diff options
Diffstat (limited to 'src/cmd/compile/internal/ssa/func.go')
-rw-r--r-- | src/cmd/compile/internal/ssa/func.go | 842 |
1 files changed, 842 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/func.go b/src/cmd/compile/internal/ssa/func.go new file mode 100644 index 0000000..031d94f --- /dev/null +++ b/src/cmd/compile/internal/ssa/func.go @@ -0,0 +1,842 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ssa + +import ( + "cmd/compile/internal/abi" + "cmd/compile/internal/base" + "cmd/compile/internal/ir" + "cmd/compile/internal/typecheck" + "cmd/compile/internal/types" + "cmd/internal/obj" + "cmd/internal/src" + "fmt" + "math" + "strings" +) + +// A Func represents a Go func declaration (or function literal) and its body. +// This package compiles each Func independently. +// Funcs are single-use; a new Func must be created for every compiled function. +type Func struct { + Config *Config // architecture information + Cache *Cache // re-usable cache + fe Frontend // frontend state associated with this Func, callbacks into compiler frontend + pass *pass // current pass information (name, options, etc.) + Name string // e.g. NewFunc or (*Func).NumBlocks (no package prefix) + Type *types.Type // type signature of the function. + Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID) + Entry *Block // the entry basic block + + bid idAlloc // block ID allocator + vid idAlloc // value ID allocator + + HTMLWriter *HTMLWriter // html writer, for debugging + PrintOrHtmlSSA bool // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false. There's an odd dependence on this in debug.go for method logf. + ruleMatches map[string]int // number of times countRule was called during compilation for any given string + ABI0 *abi.ABIConfig // A copy, for no-sync access + ABI1 *abi.ABIConfig // A copy, for no-sync access + ABISelf *abi.ABIConfig // ABI for function being compiled + ABIDefault *abi.ABIConfig // ABI for rtcall and other no-parsed-signature/pragma functions. + + scheduled bool // Values in Blocks are in final order + laidout bool // Blocks are ordered + NoSplit bool // true if function is marked as nosplit. Used by schedule check pass. + dumpFileSeq uint8 // the sequence numbers of dump file. (%s_%02d__%s.dump", funcname, dumpFileSeq, phaseName) + + // when register allocation is done, maps value ids to locations + RegAlloc []Location + + // temporary registers allocated to rare instructions + tempRegs map[ID]*Register + + // map from LocalSlot to set of Values that we want to store in that slot. + NamedValues map[LocalSlot][]*Value + // Names is a copy of NamedValues.Keys. We keep a separate list + // of keys to make iteration order deterministic. + Names []*LocalSlot + // Canonicalize root/top-level local slots, and canonicalize their pieces. + // Because LocalSlot pieces refer to their parents with a pointer, this ensures that equivalent slots really are equal. + CanonicalLocalSlots map[LocalSlot]*LocalSlot + CanonicalLocalSplits map[LocalSlotSplitKey]*LocalSlot + + // RegArgs is a slice of register-memory pairs that must be spilled and unspilled in the uncommon path of function entry. + RegArgs []Spill + // OwnAux describes parameters and results for this function. + OwnAux *AuxCall + + freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil. + freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil. + + cachedPostorder []*Block // cached postorder traversal + cachedIdom []*Block // cached immediate dominators + cachedSdom SparseTree // cached dominator tree + cachedLoopnest *loopnest // cached loop nest information + cachedLineStarts *xposmap // cached map/set of xpos to integers + + auxmap auxmap // map from aux values to opaque ids used by CSE + constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type +} + +type LocalSlotSplitKey struct { + parent *LocalSlot + Off int64 // offset of slot in N + Type *types.Type // type of slot +} + +// NewFunc returns a new, empty function object. +// Caller must reset cache before calling NewFunc. +func (c *Config) NewFunc(fe Frontend, cache *Cache) *Func { + return &Func{ + fe: fe, + Config: c, + Cache: cache, + + NamedValues: make(map[LocalSlot][]*Value), + CanonicalLocalSlots: make(map[LocalSlot]*LocalSlot), + CanonicalLocalSplits: make(map[LocalSlotSplitKey]*LocalSlot), + } +} + +// NumBlocks returns an integer larger than the id of any Block in the Func. +func (f *Func) NumBlocks() int { + return f.bid.num() +} + +// NumValues returns an integer larger than the id of any Value in the Func. +func (f *Func) NumValues() int { + return f.vid.num() +} + +// NameABI returns the function name followed by comma and the ABI number. +// This is intended for use with GOSSAFUNC and HTML dumps, and differs from +// the linker's "<1>" convention because "<" and ">" require shell quoting +// and are not legal file names (for use with GOSSADIR) on Windows. +func (f *Func) NameABI() string { + return FuncNameABI(f.Name, f.ABISelf.Which()) +} + +// FuncNameABI returns n followed by a comma and the value of a. +// This is a separate function to allow a single point encoding +// of the format, which is used in places where there's not a Func yet. +func FuncNameABI(n string, a obj.ABI) string { + return fmt.Sprintf("%s,%d", n, a) +} + +// newSparseSet returns a sparse set that can store at least up to n integers. +func (f *Func) newSparseSet(n int) *sparseSet { + return f.Cache.allocSparseSet(n) +} + +// retSparseSet returns a sparse set to the config's cache of sparse +// sets to be reused by f.newSparseSet. +func (f *Func) retSparseSet(ss *sparseSet) { + f.Cache.freeSparseSet(ss) +} + +// newSparseMap returns a sparse map that can store at least up to n integers. +func (f *Func) newSparseMap(n int) *sparseMap { + return f.Cache.allocSparseMap(n) +} + +// retSparseMap returns a sparse map to the config's cache of sparse +// sets to be reused by f.newSparseMap. +func (f *Func) retSparseMap(ss *sparseMap) { + f.Cache.freeSparseMap(ss) +} + +// newSparseMapPos returns a sparse map that can store at least up to n integers. +func (f *Func) newSparseMapPos(n int) *sparseMapPos { + return f.Cache.allocSparseMapPos(n) +} + +// retSparseMapPos returns a sparse map to the config's cache of sparse +// sets to be reused by f.newSparseMapPos. +func (f *Func) retSparseMapPos(ss *sparseMapPos) { + f.Cache.freeSparseMapPos(ss) +} + +// newPoset returns a new poset from the internal cache +func (f *Func) newPoset() *poset { + if len(f.Cache.scrPoset) > 0 { + po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1] + f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1] + return po + } + return newPoset() +} + +// retPoset returns a poset to the internal cache +func (f *Func) retPoset(po *poset) { + f.Cache.scrPoset = append(f.Cache.scrPoset, po) +} + +func (f *Func) localSlotAddr(slot LocalSlot) *LocalSlot { + a, ok := f.CanonicalLocalSlots[slot] + if !ok { + a = new(LocalSlot) + *a = slot // don't escape slot + f.CanonicalLocalSlots[slot] = a + } + return a +} + +func (f *Func) SplitString(name *LocalSlot) (*LocalSlot, *LocalSlot) { + ptrType := types.NewPtr(types.Types[types.TUINT8]) + lenType := types.Types[types.TINT] + // Split this string up into two separate variables. + p := f.SplitSlot(name, ".ptr", 0, ptrType) + l := f.SplitSlot(name, ".len", ptrType.Size(), lenType) + return p, l +} + +func (f *Func) SplitInterface(name *LocalSlot) (*LocalSlot, *LocalSlot) { + n := name.N + u := types.Types[types.TUINTPTR] + t := types.NewPtr(types.Types[types.TUINT8]) + // Split this interface up into two separate variables. + sfx := ".itab" + if n.Type().IsEmptyInterface() { + sfx = ".type" + } + c := f.SplitSlot(name, sfx, 0, u) // see comment in typebits.Set + d := f.SplitSlot(name, ".data", u.Size(), t) + return c, d +} + +func (f *Func) SplitSlice(name *LocalSlot) (*LocalSlot, *LocalSlot, *LocalSlot) { + ptrType := types.NewPtr(name.Type.Elem()) + lenType := types.Types[types.TINT] + p := f.SplitSlot(name, ".ptr", 0, ptrType) + l := f.SplitSlot(name, ".len", ptrType.Size(), lenType) + c := f.SplitSlot(name, ".cap", ptrType.Size()+lenType.Size(), lenType) + return p, l, c +} + +func (f *Func) SplitComplex(name *LocalSlot) (*LocalSlot, *LocalSlot) { + s := name.Type.Size() / 2 + var t *types.Type + if s == 8 { + t = types.Types[types.TFLOAT64] + } else { + t = types.Types[types.TFLOAT32] + } + r := f.SplitSlot(name, ".real", 0, t) + i := f.SplitSlot(name, ".imag", t.Size(), t) + return r, i +} + +func (f *Func) SplitInt64(name *LocalSlot) (*LocalSlot, *LocalSlot) { + var t *types.Type + if name.Type.IsSigned() { + t = types.Types[types.TINT32] + } else { + t = types.Types[types.TUINT32] + } + if f.Config.BigEndian { + return f.SplitSlot(name, ".hi", 0, t), f.SplitSlot(name, ".lo", t.Size(), types.Types[types.TUINT32]) + } + return f.SplitSlot(name, ".hi", t.Size(), t), f.SplitSlot(name, ".lo", 0, types.Types[types.TUINT32]) +} + +func (f *Func) SplitStruct(name *LocalSlot, i int) *LocalSlot { + st := name.Type + return f.SplitSlot(name, st.FieldName(i), st.FieldOff(i), st.FieldType(i)) +} +func (f *Func) SplitArray(name *LocalSlot) *LocalSlot { + n := name.N + at := name.Type + if at.NumElem() != 1 { + base.FatalfAt(n.Pos(), "bad array size") + } + et := at.Elem() + return f.SplitSlot(name, "[0]", 0, et) +} + +func (f *Func) SplitSlot(name *LocalSlot, sfx string, offset int64, t *types.Type) *LocalSlot { + lssk := LocalSlotSplitKey{name, offset, t} + if als, ok := f.CanonicalLocalSplits[lssk]; ok { + return als + } + // Note: the _ field may appear several times. But + // have no fear, identically-named but distinct Autos are + // ok, albeit maybe confusing for a debugger. + ls := f.fe.SplitSlot(name, sfx, offset, t) + f.CanonicalLocalSplits[lssk] = &ls + return &ls +} + +// newValue allocates a new Value with the given fields and places it at the end of b.Values. +func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value { + var v *Value + if f.freeValues != nil { + v = f.freeValues + f.freeValues = v.argstorage[0] + v.argstorage[0] = nil + } else { + ID := f.vid.get() + if int(ID) < len(f.Cache.values) { + v = &f.Cache.values[ID] + v.ID = ID + } else { + v = &Value{ID: ID} + } + } + v.Op = op + v.Type = t + v.Block = b + if notStmtBoundary(op) { + pos = pos.WithNotStmt() + } + v.Pos = pos + b.Values = append(b.Values, v) + return v +} + +// newValueNoBlock allocates a new Value with the given fields. +// The returned value is not placed in any block. Once the caller +// decides on a block b, it must set b.Block and append +// the returned value to b.Values. +func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value { + var v *Value + if f.freeValues != nil { + v = f.freeValues + f.freeValues = v.argstorage[0] + v.argstorage[0] = nil + } else { + ID := f.vid.get() + if int(ID) < len(f.Cache.values) { + v = &f.Cache.values[ID] + v.ID = ID + } else { + v = &Value{ID: ID} + } + } + v.Op = op + v.Type = t + v.Block = nil // caller must fix this. + if notStmtBoundary(op) { + pos = pos.WithNotStmt() + } + v.Pos = pos + return v +} + +// LogStat writes a string key and int value as a warning in a +// tab-separated format easily handled by spreadsheets or awk. +// file names, lines, and function names are included to provide enough (?) +// context to allow item-by-item comparisons across runs. +// For example: +// awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log +func (f *Func) LogStat(key string, args ...interface{}) { + value := "" + for _, a := range args { + value += fmt.Sprintf("\t%v", a) + } + n := "missing_pass" + if f.pass != nil { + n = strings.Replace(f.pass.name, " ", "_", -1) + } + f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name) +} + +// unCacheLine removes v from f's constant cache "line" for aux, +// resets v.InCache when it is found (and removed), +// and returns whether v was found in that line. +func (f *Func) unCacheLine(v *Value, aux int64) bool { + vv := f.constants[aux] + for i, cv := range vv { + if v == cv { + vv[i] = vv[len(vv)-1] + vv[len(vv)-1] = nil + f.constants[aux] = vv[0 : len(vv)-1] + v.InCache = false + return true + } + } + return false +} + +// unCache removes v from f's constant cache. +func (f *Func) unCache(v *Value) { + if v.InCache { + aux := v.AuxInt + if f.unCacheLine(v, aux) { + return + } + if aux == 0 { + switch v.Op { + case OpConstNil: + aux = constNilMagic + case OpConstSlice: + aux = constSliceMagic + case OpConstString: + aux = constEmptyStringMagic + case OpConstInterface: + aux = constInterfaceMagic + } + if aux != 0 && f.unCacheLine(v, aux) { + return + } + } + f.Fatalf("unCached value %s not found in cache, auxInt=0x%x, adjusted aux=0x%x", v.LongString(), v.AuxInt, aux) + } +} + +// freeValue frees a value. It must no longer be referenced or have any args. +func (f *Func) freeValue(v *Value) { + if v.Block == nil { + f.Fatalf("trying to free an already freed value") + } + if v.Uses != 0 { + f.Fatalf("value %s still has %d uses", v, v.Uses) + } + if len(v.Args) != 0 { + f.Fatalf("value %s still has %d args", v, len(v.Args)) + } + // Clear everything but ID (which we reuse). + id := v.ID + if v.InCache { + f.unCache(v) + } + *v = Value{} + v.ID = id + v.argstorage[0] = f.freeValues + f.freeValues = v +} + +// NewBlock allocates a new Block of the given kind and places it at the end of f.Blocks. +func (f *Func) NewBlock(kind BlockKind) *Block { + var b *Block + if f.freeBlocks != nil { + b = f.freeBlocks + f.freeBlocks = b.succstorage[0].b + b.succstorage[0].b = nil + } else { + ID := f.bid.get() + if int(ID) < len(f.Cache.blocks) { + b = &f.Cache.blocks[ID] + b.ID = ID + } else { + b = &Block{ID: ID} + } + } + b.Kind = kind + b.Func = f + b.Preds = b.predstorage[:0] + b.Succs = b.succstorage[:0] + b.Values = b.valstorage[:0] + f.Blocks = append(f.Blocks, b) + f.invalidateCFG() + return b +} + +func (f *Func) freeBlock(b *Block) { + if b.Func == nil { + f.Fatalf("trying to free an already freed block") + } + // Clear everything but ID (which we reuse). + id := b.ID + *b = Block{} + b.ID = id + b.succstorage[0].b = f.freeBlocks + f.freeBlocks = b +} + +// NewValue0 returns a new value in the block with no arguments and zero aux values. +func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Args = v.argstorage[:0] + return v +} + +// NewValue0I returns a new value in the block with no arguments and an auxint value. +func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Args = v.argstorage[:0] + return v +} + +// NewValue0A returns a new value in the block with no arguments and an aux value. +func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux Aux) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Aux = aux + v.Args = v.argstorage[:0] + return v +} + +// NewValue0IA returns a new value in the block with no arguments and both an auxint and aux values. +func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Aux = aux + v.Args = v.argstorage[:0] + return v +} + +// NewValue1 returns a new value in the block with one argument and zero aux values. +func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Args = v.argstorage[:1] + v.argstorage[0] = arg + arg.Uses++ + return v +} + +// NewValue1I returns a new value in the block with one argument and an auxint value. +func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Args = v.argstorage[:1] + v.argstorage[0] = arg + arg.Uses++ + return v +} + +// NewValue1A returns a new value in the block with one argument and an aux value. +func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux Aux, arg *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Aux = aux + v.Args = v.argstorage[:1] + v.argstorage[0] = arg + arg.Uses++ + return v +} + +// NewValue1IA returns a new value in the block with one argument and both an auxint and aux values. +func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Aux = aux + v.Args = v.argstorage[:1] + v.argstorage[0] = arg + arg.Uses++ + return v +} + +// NewValue2 returns a new value in the block with two arguments and zero aux values. +func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Args = v.argstorage[:2] + v.argstorage[0] = arg0 + v.argstorage[1] = arg1 + arg0.Uses++ + arg1.Uses++ + return v +} + +// NewValue2A returns a new value in the block with two arguments and one aux values. +func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Aux = aux + v.Args = v.argstorage[:2] + v.argstorage[0] = arg0 + v.argstorage[1] = arg1 + arg0.Uses++ + arg1.Uses++ + return v +} + +// NewValue2I returns a new value in the block with two arguments and an auxint value. +func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Args = v.argstorage[:2] + v.argstorage[0] = arg0 + v.argstorage[1] = arg1 + arg0.Uses++ + arg1.Uses++ + return v +} + +// NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values. +func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg0, arg1 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Aux = aux + v.Args = v.argstorage[:2] + v.argstorage[0] = arg0 + v.argstorage[1] = arg1 + arg0.Uses++ + arg1.Uses++ + return v +} + +// NewValue3 returns a new value in the block with three arguments and zero aux values. +func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Args = v.argstorage[:3] + v.argstorage[0] = arg0 + v.argstorage[1] = arg1 + v.argstorage[2] = arg2 + arg0.Uses++ + arg1.Uses++ + arg2.Uses++ + return v +} + +// NewValue3I returns a new value in the block with three arguments and an auxint value. +func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Args = v.argstorage[:3] + v.argstorage[0] = arg0 + v.argstorage[1] = arg1 + v.argstorage[2] = arg2 + arg0.Uses++ + arg1.Uses++ + arg2.Uses++ + return v +} + +// NewValue3A returns a new value in the block with three argument and an aux value. +func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Aux = aux + v.Args = v.argstorage[:3] + v.argstorage[0] = arg0 + v.argstorage[1] = arg1 + v.argstorage[2] = arg2 + arg0.Uses++ + arg1.Uses++ + arg2.Uses++ + return v +} + +// NewValue4 returns a new value in the block with four arguments and zero aux values. +func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = 0 + v.Args = []*Value{arg0, arg1, arg2, arg3} + arg0.Uses++ + arg1.Uses++ + arg2.Uses++ + arg3.Uses++ + return v +} + +// NewValue4I returns a new value in the block with four arguments and auxint value. +func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value { + v := b.Func.newValue(op, t, b, pos) + v.AuxInt = auxint + v.Args = []*Value{arg0, arg1, arg2, arg3} + arg0.Uses++ + arg1.Uses++ + arg2.Uses++ + arg3.Uses++ + return v +} + +// constVal returns a constant value for c. +func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value { + if f.constants == nil { + f.constants = make(map[int64][]*Value) + } + vv := f.constants[c] + for _, v := range vv { + if v.Op == op && v.Type.Compare(t) == types.CMPeq { + if setAuxInt && v.AuxInt != c { + panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c)) + } + return v + } + } + var v *Value + if setAuxInt { + v = f.Entry.NewValue0I(src.NoXPos, op, t, c) + } else { + v = f.Entry.NewValue0(src.NoXPos, op, t) + } + f.constants[c] = append(vv, v) + v.InCache = true + return v +} + +// These magic auxint values let us easily cache non-numeric constants +// using the same constants map while making collisions unlikely. +// These values are unlikely to occur in regular code and +// are easy to grep for in case of bugs. +const ( + constSliceMagic = 1122334455 + constInterfaceMagic = 2233445566 + constNilMagic = 3344556677 + constEmptyStringMagic = 4455667788 +) + +// ConstBool returns an int constant representing its argument. +func (f *Func) ConstBool(t *types.Type, c bool) *Value { + i := int64(0) + if c { + i = 1 + } + return f.constVal(OpConstBool, t, i, true) +} +func (f *Func) ConstInt8(t *types.Type, c int8) *Value { + return f.constVal(OpConst8, t, int64(c), true) +} +func (f *Func) ConstInt16(t *types.Type, c int16) *Value { + return f.constVal(OpConst16, t, int64(c), true) +} +func (f *Func) ConstInt32(t *types.Type, c int32) *Value { + return f.constVal(OpConst32, t, int64(c), true) +} +func (f *Func) ConstInt64(t *types.Type, c int64) *Value { + return f.constVal(OpConst64, t, c, true) +} +func (f *Func) ConstFloat32(t *types.Type, c float64) *Value { + return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true) +} +func (f *Func) ConstFloat64(t *types.Type, c float64) *Value { + return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true) +} + +func (f *Func) ConstSlice(t *types.Type) *Value { + return f.constVal(OpConstSlice, t, constSliceMagic, false) +} +func (f *Func) ConstInterface(t *types.Type) *Value { + return f.constVal(OpConstInterface, t, constInterfaceMagic, false) +} +func (f *Func) ConstNil(t *types.Type) *Value { + return f.constVal(OpConstNil, t, constNilMagic, false) +} +func (f *Func) ConstEmptyString(t *types.Type) *Value { + v := f.constVal(OpConstString, t, constEmptyStringMagic, false) + v.Aux = StringToAux("") + return v +} +func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value { + v := f.constVal(OpOffPtr, t, c, true) + if len(v.Args) == 0 { + v.AddArg(sp) + } + return v +} + +func (f *Func) Frontend() Frontend { return f.fe } +func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) } +func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) } +func (f *Func) Log() bool { return f.fe.Log() } + +func (f *Func) Fatalf(msg string, args ...interface{}) { + stats := "crashed" + if f.Log() { + f.Logf(" pass %s end %s\n", f.pass.name, stats) + printFunc(f) + } + if f.HTMLWriter != nil { + f.HTMLWriter.WritePhase(f.pass.name, fmt.Sprintf("%s <span class=\"stats\">%s</span>", f.pass.name, stats)) + f.HTMLWriter.flushPhases() + } + f.fe.Fatalf(f.Entry.Pos, msg, args...) +} + +// postorder returns the reachable blocks in f in a postorder traversal. +func (f *Func) postorder() []*Block { + if f.cachedPostorder == nil { + f.cachedPostorder = postorder(f) + } + return f.cachedPostorder +} + +func (f *Func) Postorder() []*Block { + return f.postorder() +} + +// Idom returns a map from block ID to the immediate dominator of that block. +// f.Entry.ID maps to nil. Unreachable blocks map to nil as well. +func (f *Func) Idom() []*Block { + if f.cachedIdom == nil { + f.cachedIdom = dominators(f) + } + return f.cachedIdom +} + +// Sdom returns a sparse tree representing the dominator relationships +// among the blocks of f. +func (f *Func) Sdom() SparseTree { + if f.cachedSdom == nil { + f.cachedSdom = newSparseTree(f, f.Idom()) + } + return f.cachedSdom +} + +// loopnest returns the loop nest information for f. +func (f *Func) loopnest() *loopnest { + if f.cachedLoopnest == nil { + f.cachedLoopnest = loopnestfor(f) + } + return f.cachedLoopnest +} + +// invalidateCFG tells f that its CFG has changed. +func (f *Func) invalidateCFG() { + f.cachedPostorder = nil + f.cachedIdom = nil + f.cachedSdom = nil + f.cachedLoopnest = nil +} + +// DebugHashMatch returns +// +// base.DebugHashMatch(this function's package.name) +// +// for use in bug isolation. The return value is true unless +// environment variable GOSSAHASH is set, in which case "it depends". +// See [base.DebugHashMatch] for more information. +func (f *Func) DebugHashMatch() bool { + if !base.HasDebugHash() { + return true + } + sym := f.fe.Func().Sym() + return base.DebugHashMatchPkgFunc(sym.Pkg.Path, sym.Name) +} + +func (f *Func) spSb() (sp, sb *Value) { + initpos := src.NoXPos // These are originally created with no position in ssa.go; if they are optimized out then recreated, should be the same. + for _, v := range f.Entry.Values { + if v.Op == OpSB { + sb = v + } + if v.Op == OpSP { + sp = v + } + if sb != nil && sp != nil { + return + } + } + if sb == nil { + sb = f.Entry.NewValue0(initpos.WithNotStmt(), OpSB, f.Config.Types.Uintptr) + } + if sp == nil { + sp = f.Entry.NewValue0(initpos.WithNotStmt(), OpSP, f.Config.Types.Uintptr) + } + return +} + +// useFMA allows targeted debugging w/ GOFMAHASH +// If you have an architecture-dependent FP glitch, this will help you find it. +func (f *Func) useFMA(v *Value) bool { + if !f.Config.UseFMA { + return false + } + if base.FmaHash == nil { + return true + } + return base.FmaHash.MatchPos(v.Pos, nil) +} + +// NewLocal returns a new anonymous local variable of the given type. +func (f *Func) NewLocal(pos src.XPos, typ *types.Type) *ir.Name { + return typecheck.TempAt(pos, f.fe.Func(), typ) // Note: adds new auto to fn.Dcl list +} |