+ if pkg == nil {
+ // In the common case, share data with other packages.
+ if name == "" {
+ if exported {
+ sname += "-noname-exported." + tag
+ } else {
+ sname += "-noname-unexported." + tag
+ }
+ } else {
+ if exported {
+ sname += name + "." + tag
+ } else {
+ sname += name + "-" + tag
+ }
+ }
+ } else {
+ // TODO(mdempsky): We should be able to share these too (except
+ // maybe when dynamic linking).
+ sname = fmt.Sprintf("%s%s.%d", sname, types.LocalPkg.Prefix, dnameCount)
+ dnameCount++
+ }
+ if embedded {
+ sname += ".embedded"
+ }
+ s := base.Ctxt.Lookup(sname)
+ if len(s.P) > 0 {
+ return s
+ }
+ ot := dnameData(s, 0, name, tag, pkg, exported, embedded)
+ objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA)
+ s.Set(obj.AttrContentAddressable, true)
+ return s
+}
+
+// dextratype dumps the fields of a runtime.uncommontype.
+// dataAdd is the offset in bytes after the header where the
+// backing array of the []method field should be written.
+func dextratype(lsym *obj.LSym, off int64, t *types.Type, dataAdd int) {
+ m := methods(t)
+ if t.Sym() == nil && len(m) == 0 {
+ base.Fatalf("extra requested of type with no extra info %v", t)
+ }
+ noff := types.RoundUp(off, int64(types.PtrSize))
+ if noff != off {
+ base.Fatalf("unexpected alignment in dextratype for %v", t)
+ }
+
+ for _, a := range m {
+ writeType(a.type_)
+ }
+
+ c := rttype.NewCursor(lsym, off, rttype.UncommonType)
+ dgopkgpathOff(c.Field("PkgPath"), typePkg(t))
+
+ dataAdd += uncommonSize(t)
+ mcount := len(m)
+ if mcount != int(uint16(mcount)) {
+ base.Fatalf("too many methods on %v: %d", t, mcount)
+ }
+ xcount := sort.Search(mcount, func(i int) bool { return !types.IsExported(m[i].name.Name) })
+ if dataAdd != int(uint32(dataAdd)) {
+ base.Fatalf("methods are too far away on %v: %d", t, dataAdd)
+ }
+
+ c.Field("Mcount").WriteUint16(uint16(mcount))
+ c.Field("Xcount").WriteUint16(uint16(xcount))
+ c.Field("Moff").WriteUint32(uint32(dataAdd))
+ // Note: there is an unused uint32 field here.
+
+ // Write the backing array for the []method field.
+ array := rttype.NewArrayCursor(lsym, off+int64(dataAdd), rttype.Method, mcount)
+ for i, a := range m {
+ exported := types.IsExported(a.name.Name)
+ var pkg *types.Pkg
+ if !exported && a.name.Pkg != typePkg(t) {
+ pkg = a.name.Pkg
+ }
+ nsym := dname(a.name.Name, "", pkg, exported, false)
+
+ e := array.Elem(i)
+ e.Field("Name").WriteSymPtrOff(nsym, false)
+ dmethodptrOff(e.Field("Mtyp"), writeType(a.mtype))
+ dmethodptrOff(e.Field("Ifn"), a.isym)
+ dmethodptrOff(e.Field("Tfn"), a.tsym)
+ }
+}
+
+func typePkg(t *types.Type) *types.Pkg {
+ tsym := t.Sym()
+ if tsym == nil {
+ switch t.Kind() {
+ case types.TARRAY, types.TSLICE, types.TPTR, types.TCHAN:
+ if t.Elem() != nil {
+ tsym = t.Elem().Sym()
+ }
+ }
+ }
+ if tsym != nil && tsym.Pkg != types.BuiltinPkg {
+ return tsym.Pkg
+ }
+ return nil
+}
+
+func dmethodptrOff(c rttype.Cursor, x *obj.LSym) {
+ c.WriteInt32(0)
+ r := c.Reloc()
+ r.Sym = x
+ r.Type = objabi.R_METHODOFF
+}
+
+var kinds = []int{
+ types.TINT: objabi.KindInt,
+ types.TUINT: objabi.KindUint,
+ types.TINT8: objabi.KindInt8,
+ types.TUINT8: objabi.KindUint8,
+ types.TINT16: objabi.KindInt16,
+ types.TUINT16: objabi.KindUint16,
+ types.TINT32: objabi.KindInt32,
+ types.TUINT32: objabi.KindUint32,
+ types.TINT64: objabi.KindInt64,
+ types.TUINT64: objabi.KindUint64,
+ types.TUINTPTR: objabi.KindUintptr,
+ types.TFLOAT32: objabi.KindFloat32,
+ types.TFLOAT64: objabi.KindFloat64,
+ types.TBOOL: objabi.KindBool,
+ types.TSTRING: objabi.KindString,
+ types.TPTR: objabi.KindPtr,
+ types.TSTRUCT: objabi.KindStruct,
+ types.TINTER: objabi.KindInterface,
+ types.TCHAN: objabi.KindChan,
+ types.TMAP: objabi.KindMap,
+ types.TARRAY: objabi.KindArray,
+ types.TSLICE: objabi.KindSlice,
+ types.TFUNC: objabi.KindFunc,
+ types.TCOMPLEX64: objabi.KindComplex64,
+ types.TCOMPLEX128: objabi.KindComplex128,
+ types.TUNSAFEPTR: objabi.KindUnsafePointer,
+}
+
+var (
+ memhashvarlen *obj.LSym
+ memequalvarlen *obj.LSym
+)
+
+// dcommontype dumps the contents of a reflect.rtype (runtime._type) to c.
+func dcommontype(c rttype.Cursor, t *types.Type) {
+ types.CalcSize(t)
+ eqfunc := geneq(t)
+
+ sptrWeak := true
+ var sptr *obj.LSym
+ if !t.IsPtr() || t.IsPtrElem() {
+ tptr := types.NewPtr(t)
+ if t.Sym() != nil || methods(tptr) != nil {
+ sptrWeak = false
+ }
+ sptr = writeType(tptr)
+ }
+
+ gcsym, useGCProg, ptrdata := dgcsym(t, true)
+ delete(gcsymset, t)
+
+ // ../../../../reflect/type.go:/^type.rtype
+ // actual type structure
+ // type rtype struct {
+ // size uintptr
+ // ptrdata uintptr
+ // hash uint32
+ // tflag tflag
+ // align uint8
+ // fieldAlign uint8
+ // kind uint8
+ // equal func(unsafe.Pointer, unsafe.Pointer) bool
+ // gcdata *byte
+ // str nameOff
+ // ptrToThis typeOff
+ // }
+ c.Field("Size_").WriteUintptr(uint64(t.Size()))
+ c.Field("PtrBytes").WriteUintptr(uint64(ptrdata))
+ c.Field("Hash").WriteUint32(types.TypeHash(t))
+
+ var tflag abi.TFlag
+ if uncommonSize(t) != 0 {
+ tflag |= abi.TFlagUncommon
+ }
+ if t.Sym() != nil && t.Sym().Name != "" {
+ tflag |= abi.TFlagNamed
+ }
+ if compare.IsRegularMemory(t) {
+ tflag |= abi.TFlagRegularMemory
+ }
+
+ exported := false
+ p := t.NameString()
+ // If we're writing out type T,
+ // we are very likely to write out type *T as well.
+ // Use the string "*T"[1:] for "T", so that the two
+ // share storage. This is a cheap way to reduce the
+ // amount of space taken up by reflect strings.
+ if !strings.HasPrefix(p, "*") {
+ p = "*" + p
+ tflag |= abi.TFlagExtraStar
+ if t.Sym() != nil {
+ exported = types.IsExported(t.Sym().Name)
+ }
+ } else {
+ if t.Elem() != nil && t.Elem().Sym() != nil {
+ exported = types.IsExported(t.Elem().Sym().Name)
+ }
+ }
+
+ if tflag != abi.TFlag(uint8(tflag)) {
+ // this should optimize away completely
+ panic("Unexpected change in size of abi.TFlag")
+ }
+ c.Field("TFlag").WriteUint8(uint8(tflag))
+
+ // runtime (and common sense) expects alignment to be a power of two.
+ i := int(uint8(t.Alignment()))
+
+ if i == 0 {
+ i = 1
+ }
+ if i&(i-1) != 0 {
+ base.Fatalf("invalid alignment %d for %v", uint8(t.Alignment()), t)
+ }
+ c.Field("Align_").WriteUint8(uint8(t.Alignment()))
+ c.Field("FieldAlign_").WriteUint8(uint8(t.Alignment()))
+
+ i = kinds[t.Kind()]
+ if types.IsDirectIface(t) {
+ i |= objabi.KindDirectIface
+ }
+ if useGCProg {
+ i |= objabi.KindGCProg
+ }
+ c.Field("Kind_").WriteUint8(uint8(i))
+
+ c.Field("Equal").WritePtr(eqfunc)
+ c.Field("GCData").WritePtr(gcsym)
+
+ nsym := dname(p, "", nil, exported, false)
+ c.Field("Str").WriteSymPtrOff(nsym, false)
+ c.Field("PtrToThis").WriteSymPtrOff(sptr, sptrWeak)
+}
+
+// TrackSym returns the symbol for tracking use of field/method f, assumed
+// to be a member of struct/interface type t.
+func TrackSym(t *types.Type, f *types.Field) *obj.LSym {
+ return base.PkgLinksym("go:track", t.LinkString()+"."+f.Sym.Name, obj.ABI0)
+}
+
+func TypeSymPrefix(prefix string, t *types.Type) *types.Sym {
+ p := prefix + "." + t.LinkString()
+ s := types.TypeSymLookup(p)
+
+ // This function is for looking up type-related generated functions
+ // (e.g. eq and hash). Make sure they are indeed generated.
+ signatmu.Lock()
+ NeedRuntimeType(t)
+ signatmu.Unlock()
+
+ //print("algsym: %s -> %+S\n", p, s);
+
+ return s
+}
+
+func TypeSym(t *types.Type) *types.Sym {
+ if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
+ base.Fatalf("TypeSym %v", t)
+ }
+ if t.Kind() == types.TFUNC && t.Recv() != nil {
+ base.Fatalf("misuse of method type: %v", t)
+ }
+ s := types.TypeSym(t)
+ signatmu.Lock()
+ NeedRuntimeType(t)
+ signatmu.Unlock()
+ return s
+}
+
+func TypeLinksymPrefix(prefix string, t *types.Type) *obj.LSym {
+ return TypeSymPrefix(prefix, t).Linksym()
+}
+
+func TypeLinksymLookup(name string) *obj.LSym {
+ return types.TypeSymLookup(name).Linksym()
+}
+
+func TypeLinksym(t *types.Type) *obj.LSym {
+ lsym := TypeSym(t).Linksym()
+ signatmu.Lock()
+ if lsym.Extra == nil {
+ ti := lsym.NewTypeInfo()
+ ti.Type = t
+ }
+ signatmu.Unlock()
+ return lsym
+}
+
+// TypePtrAt returns an expression that evaluates to the
+// *runtime._type value for t.
+func TypePtrAt(pos src.XPos, t *types.Type) *ir.AddrExpr {
+ return typecheck.LinksymAddr(pos, TypeLinksym(t), types.Types[types.TUINT8])
+}
+
+// ITabLsym returns the LSym representing the itab for concrete type typ implementing
+// interface iface. A dummy tab will be created in the unusual case where typ doesn't
+// implement iface. Normally, this wouldn't happen, because the typechecker would
+// have reported a compile-time error. This situation can only happen when the
+// destination type of a type assert or a type in a type switch is parameterized, so
+// it may sometimes, but not always, be a type that can't implement the specified
+// interface.
+func ITabLsym(typ, iface *types.Type) *obj.LSym {
+ s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString())
+ lsym := s.Linksym()
+
+ if !existed {
+ writeITab(lsym, typ, iface, true)
+ }
+ return lsym
+}
+
+// ITabAddrAt returns an expression that evaluates to the
+// *runtime.itab value for concrete type typ implementing interface
+// iface.
+func ITabAddrAt(pos src.XPos, typ, iface *types.Type) *ir.AddrExpr {
+ s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString())
+ lsym := s.Linksym()
+
+ if !existed {
+ writeITab(lsym, typ, iface, false)
+ }
+
+ return typecheck.LinksymAddr(pos, lsym, types.Types[types.TUINT8])
+}
+
+// needkeyupdate reports whether map updates with t as a key
+// need the key to be updated.
+func needkeyupdate(t *types.Type) bool {
+ switch t.Kind() {
+ case types.TBOOL, types.TINT, types.TUINT, types.TINT8, types.TUINT8, types.TINT16, types.TUINT16, types.TINT32, types.TUINT32,
+ types.TINT64, types.TUINT64, types.TUINTPTR, types.TPTR, types.TUNSAFEPTR, types.TCHAN:
+ return false
+
+ case types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128, // floats and complex can be +0/-0
+ types.TINTER,
+ types.TSTRING: // strings might have smaller backing stores
+ return true
+
+ case types.TARRAY:
+ return needkeyupdate(t.Elem())
+
+ case types.TSTRUCT:
+ for _, t1 := range t.Fields() {
+ if needkeyupdate(t1.Type) {
+ return true
+ }
+ }
+ return false
+
+ default:
+ base.Fatalf("bad type for map key: %v", t)
+ return true
+ }
+}
+
+// hashMightPanic reports whether the hash of a map key of type t might panic.
+func hashMightPanic(t *types.Type) bool {
+ switch t.Kind() {
+ case types.TINTER:
+ return true
+
+ case types.TARRAY:
+ return hashMightPanic(t.Elem())
+
+ case types.TSTRUCT:
+ for _, t1 := range t.Fields() {
+ if hashMightPanic(t1.Type) {
+ return true
+ }
+ }
+ return false
+
+ default:
+ return false
+ }
+}
+
+// formalType replaces predeclared aliases with real types.
+// They've been separate internally to make error messages
+// better, but we have to merge them in the reflect tables.
+func formalType(t *types.Type) *types.Type {
+ switch t {
+ case types.AnyType, types.ByteType, types.RuneType:
+ return types.Types[t.Kind()]
+ }
+ return t
+}
+
+func writeType(t *types.Type) *obj.LSym {
+ t = formalType(t)
+ if t.IsUntyped() {
+ base.Fatalf("writeType %v", t)
+ }
+
+ s := types.TypeSym(t)
+ lsym := s.Linksym()
+
+ // special case (look for runtime below):
+ // when compiling package runtime,
+ // emit the type structures for int, float, etc.
+ tbase := t
+ if t.IsPtr() && t.Sym() == nil && t.Elem().Sym() != nil {
+ tbase = t.Elem()
+ }
+ if tbase.Kind() == types.TFORW {
+ base.Fatalf("unresolved defined type: %v", tbase)
+ }
+
+ // This is a fake type we generated for our builtin pseudo-runtime
+ // package. We'll emit a description for the real type while
+ // compiling package runtime, so we don't need or want to emit one
+ // from this fake type.
+ if sym := tbase.Sym(); sym != nil && sym.Pkg == ir.Pkgs.Runtime {
+ return lsym
+ }
+
+ if s.Siggen() {
+ return lsym
+ }
+ s.SetSiggen(true)
+
+ if !NeedEmit(tbase) {
+ if i := typecheck.BaseTypeIndex(t); i >= 0 {
+ lsym.Pkg = tbase.Sym().Pkg.Prefix
+ lsym.SymIdx = int32(i)
+ lsym.Set(obj.AttrIndexed, true)
+ }
+
+ // TODO(mdempsky): Investigate whether this still happens.
+ // If we know we don't need to emit code for a type,
+ // we should have a link-symbol index for it.
+ // See also TODO in NeedEmit.
+ return lsym
+ }
+
+ // Type layout Written by Marker
+ // +--------------------------------+ - 0
+ // | abi/internal.Type | dcommontype
+ // +--------------------------------+ - A
+ // | additional type-dependent | code in the switch below
+ // | fields, e.g. |
+ // | abi/internal.ArrayType.Len |
+ // +--------------------------------+ - B
+ // | internal/abi.UncommonType | dextratype
+ // | This section is optional, |
+ // | if type has a name or methods |
+ // +--------------------------------+ - C
+ // | variable-length data | code in the switch below
+ // | referenced by |
+ // | type-dependent fields, e.g. |
+ // | abi/internal.StructType.Fields |
+ // | dataAdd = size of this section |
+ // +--------------------------------+ - D
+ // | method list, if any | dextratype
+ // +--------------------------------+ - E
+
+ // UncommonType section is included if we have a name or a method.
+ extra := t.Sym() != nil || len(methods(t)) != 0
+
+ // Decide the underlying type of the descriptor, and remember
+ // the size we need for variable-length data.
+ var rt *types.Type
+ dataAdd := 0
+ switch t.Kind() {
+ default:
+ rt = rttype.Type
+ case types.TARRAY:
+ rt = rttype.ArrayType
+ case types.TSLICE:
+ rt = rttype.SliceType
+ case types.TCHAN:
+ rt = rttype.ChanType
+ case types.TFUNC:
+ rt = rttype.FuncType
+ dataAdd = (t.NumRecvs() + t.NumParams() + t.NumResults()) * types.PtrSize
+ case types.TINTER:
+ rt = rttype.InterfaceType
+ dataAdd = len(imethods(t)) * int(rttype.IMethod.Size())
+ case types.TMAP:
+ rt = rttype.MapType
+ case types.TPTR:
+ rt = rttype.PtrType
+ // TODO: use rttype.Type for Elem() is ANY?
+ case types.TSTRUCT:
+ rt = rttype.StructType
+ dataAdd = t.NumFields() * int(rttype.StructField.Size())
+ }
+
+ // Compute offsets of each section.
+ B := rt.Size()
+ C := B
+ if extra {
+ C = B + rttype.UncommonType.Size()
+ }
+ D := C + int64(dataAdd)
+ E := D + int64(len(methods(t)))*rttype.Method.Size()
+
+ // Write the runtime._type
+ c := rttype.NewCursor(lsym, 0, rt)
+ if rt == rttype.Type {
+ dcommontype(c, t)
+ } else {
+ dcommontype(c.Field("Type"), t)
+ }
+
+ // Write additional type-specific data
+ // (Both the fixed size and variable-sized sections.)
+ switch t.Kind() {
+ case types.TARRAY:
+ // internal/abi.ArrayType
+ s1 := writeType(t.Elem())
+ t2 := types.NewSlice(t.Elem())
+ s2 := writeType(t2)
+ c.Field("Elem").WritePtr(s1)
+ c.Field("Slice").WritePtr(s2)
+ c.Field("Len").WriteUintptr(uint64(t.NumElem()))
+
+ case types.TSLICE:
+ // internal/abi.SliceType
+ s1 := writeType(t.Elem())
+ c.Field("Elem").WritePtr(s1)
+
+ case types.TCHAN:
+ // internal/abi.ChanType
+ s1 := writeType(t.Elem())
+ c.Field("Elem").WritePtr(s1)
+ c.Field("Dir").WriteInt(int64(t.ChanDir()))
+
+ case types.TFUNC:
+ // internal/abi.FuncType
+ for _, t1 := range t.RecvParamsResults() {
+ writeType(t1.Type)
+ }
+ inCount := t.NumRecvs() + t.NumParams()
+ outCount := t.NumResults()
+ if t.IsVariadic() {
+ outCount |= 1 << 15
+ }
+
+ c.Field("InCount").WriteUint16(uint16(inCount))
+ c.Field("OutCount").WriteUint16(uint16(outCount))
+
+ // Array of rtype pointers follows funcType.
+ typs := t.RecvParamsResults()
+ array := rttype.NewArrayCursor(lsym, C, types.Types[types.TUNSAFEPTR], len(typs))
+ for i, t1 := range typs {
+ array.Elem(i).WritePtr(writeType(t1.Type))
+ }
+
+ case types.TINTER:
+ // internal/abi.InterfaceType
+ m := imethods(t)
+ n := len(m)
+ for _, a := range m {
+ writeType(a.type_)
+ }
+
+ var tpkg *types.Pkg
+ if t.Sym() != nil && t != types.Types[t.Kind()] && t != types.ErrorType {
+ tpkg = t.Sym().Pkg
+ }
+ dgopkgpath(c.Field("PkgPath"), tpkg)
+ c.Field("Methods").WriteSlice(lsym, C, int64(n), int64(n))
+
+ array := rttype.NewArrayCursor(lsym, C, rttype.IMethod, n)
+ for i, a := range m {
+ exported := types.IsExported(a.name.Name)
+ var pkg *types.Pkg
+ if !exported && a.name.Pkg != tpkg {
+ pkg = a.name.Pkg
+ }
+ nsym := dname(a.name.Name, "", pkg, exported, false)
+
+ e := array.Elem(i)
+ e.Field("Name").WriteSymPtrOff(nsym, false)
+ e.Field("Typ").WriteSymPtrOff(writeType(a.type_), false)
+ }
+
+ case types.TMAP:
+ // internal/abi.MapType
+ s1 := writeType(t.Key())
+ s2 := writeType(t.Elem())
+ s3 := writeType(MapBucketType(t))
+ hasher := genhash(t.Key())
+
+ c.Field("Key").WritePtr(s1)
+ c.Field("Elem").WritePtr(s2)
+ c.Field("Bucket").WritePtr(s3)
+ c.Field("Hasher").WritePtr(hasher)
+ var flags uint32
+ // Note: flags must match maptype accessors in ../../../../runtime/type.go
+ // and maptype builder in ../../../../reflect/type.go:MapOf.
+ if t.Key().Size() > MAXKEYSIZE {
+ c.Field("KeySize").WriteUint8(uint8(types.PtrSize))
+ flags |= 1 // indirect key
+ } else {
+ c.Field("KeySize").WriteUint8(uint8(t.Key().Size()))
+ }
+
+ if t.Elem().Size() > MAXELEMSIZE {
+ c.Field("ValueSize").WriteUint8(uint8(types.PtrSize))
+ flags |= 2 // indirect value
+ } else {
+ c.Field("ValueSize").WriteUint8(uint8(t.Elem().Size()))
+ }
+ c.Field("BucketSize").WriteUint16(uint16(MapBucketType(t).Size()))
+ if types.IsReflexive(t.Key()) {
+ flags |= 4 // reflexive key
+ }
+ if needkeyupdate(t.Key()) {
+ flags |= 8 // need key update
+ }
+ if hashMightPanic(t.Key()) {
+ flags |= 16 // hash might panic
+ }
+ c.Field("Flags").WriteUint32(flags)
+
+ if u := t.Underlying(); u != t {
+ // If t is a named map type, also keep the underlying map
+ // type live in the binary. This is important to make sure that
+ // a named map and that same map cast to its underlying type via
+ // reflection, use the same hash function. See issue 37716.
+ r := obj.Addrel(lsym)
+ r.Sym = writeType(u)
+ r.Type = objabi.R_KEEP
+ }
+
+ case types.TPTR:
+ // internal/abi.PtrType
+ if t.Elem().Kind() == types.TANY {
+ base.Fatalf("bad pointer base type")
+ }
+
+ s1 := writeType(t.Elem())
+ c.Field("Elem").WritePtr(s1)
+
+ case types.TSTRUCT:
+ // internal/abi.StructType
+ fields := t.Fields()
+ for _, t1 := range fields {
+ writeType(t1.Type)
+ }
+
+ // All non-exported struct field names within a struct
+ // type must originate from a single package. By
+ // identifying and recording that package within the
+ // struct type descriptor, we can omit that
+ // information from the field descriptors.
+ var spkg *types.Pkg
+ for _, f := range fields {
+ if !types.IsExported(f.Sym.Name) {
+ spkg = f.Sym.Pkg
+ break
+ }
+ }
+
+ dgopkgpath(c.Field("PkgPath"), spkg)
+ c.Field("Fields").WriteSlice(lsym, C, int64(len(fields)), int64(len(fields)))
+
+ array := rttype.NewArrayCursor(lsym, C, rttype.StructField, len(fields))
+ for i, f := range fields {
+ e := array.Elem(i)
+ dnameField(e.Field("Name"), spkg, f)
+ e.Field("Typ").WritePtr(writeType(f.Type))
+ e.Field("Offset").WriteUintptr(uint64(f.Offset))
+ }
+ }
+
+ // Write the extra info, if any.
+ if extra {
+ dextratype(lsym, B, t, dataAdd)
+ }
+
+ // Note: DUPOK is required to ensure that we don't end up with more
+ // than one type descriptor for a given type, if the type descriptor
+ // can be defined in multiple packages, that is, unnamed types,
+ // instantiated types and shape types.
+ dupok := 0
+ if tbase.Sym() == nil || tbase.IsFullyInstantiated() || tbase.HasShape() {
+ dupok = obj.DUPOK
+ }
+
+ objw.Global(lsym, int32(E), int16(dupok|obj.RODATA))
+
+ // The linker will leave a table of all the typelinks for
+ // types in the binary, so the runtime can find them.
+ //
+ // When buildmode=shared, all types are in typelinks so the
+ // runtime can deduplicate type pointers.
+ keep := base.Ctxt.Flag_dynlink
+ if !keep && t.Sym() == nil {
+ // For an unnamed type, we only need the link if the type can
+ // be created at run time by reflect.PointerTo and similar
+ // functions. If the type exists in the program, those
+ // functions must return the existing type structure rather
+ // than creating a new one.
+ switch t.Kind() {
+ case types.TPTR, types.TARRAY, types.TCHAN, types.TFUNC, types.TMAP, types.TSLICE, types.TSTRUCT:
+ keep = true
+ }
+ }
+ // Do not put Noalg types in typelinks. See issue #22605.
+ if types.TypeHasNoAlg(t) {
+ keep = false
+ }
+ lsym.Set(obj.AttrMakeTypelink, keep)
+
+ return lsym
+}
+
+// InterfaceMethodOffset returns the offset of the i-th method in the interface
+// type descriptor, ityp.
+func InterfaceMethodOffset(ityp *types.Type, i int64) int64 {
+ // interface type descriptor layout is struct {
+ // _type // commonSize
+ // pkgpath // 1 word
+ // []imethod // 3 words (pointing to [...]imethod below)
+ // uncommontype // uncommonSize
+ // [...]imethod
+ // }
+ // The size of imethod is 8.
+ return int64(commonSize()+4*types.PtrSize+uncommonSize(ityp)) + i*8
+}
+
+// NeedRuntimeType ensures that a runtime type descriptor is emitted for t.
+func NeedRuntimeType(t *types.Type) {
+ if _, ok := signatset[t]; !ok {
+ signatset[t] = struct{}{}
+ signatslice = append(signatslice, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()})
+ }
+}
+
+func WriteRuntimeTypes() {
+ // Process signatslice. Use a loop, as writeType adds
+ // entries to signatslice while it is being processed.
+ for len(signatslice) > 0 {
+ signats := signatslice
+ // Sort for reproducible builds.
+ sort.Sort(typesByString(signats))
+ for _, ts := range signats {
+ t := ts.t
+ writeType(t)
+ if t.Sym() != nil {
+ writeType(types.NewPtr(t))
+ }
+ }
+ signatslice = signatslice[len(signats):]
+ }
+}
+
+func WriteGCSymbols() {
+ // Emit GC data symbols.
+ gcsyms := make([]typeAndStr, 0, len(gcsymset))
+ for t := range gcsymset {
+ gcsyms = append(gcsyms, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()})
+ }
+ sort.Sort(typesByString(gcsyms))
+ for _, ts := range gcsyms {
+ dgcsym(ts.t, true)
+ }
+}
+
+// writeITab writes the itab for concrete type typ implementing interface iface. If
+// allowNonImplement is true, allow the case where typ does not implement iface, and just
+// create a dummy itab with zeroed-out method entries.
+func writeITab(lsym *obj.LSym, typ, iface *types.Type, allowNonImplement bool) {
+ // TODO(mdempsky): Fix methodWrapper, geneq, and genhash (and maybe
+ // others) to stop clobbering these.
+ oldpos, oldfn := base.Pos, ir.CurFunc
+ defer func() { base.Pos, ir.CurFunc = oldpos, oldfn }()
+
+ if typ == nil || (typ.IsPtr() && typ.Elem() == nil) || typ.IsUntyped() || iface == nil || !iface.IsInterface() || iface.IsEmptyInterface() {
+ base.Fatalf("writeITab(%v, %v)", typ, iface)
+ }
+
+ sigs := iface.AllMethods()
+ entries := make([]*obj.LSym, 0, len(sigs))
+
+ // both sigs and methods are sorted by name,
+ // so we can find the intersection in a single pass
+ for _, m := range methods(typ) {
+ if m.name == sigs[0].Sym {
+ entries = append(entries, m.isym)
+ if m.isym == nil {
+ panic("NO ISYM")
+ }
+ sigs = sigs[1:]
+ if len(sigs) == 0 {
+ break
+ }
+ }
+ }
+ completeItab := len(sigs) == 0
+ if !allowNonImplement && !completeItab {
+ base.Fatalf("incomplete itab")
+ }
+
+ // dump empty itab symbol into i.sym
+ // type itab struct {
+ // inter *interfacetype
+ // _type *_type
+ // hash uint32 // copy of _type.hash. Used for type switches.
+ // _ [4]byte
+ // fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter.
+ // }
+ o := objw.SymPtr(lsym, 0, writeType(iface), 0)
+ o = objw.SymPtr(lsym, o, writeType(typ), 0)
+ o = objw.Uint32(lsym, o, types.TypeHash(typ)) // copy of type hash
+ o += 4 // skip unused field
+ if !completeItab {
+ // If typ doesn't implement iface, make method entries be zero.
+ o = objw.Uintptr(lsym, o, 0)
+ entries = entries[:0]
+ }
+ for _, fn := range entries {
+ o = objw.SymPtrWeak(lsym, o, fn, 0) // method pointer for each method
+ }
+ // Nothing writes static itabs, so they are read only.
+ objw.Global(lsym, int32(o), int16(obj.DUPOK|obj.RODATA))
+ lsym.Set(obj.AttrContentAddressable, true)
+}
+
+func WritePluginTable() {
+ ptabs := typecheck.Target.PluginExports
+ if len(ptabs) == 0 {
+ return
+ }
+
+ lsym := base.Ctxt.Lookup("go:plugin.tabs")
+ ot := 0
+ for _, p := range ptabs {
+ // Dump ptab symbol into go.pluginsym package.
+ //
+ // type ptab struct {
+ // name nameOff
+ // typ typeOff // pointer to symbol
+ // }
+ nsym := dname(p.Sym().Name, "", nil, true, false)
+ t := p.Type()
+ if p.Class != ir.PFUNC {
+ t = types.NewPtr(t)
+ }
+ tsym := writeType(t)
+ ot = objw.SymPtrOff(lsym, ot, nsym)
+ ot = objw.SymPtrOff(lsym, ot, tsym)
+ // Plugin exports symbols as interfaces. Mark their types
+ // as UsedInIface.
+ tsym.Set(obj.AttrUsedInIface, true)
+ }
+ objw.Global(lsym, int32(ot), int16(obj.RODATA))
+
+ lsym = base.Ctxt.Lookup("go:plugin.exports")
+ ot = 0
+ for _, p := range ptabs {
+ ot = objw.SymPtr(lsym, ot, p.Linksym(), 0)
+ }
+ objw.Global(lsym, int32(ot), int16(obj.RODATA))
+}
+
+// writtenByWriteBasicTypes reports whether typ is written by WriteBasicTypes.
+// WriteBasicTypes always writes pointer types; any pointer has been stripped off typ already.
+func writtenByWriteBasicTypes(typ *types.Type) bool {
+ if typ.Sym() == nil && typ.Kind() == types.TFUNC {
+ // func(error) string
+ if typ.NumRecvs() == 0 &&
+ typ.NumParams() == 1 && typ.NumResults() == 1 &&
+ typ.Param(0).Type == types.ErrorType &&
+ typ.Result(0).Type == types.Types[types.TSTRING] {
+ return true
+ }
+ }
+
+ // Now we have left the basic types plus any and error, plus slices of them.
+ // Strip the slice.
+ if typ.Sym() == nil && typ.IsSlice() {
+ typ = typ.Elem()
+ }
+
+ // Basic types.
+ sym := typ.Sym()
+ if sym != nil && (sym.Pkg == types.BuiltinPkg || sym.Pkg == types.UnsafePkg) {
+ return true
+ }
+ // any or error
+ return (sym == nil && typ.IsEmptyInterface()) || typ == types.ErrorType
+}
+
+func WriteBasicTypes() {
+ // do basic types if compiling package runtime.
+ // they have to be in at least one package,
+ // and runtime is always loaded implicitly,
+ // so this is as good as any.
+ // another possible choice would be package main,
+ // but using runtime means fewer copies in object files.
+ // The code here needs to be in sync with writtenByWriteBasicTypes above.
+ if base.Ctxt.Pkgpath != "runtime" {
+ return
+ }
+
+ // Note: always write NewPtr(t) because NeedEmit's caller strips the pointer.
+ var list []*types.Type
+ for i := types.Kind(1); i <= types.TBOOL; i++ {
+ list = append(list, types.Types[i])
+ }
+ list = append(list,
+ types.Types[types.TSTRING],
+ types.Types[types.TUNSAFEPTR],
+ types.AnyType,
+ types.ErrorType)
+ for _, t := range list {
+ writeType(types.NewPtr(t))
+ writeType(types.NewPtr(types.NewSlice(t)))
+ }
+
+ // emit type for func(error) string,
+ // which is the type of an auto-generated wrapper.
+ writeType(types.NewPtr(types.NewSignature(nil, []*types.Field{
+ types.NewField(base.Pos, nil, types.ErrorType),
+ }, []*types.Field{
+ types.NewField(base.Pos, nil, types.Types[types.TSTRING]),
+ })))
+}
+
+type typeAndStr struct {
+ t *types.Type
+ short string // "short" here means TypeSymName
+ regular string
+}
+
+type typesByString []typeAndStr
+
+func (a typesByString) Len() int { return len(a) }
+func (a typesByString) Less(i, j int) bool {
+ // put named types before unnamed types
+ if a[i].t.Sym() != nil && a[j].t.Sym() == nil {
+ return true
+ }
+ if a[i].t.Sym() == nil && a[j].t.Sym() != nil {
+ return false
+ }
+
+ if a[i].short != a[j].short {
+ return a[i].short < a[j].short
+ }
+ // When the only difference between the types is whether
+ // they refer to byte or uint8, such as **byte vs **uint8,
+ // the types' NameStrings can be identical.
+ // To preserve deterministic sort ordering, sort these by String().
+ //
+ // TODO(mdempsky): This all seems suspect. Using LinkString would
+ // avoid naming collisions, and there shouldn't be a reason to care
+ // about "byte" vs "uint8": they share the same runtime type
+ // descriptor anyway.
+ if a[i].regular != a[j].regular {
+ return a[i].regular < a[j].regular
+ }
+ // Identical anonymous interfaces defined in different locations
+ // will be equal for the above checks, but different in DWARF output.
+ // Sort by source position to ensure deterministic order.
+ // See issues 27013 and 30202.
+ if a[i].t.Kind() == types.TINTER && len(a[i].t.AllMethods()) > 0 {
+ return a[i].t.AllMethods()[0].Pos.Before(a[j].t.AllMethods()[0].Pos)
+ }
+ return false
+}
+func (a typesByString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
+
+// maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
+// which holds 1-bit entries describing where pointers are in a given type.
+// Above this length, the GC information is recorded as a GC program,
+// which can express repetition compactly. In either form, the
+// information is used by the runtime to initialize the heap bitmap,
+// and for large types (like 128 or more words), they are roughly the
+// same speed. GC programs are never much larger and often more
+// compact. (If large arrays are involved, they can be arbitrarily
+// more compact.)
+//
+// The cutoff must be large enough that any allocation large enough to
+// use a GC program is large enough that it does not share heap bitmap
+// bytes with any other objects, allowing the GC program execution to
+// assume an aligned start and not use atomic operations. In the current
+// runtime, this means all malloc size classes larger than the cutoff must
+// be multiples of four words. On 32-bit systems that's 16 bytes, and
+// all size classes >= 16 bytes are 16-byte aligned, so no real constraint.
+// On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed
+// for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated
+// is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes
+// must be >= 4.
+//
+// We used to use 16 because the GC programs do have some constant overhead
+// to get started, and processing 128 pointers seems to be enough to
+// amortize that overhead well.
+//
+// To make sure that the runtime's chansend can call typeBitsBulkBarrier,
+// we raised the limit to 2048, so that even 32-bit systems are guaranteed to
+// use bitmaps for objects up to 64 kB in size.
+//
+// Also known to reflect/type.go.
+const maxPtrmaskBytes = 2048
+
+// GCSym returns a data symbol containing GC information for type t, along
+// with a boolean reporting whether the UseGCProg bit should be set in the
+// type kind, and the ptrdata field to record in the reflect type information.
+// GCSym may be called in concurrent backend, so it does not emit the symbol
+// content.
+func GCSym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
+ // Record that we need to emit the GC symbol.
+ gcsymmu.Lock()
+ if _, ok := gcsymset[t]; !ok {
+ gcsymset[t] = struct{}{}
+ }
+ gcsymmu.Unlock()
+
+ return dgcsym(t, false)
+}
+
+// dgcsym returns a data symbol containing GC information for type t, along
+// with a boolean reporting whether the UseGCProg bit should be set in the
+// type kind, and the ptrdata field to record in the reflect type information.
+// When write is true, it writes the symbol data.
+func dgcsym(t *types.Type, write bool) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
+ ptrdata = types.PtrDataSize(t)
+ if ptrdata/int64(types.PtrSize) <= maxPtrmaskBytes*8 {
+ lsym = dgcptrmask(t, write)
+ return
+ }
+
+ useGCProg = true
+ lsym, ptrdata = dgcprog(t, write)
+ return
+}
+
+// dgcptrmask emits and returns the symbol containing a pointer mask for type t.
+func dgcptrmask(t *types.Type, write bool) *obj.LSym {
+ // Bytes we need for the ptrmask.
+ n := (types.PtrDataSize(t)/int64(types.PtrSize) + 7) / 8
+ // Runtime wants ptrmasks padded to a multiple of uintptr in size.
+ n = (n + int64(types.PtrSize) - 1) &^ (int64(types.PtrSize) - 1)
+ ptrmask := make([]byte, n)
+ fillptrmask(t, ptrmask)
+ p := fmt.Sprintf("runtime.gcbits.%x", ptrmask)
+
+ lsym := base.Ctxt.Lookup(p)
+ if write && !lsym.OnList() {
+ for i, x := range ptrmask {
+ objw.Uint8(lsym, i, x)
+ }
+ objw.Global(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
+ lsym.Set(obj.AttrContentAddressable, true)
+ }
+ return lsym
+}
+
+// fillptrmask fills in ptrmask with 1s corresponding to the
+// word offsets in t that hold pointers.
+// ptrmask is assumed to fit at least types.PtrDataSize(t)/PtrSize bits.
+func fillptrmask(t *types.Type, ptrmask []byte) {
+ for i := range ptrmask {
+ ptrmask[i] = 0
+ }
+ if !t.HasPointers() {
+ return
+ }
+
+ vec := bitvec.New(8 * int32(len(ptrmask)))
+ typebits.Set(t, 0, vec)
+
+ nptr := types.PtrDataSize(t) / int64(types.PtrSize)
+ for i := int64(0); i < nptr; i++ {
+ if vec.Get(int32(i)) {
+ ptrmask[i/8] |= 1 << (uint(i) % 8)
+ }
+ }
+}
+
+// dgcprog emits and returns the symbol containing a GC program for type t
+// along with the size of the data described by the program (in the range
+// [types.PtrDataSize(t), t.Width]).
+// In practice, the size is types.PtrDataSize(t) except for non-trivial arrays.
+// For non-trivial arrays, the program describes the full t.Width size.
+func dgcprog(t *types.Type, write bool) (*obj.LSym, int64) {
+ types.CalcSize(t)
+ if t.Size() == types.BADWIDTH {
+ base.Fatalf("dgcprog: %v badwidth", t)
+ }
+ lsym := TypeLinksymPrefix(".gcprog", t)
+ var p gcProg
+ p.init(lsym, write)
+ p.emit(t, 0)
+ offset := p.w.BitIndex() * int64(types.PtrSize)
+ p.end()
+ if ptrdata := types.PtrDataSize(t); offset < ptrdata || offset > t.Size() {
+ base.Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Size())
+ }
+ return lsym, offset
+}
+
+type gcProg struct {
+ lsym *obj.LSym
+ symoff int
+ w gcprog.Writer
+ write bool
+}
+
+func (p *gcProg) init(lsym *obj.LSym, write bool) {
+ p.lsym = lsym
+ p.write = write && !lsym.OnList()
+ p.symoff = 4 // first 4 bytes hold program length
+ if !write {
+ p.w.Init(func(byte) {})
+ return
+ }
+ p.w.Init(p.writeByte)
+ if base.Debug.GCProg > 0 {
+ fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym)
+ p.w.Debug(os.Stderr)
+ }
+}
+
+func (p *gcProg) writeByte(x byte) {
+ p.symoff = objw.Uint8(p.lsym, p.symoff, x)
+}
+
+func (p *gcProg) end() {
+ p.w.End()
+ if !p.write {
+ return
+ }
+ objw.Uint32(p.lsym, 0, uint32(p.symoff-4))
+ objw.Global(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
+ p.lsym.Set(obj.AttrContentAddressable, true)
+ if base.Debug.GCProg > 0 {
+ fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym)
+ }
+}
+
+func (p *gcProg) emit(t *types.Type, offset int64) {
+ types.CalcSize(t)
+ if !t.HasPointers() {
+ return
+ }
+ if t.Size() == int64(types.PtrSize) {
+ p.w.Ptr(offset / int64(types.PtrSize))
+ return
+ }
+ switch t.Kind() {
+ default:
+ base.Fatalf("gcProg.emit: unexpected type %v", t)
+
+ case types.TSTRING:
+ p.w.Ptr(offset / int64(types.PtrSize))
+
+ case types.TINTER:
+ // Note: the first word isn't a pointer. See comment in typebits.Set
+ p.w.Ptr(offset/int64(types.PtrSize) + 1)
+
+ case types.TSLICE:
+ p.w.Ptr(offset / int64(types.PtrSize))
+
+ case types.TARRAY:
+ if t.NumElem() == 0 {
+ // should have been handled by haspointers check above
+ base.Fatalf("gcProg.emit: empty array")
+ }
+
+ // Flatten array-of-array-of-array to just a big array by multiplying counts.
+ count := t.NumElem()
+ elem := t.Elem()
+ for elem.IsArray() {
+ count *= elem.NumElem()
+ elem = elem.Elem()
+ }
+
+ if !p.w.ShouldRepeat(elem.Size()/int64(types.PtrSize), count) {
+ // Cheaper to just emit the bits.
+ for i := int64(0); i < count; i++ {
+ p.emit(elem, offset+i*elem.Size())
+ }
+ return
+ }
+ p.emit(elem, offset)
+ p.w.ZeroUntil((offset + elem.Size()) / int64(types.PtrSize))
+ p.w.Repeat(elem.Size()/int64(types.PtrSize), count-1)
+
+ case types.TSTRUCT:
+ for _, t1 := range t.Fields() {
+ p.emit(t1.Type, offset+t1.Offset)
+ }
+ }
+}
+
+// ZeroAddr returns the address of a symbol with at least
+// size bytes of zeros.
+func ZeroAddr(size int64) ir.Node {
+ if size >= 1<<31 {
+ base.Fatalf("map elem too big %d", size)
+ }
+ if ZeroSize < size {
+ ZeroSize = size
+ }
+ lsym := base.PkgLinksym("go:map", "zero", obj.ABI0)
+ x := ir.NewLinksymExpr(base.Pos, lsym, types.Types[types.TUINT8])
+ return typecheck.Expr(typecheck.NodAddr(x))
+}
+
+// NeedEmit reports whether typ is a type that we need to emit code
+// for (e.g., runtime type descriptors, method wrappers).
+func NeedEmit(typ *types.Type) bool {
+ // TODO(mdempsky): Export data should keep track of which anonymous
+ // and instantiated types were emitted, so at least downstream
+ // packages can skip re-emitting them.
+ //
+ // Perhaps we can just generalize the linker-symbol indexing to
+ // track the index of arbitrary types, not just defined types, and
+ // use its presence to detect this. The same idea would work for
+ // instantiated generic functions too.
+
+ switch sym := typ.Sym(); {
+ case writtenByWriteBasicTypes(typ):
+ return base.Ctxt.Pkgpath == "runtime"
+
+ case sym == nil:
+ // Anonymous type; possibly never seen before or ever again.
+ // Need to emit to be safe (however, see TODO above).
+ return true
+
+ case sym.Pkg == types.LocalPkg:
+ // Local defined type; our responsibility.
+ return true
+
+ case typ.IsFullyInstantiated():
+ // Instantiated type; possibly instantiated with unique type arguments.
+ // Need to emit to be safe (however, see TODO above).
+ return true
+
+ case typ.HasShape():
+ // Shape type; need to emit even though it lives in the .shape package.
+ // TODO: make sure the linker deduplicates them (see dupok in writeType above).
+ return true
+
+ default:
+ // Should have been emitted by an imported package.
+ return false
+ }
+}
+
+// Generate a wrapper function to convert from
+// a receiver of type T to a receiver of type U.
+// That is,
+//
+// func (t T) M() {
+// ...
+// }
+//
+// already exists; this function generates
+//
+// func (u U) M() {
+// u.M()
+// }
+//
+// where the types T and U are such that u.M() is valid
+// and calls the T.M method.
+// The resulting function is for use in method tables.
+//
+// rcvr - U
+// method - M func (t T)(), a TFIELD type struct
+//
+// Also wraps methods on instantiated generic types for use in itab entries.
+// For an instantiated generic type G[int], we generate wrappers like:
+// G[int] pointer shaped:
+//
+// func (x G[int]) f(arg) {
+// .inst.G[int].f(dictionary, x, arg)
+// }
+//
+// G[int] not pointer shaped:
+//
+// func (x *G[int]) f(arg) {
+// .inst.G[int].f(dictionary, *x, arg)
+// }
+//
+// These wrappers are always fully stenciled.
+func methodWrapper(rcvr *types.Type, method *types.Field, forItab bool) *obj.LSym {
+ if forItab && !types.IsDirectIface(rcvr) {
+ rcvr = rcvr.PtrTo()
+ }
+
+ newnam := ir.MethodSym(rcvr, method.Sym)
+ lsym := newnam.Linksym()
+
+ // Unified IR creates its own wrappers.
+ return lsym
+}
+
+var ZeroSize int64
+
+// MarkTypeUsedInInterface marks that type t is converted to an interface.
+// This information is used in the linker in dead method elimination.
+func MarkTypeUsedInInterface(t *types.Type, from *obj.LSym) {
+ if t.HasShape() {
+ // Shape types shouldn't be put in interfaces, so we shouldn't ever get here.
+ base.Fatalf("shape types have no methods %+v", t)
+ }
+ MarkTypeSymUsedInInterface(TypeLinksym(t), from)
+}
+func MarkTypeSymUsedInInterface(tsym *obj.LSym, from *obj.LSym) {
+ // Emit a marker relocation. The linker will know the type is converted
+ // to an interface if "from" is reachable.
+ r := obj.Addrel(from)
+ r.Sym = tsym
+ r.Type = objabi.R_USEIFACE
+}
+
+// MarkUsedIfaceMethod marks that an interface method is used in the current
+// function. n is OCALLINTER node.
+func MarkUsedIfaceMethod(n *ir.CallExpr) {
+ // skip unnamed functions (func _())
+ if ir.CurFunc.LSym == nil {
+ return
+ }
+ dot := n.Fun.(*ir.SelectorExpr)
+ ityp := dot.X.Type()
+ if ityp.HasShape() {
+ // Here we're calling a method on a generic interface. Something like:
+ //
+ // type I[T any] interface { foo() T }
+ // func f[T any](x I[T]) {
+ // ... = x.foo()
+ // }
+ // f[int](...)
+ // f[string](...)
+ //
+ // In this case, in f we're calling foo on a generic interface.
+ // Which method could that be? Normally we could match the method
+ // both by name and by type. But in this case we don't really know
+ // the type of the method we're calling. It could be func()int
+ // or func()string. So we match on just the function name, instead
+ // of both the name and the type used for the non-generic case below.
+ // TODO: instantiations at least know the shape of the instantiated
+ // type, and the linker could do more complicated matching using
+ // some sort of fuzzy shape matching. For now, only use the name
+ // of the method for matching.
+ r := obj.Addrel(ir.CurFunc.LSym)
+ r.Sym = staticdata.StringSymNoCommon(dot.Sel.Name)
+ r.Type = objabi.R_USENAMEDMETHOD
+ return
+ }
+
+ tsym := TypeLinksym(ityp)
+ r := obj.Addrel(ir.CurFunc.LSym)
+ r.Sym = tsym
+ // dot.Offset() is the method index * PtrSize (the offset of code pointer
+ // in itab).
+ midx := dot.Offset() / int64(types.PtrSize)
+ r.Add = InterfaceMethodOffset(ityp, midx)
+ r.Type = objabi.R_USEIFACEMETHOD
+}
+
+func deref(t *types.Type) *types.Type {
+ if t.IsPtr() {
+ return t.Elem()
+ }
+ return t
+}