diff options
Diffstat (limited to 'src/cmd/compile/internal/ssa/dom.go')
-rw-r--r-- | src/cmd/compile/internal/ssa/dom.go | 275 |
1 files changed, 275 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/dom.go b/src/cmd/compile/internal/ssa/dom.go new file mode 100644 index 0000000..39ba4d1 --- /dev/null +++ b/src/cmd/compile/internal/ssa/dom.go @@ -0,0 +1,275 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ssa + +// This file contains code to compute the dominator tree +// of a control-flow graph. + +// postorder computes a postorder traversal ordering for the +// basic blocks in f. Unreachable blocks will not appear. +func postorder(f *Func) []*Block { + return postorderWithNumbering(f, nil) +} + +type blockAndIndex struct { + b *Block + index int // index is the number of successor edges of b that have already been explored. +} + +// postorderWithNumbering provides a DFS postordering. +// This seems to make loop-finding more robust. +func postorderWithNumbering(f *Func, ponums []int32) []*Block { + seen := f.Cache.allocBoolSlice(f.NumBlocks()) + defer f.Cache.freeBoolSlice(seen) + + // result ordering + order := make([]*Block, 0, len(f.Blocks)) + + // stack of blocks and next child to visit + // A constant bound allows this to be stack-allocated. 32 is + // enough to cover almost every postorderWithNumbering call. + s := make([]blockAndIndex, 0, 32) + s = append(s, blockAndIndex{b: f.Entry}) + seen[f.Entry.ID] = true + for len(s) > 0 { + tos := len(s) - 1 + x := s[tos] + b := x.b + if i := x.index; i < len(b.Succs) { + s[tos].index++ + bb := b.Succs[i].Block() + if !seen[bb.ID] { + seen[bb.ID] = true + s = append(s, blockAndIndex{b: bb}) + } + continue + } + s = s[:tos] + if ponums != nil { + ponums[b.ID] = int32(len(order)) + } + order = append(order, b) + } + return order +} + +type linkedBlocks func(*Block) []Edge + +func dominators(f *Func) []*Block { + preds := func(b *Block) []Edge { return b.Preds } + succs := func(b *Block) []Edge { return b.Succs } + + //TODO: benchmark and try to find criteria for swapping between + // dominatorsSimple and dominatorsLT + return f.dominatorsLTOrig(f.Entry, preds, succs) +} + +// dominatorsLTOrig runs Lengauer-Tarjan to compute a dominator tree starting at +// entry and using predFn/succFn to find predecessors/successors to allow +// computing both dominator and post-dominator trees. +func (f *Func) dominatorsLTOrig(entry *Block, predFn linkedBlocks, succFn linkedBlocks) []*Block { + // Adapted directly from the original TOPLAS article's "simple" algorithm + + maxBlockID := entry.Func.NumBlocks() + scratch := f.Cache.allocIDSlice(7 * maxBlockID) + defer f.Cache.freeIDSlice(scratch) + semi := scratch[0*maxBlockID : 1*maxBlockID] + vertex := scratch[1*maxBlockID : 2*maxBlockID] + label := scratch[2*maxBlockID : 3*maxBlockID] + parent := scratch[3*maxBlockID : 4*maxBlockID] + ancestor := scratch[4*maxBlockID : 5*maxBlockID] + bucketHead := scratch[5*maxBlockID : 6*maxBlockID] + bucketLink := scratch[6*maxBlockID : 7*maxBlockID] + + // This version uses integers for most of the computation, + // to make the work arrays smaller and pointer-free. + // fromID translates from ID to *Block where that is needed. + fromID := f.Cache.allocBlockSlice(maxBlockID) + defer f.Cache.freeBlockSlice(fromID) + for _, v := range f.Blocks { + fromID[v.ID] = v + } + idom := make([]*Block, maxBlockID) + + // Step 1. Carry out a depth first search of the problem graph. Number + // the vertices from 1 to n as they are reached during the search. + n := f.dfsOrig(entry, succFn, semi, vertex, label, parent) + + for i := n; i >= 2; i-- { + w := vertex[i] + + // step2 in TOPLAS paper + for _, e := range predFn(fromID[w]) { + v := e.b + if semi[v.ID] == 0 { + // skip unreachable predecessor + // not in original, but we're using existing pred instead of building one. + continue + } + u := evalOrig(v.ID, ancestor, semi, label) + if semi[u] < semi[w] { + semi[w] = semi[u] + } + } + + // add w to bucket[vertex[semi[w]]] + // implement bucket as a linked list implemented + // in a pair of arrays. + vsw := vertex[semi[w]] + bucketLink[w] = bucketHead[vsw] + bucketHead[vsw] = w + + linkOrig(parent[w], w, ancestor) + + // step3 in TOPLAS paper + for v := bucketHead[parent[w]]; v != 0; v = bucketLink[v] { + u := evalOrig(v, ancestor, semi, label) + if semi[u] < semi[v] { + idom[v] = fromID[u] + } else { + idom[v] = fromID[parent[w]] + } + } + } + // step 4 in toplas paper + for i := ID(2); i <= n; i++ { + w := vertex[i] + if idom[w].ID != vertex[semi[w]] { + idom[w] = idom[idom[w].ID] + } + } + + return idom +} + +// dfsOrig performs a depth first search over the blocks starting at entry block +// (in arbitrary order). This is a de-recursed version of dfs from the +// original Tarjan-Lengauer TOPLAS article. It's important to return the +// same values for parent as the original algorithm. +func (f *Func) dfsOrig(entry *Block, succFn linkedBlocks, semi, vertex, label, parent []ID) ID { + n := ID(0) + s := make([]*Block, 0, 256) + s = append(s, entry) + + for len(s) > 0 { + v := s[len(s)-1] + s = s[:len(s)-1] + // recursing on v + + if semi[v.ID] != 0 { + continue // already visited + } + n++ + semi[v.ID] = n + vertex[n] = v.ID + label[v.ID] = v.ID + // ancestor[v] already zero + for _, e := range succFn(v) { + w := e.b + // if it has a dfnum, we've already visited it + if semi[w.ID] == 0 { + // yes, w can be pushed multiple times. + s = append(s, w) + parent[w.ID] = v.ID // keep overwriting this till it is visited. + } + } + } + return n +} + +// compressOrig is the "simple" compress function from LT paper. +func compressOrig(v ID, ancestor, semi, label []ID) { + if ancestor[ancestor[v]] != 0 { + compressOrig(ancestor[v], ancestor, semi, label) + if semi[label[ancestor[v]]] < semi[label[v]] { + label[v] = label[ancestor[v]] + } + ancestor[v] = ancestor[ancestor[v]] + } +} + +// evalOrig is the "simple" eval function from LT paper. +func evalOrig(v ID, ancestor, semi, label []ID) ID { + if ancestor[v] == 0 { + return v + } + compressOrig(v, ancestor, semi, label) + return label[v] +} + +func linkOrig(v, w ID, ancestor []ID) { + ancestor[w] = v +} + +// dominatorsSimple computes the dominator tree for f. It returns a slice +// which maps block ID to the immediate dominator of that block. +// Unreachable blocks map to nil. The entry block maps to nil. +func dominatorsSimple(f *Func) []*Block { + // A simple algorithm for now + // Cooper, Harvey, Kennedy + idom := make([]*Block, f.NumBlocks()) + + // Compute postorder walk + post := f.postorder() + + // Make map from block id to order index (for intersect call) + postnum := f.Cache.allocIntSlice(f.NumBlocks()) + defer f.Cache.freeIntSlice(postnum) + for i, b := range post { + postnum[b.ID] = i + } + + // Make the entry block a self-loop + idom[f.Entry.ID] = f.Entry + if postnum[f.Entry.ID] != len(post)-1 { + f.Fatalf("entry block %v not last in postorder", f.Entry) + } + + // Compute relaxation of idom entries + for { + changed := false + + for i := len(post) - 2; i >= 0; i-- { + b := post[i] + var d *Block + for _, e := range b.Preds { + p := e.b + if idom[p.ID] == nil { + continue + } + if d == nil { + d = p + continue + } + d = intersect(d, p, postnum, idom) + } + if d != idom[b.ID] { + idom[b.ID] = d + changed = true + } + } + if !changed { + break + } + } + // Set idom of entry block to nil instead of itself. + idom[f.Entry.ID] = nil + return idom +} + +// intersect finds the closest dominator of both b and c. +// It requires a postorder numbering of all the blocks. +func intersect(b, c *Block, postnum []int, idom []*Block) *Block { + // TODO: This loop is O(n^2). It used to be used in nilcheck, + // see BenchmarkNilCheckDeep*. + for b != c { + if postnum[b.ID] < postnum[c.ID] { + b = idom[b.ID] + } else { + c = idom[c.ID] + } + } + return b +} |