summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/dom.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/ssa/dom.go')
-rw-r--r--src/cmd/compile/internal/ssa/dom.go275
1 files changed, 275 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/dom.go b/src/cmd/compile/internal/ssa/dom.go
new file mode 100644
index 0000000..39ba4d1
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/dom.go
@@ -0,0 +1,275 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file contains code to compute the dominator tree
+// of a control-flow graph.
+
+// postorder computes a postorder traversal ordering for the
+// basic blocks in f. Unreachable blocks will not appear.
+func postorder(f *Func) []*Block {
+ return postorderWithNumbering(f, nil)
+}
+
+type blockAndIndex struct {
+ b *Block
+ index int // index is the number of successor edges of b that have already been explored.
+}
+
+// postorderWithNumbering provides a DFS postordering.
+// This seems to make loop-finding more robust.
+func postorderWithNumbering(f *Func, ponums []int32) []*Block {
+ seen := f.Cache.allocBoolSlice(f.NumBlocks())
+ defer f.Cache.freeBoolSlice(seen)
+
+ // result ordering
+ order := make([]*Block, 0, len(f.Blocks))
+
+ // stack of blocks and next child to visit
+ // A constant bound allows this to be stack-allocated. 32 is
+ // enough to cover almost every postorderWithNumbering call.
+ s := make([]blockAndIndex, 0, 32)
+ s = append(s, blockAndIndex{b: f.Entry})
+ seen[f.Entry.ID] = true
+ for len(s) > 0 {
+ tos := len(s) - 1
+ x := s[tos]
+ b := x.b
+ if i := x.index; i < len(b.Succs) {
+ s[tos].index++
+ bb := b.Succs[i].Block()
+ if !seen[bb.ID] {
+ seen[bb.ID] = true
+ s = append(s, blockAndIndex{b: bb})
+ }
+ continue
+ }
+ s = s[:tos]
+ if ponums != nil {
+ ponums[b.ID] = int32(len(order))
+ }
+ order = append(order, b)
+ }
+ return order
+}
+
+type linkedBlocks func(*Block) []Edge
+
+func dominators(f *Func) []*Block {
+ preds := func(b *Block) []Edge { return b.Preds }
+ succs := func(b *Block) []Edge { return b.Succs }
+
+ //TODO: benchmark and try to find criteria for swapping between
+ // dominatorsSimple and dominatorsLT
+ return f.dominatorsLTOrig(f.Entry, preds, succs)
+}
+
+// dominatorsLTOrig runs Lengauer-Tarjan to compute a dominator tree starting at
+// entry and using predFn/succFn to find predecessors/successors to allow
+// computing both dominator and post-dominator trees.
+func (f *Func) dominatorsLTOrig(entry *Block, predFn linkedBlocks, succFn linkedBlocks) []*Block {
+ // Adapted directly from the original TOPLAS article's "simple" algorithm
+
+ maxBlockID := entry.Func.NumBlocks()
+ scratch := f.Cache.allocIDSlice(7 * maxBlockID)
+ defer f.Cache.freeIDSlice(scratch)
+ semi := scratch[0*maxBlockID : 1*maxBlockID]
+ vertex := scratch[1*maxBlockID : 2*maxBlockID]
+ label := scratch[2*maxBlockID : 3*maxBlockID]
+ parent := scratch[3*maxBlockID : 4*maxBlockID]
+ ancestor := scratch[4*maxBlockID : 5*maxBlockID]
+ bucketHead := scratch[5*maxBlockID : 6*maxBlockID]
+ bucketLink := scratch[6*maxBlockID : 7*maxBlockID]
+
+ // This version uses integers for most of the computation,
+ // to make the work arrays smaller and pointer-free.
+ // fromID translates from ID to *Block where that is needed.
+ fromID := f.Cache.allocBlockSlice(maxBlockID)
+ defer f.Cache.freeBlockSlice(fromID)
+ for _, v := range f.Blocks {
+ fromID[v.ID] = v
+ }
+ idom := make([]*Block, maxBlockID)
+
+ // Step 1. Carry out a depth first search of the problem graph. Number
+ // the vertices from 1 to n as they are reached during the search.
+ n := f.dfsOrig(entry, succFn, semi, vertex, label, parent)
+
+ for i := n; i >= 2; i-- {
+ w := vertex[i]
+
+ // step2 in TOPLAS paper
+ for _, e := range predFn(fromID[w]) {
+ v := e.b
+ if semi[v.ID] == 0 {
+ // skip unreachable predecessor
+ // not in original, but we're using existing pred instead of building one.
+ continue
+ }
+ u := evalOrig(v.ID, ancestor, semi, label)
+ if semi[u] < semi[w] {
+ semi[w] = semi[u]
+ }
+ }
+
+ // add w to bucket[vertex[semi[w]]]
+ // implement bucket as a linked list implemented
+ // in a pair of arrays.
+ vsw := vertex[semi[w]]
+ bucketLink[w] = bucketHead[vsw]
+ bucketHead[vsw] = w
+
+ linkOrig(parent[w], w, ancestor)
+
+ // step3 in TOPLAS paper
+ for v := bucketHead[parent[w]]; v != 0; v = bucketLink[v] {
+ u := evalOrig(v, ancestor, semi, label)
+ if semi[u] < semi[v] {
+ idom[v] = fromID[u]
+ } else {
+ idom[v] = fromID[parent[w]]
+ }
+ }
+ }
+ // step 4 in toplas paper
+ for i := ID(2); i <= n; i++ {
+ w := vertex[i]
+ if idom[w].ID != vertex[semi[w]] {
+ idom[w] = idom[idom[w].ID]
+ }
+ }
+
+ return idom
+}
+
+// dfsOrig performs a depth first search over the blocks starting at entry block
+// (in arbitrary order). This is a de-recursed version of dfs from the
+// original Tarjan-Lengauer TOPLAS article. It's important to return the
+// same values for parent as the original algorithm.
+func (f *Func) dfsOrig(entry *Block, succFn linkedBlocks, semi, vertex, label, parent []ID) ID {
+ n := ID(0)
+ s := make([]*Block, 0, 256)
+ s = append(s, entry)
+
+ for len(s) > 0 {
+ v := s[len(s)-1]
+ s = s[:len(s)-1]
+ // recursing on v
+
+ if semi[v.ID] != 0 {
+ continue // already visited
+ }
+ n++
+ semi[v.ID] = n
+ vertex[n] = v.ID
+ label[v.ID] = v.ID
+ // ancestor[v] already zero
+ for _, e := range succFn(v) {
+ w := e.b
+ // if it has a dfnum, we've already visited it
+ if semi[w.ID] == 0 {
+ // yes, w can be pushed multiple times.
+ s = append(s, w)
+ parent[w.ID] = v.ID // keep overwriting this till it is visited.
+ }
+ }
+ }
+ return n
+}
+
+// compressOrig is the "simple" compress function from LT paper.
+func compressOrig(v ID, ancestor, semi, label []ID) {
+ if ancestor[ancestor[v]] != 0 {
+ compressOrig(ancestor[v], ancestor, semi, label)
+ if semi[label[ancestor[v]]] < semi[label[v]] {
+ label[v] = label[ancestor[v]]
+ }
+ ancestor[v] = ancestor[ancestor[v]]
+ }
+}
+
+// evalOrig is the "simple" eval function from LT paper.
+func evalOrig(v ID, ancestor, semi, label []ID) ID {
+ if ancestor[v] == 0 {
+ return v
+ }
+ compressOrig(v, ancestor, semi, label)
+ return label[v]
+}
+
+func linkOrig(v, w ID, ancestor []ID) {
+ ancestor[w] = v
+}
+
+// dominatorsSimple computes the dominator tree for f. It returns a slice
+// which maps block ID to the immediate dominator of that block.
+// Unreachable blocks map to nil. The entry block maps to nil.
+func dominatorsSimple(f *Func) []*Block {
+ // A simple algorithm for now
+ // Cooper, Harvey, Kennedy
+ idom := make([]*Block, f.NumBlocks())
+
+ // Compute postorder walk
+ post := f.postorder()
+
+ // Make map from block id to order index (for intersect call)
+ postnum := f.Cache.allocIntSlice(f.NumBlocks())
+ defer f.Cache.freeIntSlice(postnum)
+ for i, b := range post {
+ postnum[b.ID] = i
+ }
+
+ // Make the entry block a self-loop
+ idom[f.Entry.ID] = f.Entry
+ if postnum[f.Entry.ID] != len(post)-1 {
+ f.Fatalf("entry block %v not last in postorder", f.Entry)
+ }
+
+ // Compute relaxation of idom entries
+ for {
+ changed := false
+
+ for i := len(post) - 2; i >= 0; i-- {
+ b := post[i]
+ var d *Block
+ for _, e := range b.Preds {
+ p := e.b
+ if idom[p.ID] == nil {
+ continue
+ }
+ if d == nil {
+ d = p
+ continue
+ }
+ d = intersect(d, p, postnum, idom)
+ }
+ if d != idom[b.ID] {
+ idom[b.ID] = d
+ changed = true
+ }
+ }
+ if !changed {
+ break
+ }
+ }
+ // Set idom of entry block to nil instead of itself.
+ idom[f.Entry.ID] = nil
+ return idom
+}
+
+// intersect finds the closest dominator of both b and c.
+// It requires a postorder numbering of all the blocks.
+func intersect(b, c *Block, postnum []int, idom []*Block) *Block {
+ // TODO: This loop is O(n^2). It used to be used in nilcheck,
+ // see BenchmarkNilCheckDeep*.
+ for b != c {
+ if postnum[b.ID] < postnum[c.ID] {
+ b = idom[b.ID]
+ } else {
+ c = idom[c.ID]
+ }
+ }
+ return b
+}