summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/loopbce.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/ssa/loopbce.go')
-rw-r--r--src/cmd/compile/internal/ssa/loopbce.go437
1 files changed, 437 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/loopbce.go b/src/cmd/compile/internal/ssa/loopbce.go
new file mode 100644
index 0000000..dd1f39d
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/loopbce.go
@@ -0,0 +1,437 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/types"
+ "fmt"
+)
+
+type indVarFlags uint8
+
+const (
+ indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive)
+ indVarMaxInc // maximum value is inclusive (default: exclusive)
+ indVarCountDown // if set the iteration starts at max and count towards min (default: min towards max)
+)
+
+type indVar struct {
+ ind *Value // induction variable
+ nxt *Value // the incremented variable
+ min *Value // minimum value, inclusive/exclusive depends on flags
+ max *Value // maximum value, inclusive/exclusive depends on flags
+ entry *Block // entry block in the loop.
+ flags indVarFlags
+ // Invariant: for all blocks strictly dominated by entry:
+ // min <= ind < max [if flags == 0]
+ // min < ind < max [if flags == indVarMinExc]
+ // min <= ind <= max [if flags == indVarMaxInc]
+ // min < ind <= max [if flags == indVarMinExc|indVarMaxInc]
+}
+
+// parseIndVar checks whether the SSA value passed as argument is a valid induction
+// variable, and, if so, extracts:
+// - the minimum bound
+// - the increment value
+// - the "next" value (SSA value that is Phi'd into the induction variable every loop)
+//
+// Currently, we detect induction variables that match (Phi min nxt),
+// with nxt being (Add inc ind).
+// If it can't parse the induction variable correctly, it returns (nil, nil, nil).
+func parseIndVar(ind *Value) (min, inc, nxt *Value) {
+ if ind.Op != OpPhi {
+ return
+ }
+
+ if n := ind.Args[0]; (n.Op == OpAdd64 || n.Op == OpAdd32 || n.Op == OpAdd16 || n.Op == OpAdd8) && (n.Args[0] == ind || n.Args[1] == ind) {
+ min, nxt = ind.Args[1], n
+ } else if n := ind.Args[1]; (n.Op == OpAdd64 || n.Op == OpAdd32 || n.Op == OpAdd16 || n.Op == OpAdd8) && (n.Args[0] == ind || n.Args[1] == ind) {
+ min, nxt = ind.Args[0], n
+ } else {
+ // Not a recognized induction variable.
+ return
+ }
+
+ if nxt.Args[0] == ind { // nxt = ind + inc
+ inc = nxt.Args[1]
+ } else if nxt.Args[1] == ind { // nxt = inc + ind
+ inc = nxt.Args[0]
+ } else {
+ panic("unreachable") // one of the cases must be true from the above.
+ }
+
+ return
+}
+
+// findIndVar finds induction variables in a function.
+//
+// Look for variables and blocks that satisfy the following
+//
+// loop:
+// ind = (Phi min nxt),
+// if ind < max
+// then goto enter_loop
+// else goto exit_loop
+//
+// enter_loop:
+// do something
+// nxt = inc + ind
+// goto loop
+//
+// exit_loop:
+func findIndVar(f *Func) []indVar {
+ var iv []indVar
+ sdom := f.Sdom()
+
+ for _, b := range f.Blocks {
+ if b.Kind != BlockIf || len(b.Preds) != 2 {
+ continue
+ }
+
+ var ind *Value // induction variable
+ var init *Value // starting value
+ var limit *Value // ending value
+
+ // Check that the control if it either ind </<= limit or limit </<= ind.
+ // TODO: Handle unsigned comparisons?
+ c := b.Controls[0]
+ inclusive := false
+ switch c.Op {
+ case OpLeq64, OpLeq32, OpLeq16, OpLeq8:
+ inclusive = true
+ fallthrough
+ case OpLess64, OpLess32, OpLess16, OpLess8:
+ ind, limit = c.Args[0], c.Args[1]
+ default:
+ continue
+ }
+
+ // See if this is really an induction variable
+ less := true
+ init, inc, nxt := parseIndVar(ind)
+ if init == nil {
+ // We failed to parse the induction variable. Before punting, we want to check
+ // whether the control op was written with the induction variable on the RHS
+ // instead of the LHS. This happens for the downwards case, like:
+ // for i := len(n)-1; i >= 0; i--
+ init, inc, nxt = parseIndVar(limit)
+ if init == nil {
+ // No recognized induction variable on either operand
+ continue
+ }
+
+ // Ok, the arguments were reversed. Swap them, and remember that we're
+ // looking at an ind >/>= loop (so the induction must be decrementing).
+ ind, limit = limit, ind
+ less = false
+ }
+
+ if ind.Block != b {
+ // TODO: Could be extended to include disjointed loop headers.
+ // I don't think this is causing missed optimizations in real world code often.
+ // See https://go.dev/issue/63955
+ continue
+ }
+
+ // Expect the increment to be a nonzero constant.
+ if !inc.isGenericIntConst() {
+ continue
+ }
+ step := inc.AuxInt
+ if step == 0 {
+ continue
+ }
+
+ // Increment sign must match comparison direction.
+ // When incrementing, the termination comparison must be ind </<= limit.
+ // When decrementing, the termination comparison must be ind >/>= limit.
+ // See issue 26116.
+ if step > 0 && !less {
+ continue
+ }
+ if step < 0 && less {
+ continue
+ }
+
+ // Up to now we extracted the induction variable (ind),
+ // the increment delta (inc), the temporary sum (nxt),
+ // the initial value (init) and the limiting value (limit).
+ //
+ // We also know that ind has the form (Phi init nxt) where
+ // nxt is (Add inc nxt) which means: 1) inc dominates nxt
+ // and 2) there is a loop starting at inc and containing nxt.
+ //
+ // We need to prove that the induction variable is incremented
+ // only when it's smaller than the limiting value.
+ // Two conditions must happen listed below to accept ind
+ // as an induction variable.
+
+ // First condition: loop entry has a single predecessor, which
+ // is the header block. This implies that b.Succs[0] is
+ // reached iff ind < limit.
+ if len(b.Succs[0].b.Preds) != 1 {
+ // b.Succs[1] must exit the loop.
+ continue
+ }
+
+ // Second condition: b.Succs[0] dominates nxt so that
+ // nxt is computed when inc < limit.
+ if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
+ // inc+ind can only be reached through the branch that enters the loop.
+ continue
+ }
+
+ // Check for overflow/underflow. We need to make sure that inc never causes
+ // the induction variable to wrap around.
+ // We use a function wrapper here for easy return true / return false / keep going logic.
+ // This function returns true if the increment will never overflow/underflow.
+ ok := func() bool {
+ if step > 0 {
+ if limit.isGenericIntConst() {
+ // Figure out the actual largest value.
+ v := limit.AuxInt
+ if !inclusive {
+ if v == minSignedValue(limit.Type) {
+ return false // < minint is never satisfiable.
+ }
+ v--
+ }
+ if init.isGenericIntConst() {
+ // Use stride to compute a better lower limit.
+ if init.AuxInt > v {
+ return false
+ }
+ v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step))
+ }
+ if addWillOverflow(v, step) {
+ return false
+ }
+ if inclusive && v != limit.AuxInt || !inclusive && v+1 != limit.AuxInt {
+ // We know a better limit than the programmer did. Use our limit instead.
+ limit = f.constVal(limit.Op, limit.Type, v, true)
+ inclusive = true
+ }
+ return true
+ }
+ if step == 1 && !inclusive {
+ // Can't overflow because maxint is never a possible value.
+ return true
+ }
+ // If the limit is not a constant, check to see if it is a
+ // negative offset from a known non-negative value.
+ knn, k := findKNN(limit)
+ if knn == nil || k < 0 {
+ return false
+ }
+ // limit == (something nonnegative) - k. That subtraction can't underflow, so
+ // we can trust it.
+ if inclusive {
+ // ind <= knn - k cannot overflow if step is at most k
+ return step <= k
+ }
+ // ind < knn - k cannot overflow if step is at most k+1
+ return step <= k+1 && k != maxSignedValue(limit.Type)
+ } else { // step < 0
+ if limit.Op == OpConst64 {
+ // Figure out the actual smallest value.
+ v := limit.AuxInt
+ if !inclusive {
+ if v == maxSignedValue(limit.Type) {
+ return false // > maxint is never satisfiable.
+ }
+ v++
+ }
+ if init.isGenericIntConst() {
+ // Use stride to compute a better lower limit.
+ if init.AuxInt < v {
+ return false
+ }
+ v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step))
+ }
+ if subWillUnderflow(v, -step) {
+ return false
+ }
+ if inclusive && v != limit.AuxInt || !inclusive && v-1 != limit.AuxInt {
+ // We know a better limit than the programmer did. Use our limit instead.
+ limit = f.constVal(limit.Op, limit.Type, v, true)
+ inclusive = true
+ }
+ return true
+ }
+ if step == -1 && !inclusive {
+ // Can't underflow because minint is never a possible value.
+ return true
+ }
+ }
+ return false
+
+ }
+
+ if ok() {
+ flags := indVarFlags(0)
+ var min, max *Value
+ if step > 0 {
+ min = init
+ max = limit
+ if inclusive {
+ flags |= indVarMaxInc
+ }
+ } else {
+ min = limit
+ max = init
+ flags |= indVarMaxInc
+ if !inclusive {
+ flags |= indVarMinExc
+ }
+ flags |= indVarCountDown
+ step = -step
+ }
+ if f.pass.debug >= 1 {
+ printIndVar(b, ind, min, max, step, flags)
+ }
+
+ iv = append(iv, indVar{
+ ind: ind,
+ nxt: nxt,
+ min: min,
+ max: max,
+ entry: b.Succs[0].b,
+ flags: flags,
+ })
+ b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
+ }
+
+ // TODO: other unrolling idioms
+ // for i := 0; i < KNN - KNN % k ; i += k
+ // for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
+ // for i := 0; i < KNN&(-k) ; i += k // k a power of 2
+ }
+
+ return iv
+}
+
+// addWillOverflow reports whether x+y would result in a value more than maxint.
+func addWillOverflow(x, y int64) bool {
+ return x+y < x
+}
+
+// subWillUnderflow reports whether x-y would result in a value less than minint.
+func subWillUnderflow(x, y int64) bool {
+ return x-y > x
+}
+
+// diff returns x-y as a uint64. Requires x>=y.
+func diff(x, y int64) uint64 {
+ if x < y {
+ base.Fatalf("diff %d - %d underflowed", x, y)
+ }
+ return uint64(x - y)
+}
+
+// addU returns x+y. Requires that x+y does not overflow an int64.
+func addU(x int64, y uint64) int64 {
+ if y >= 1<<63 {
+ if x >= 0 {
+ base.Fatalf("addU overflowed %d + %d", x, y)
+ }
+ x += 1<<63 - 1
+ x += 1
+ y -= 1 << 63
+ }
+ if addWillOverflow(x, int64(y)) {
+ base.Fatalf("addU overflowed %d + %d", x, y)
+ }
+ return x + int64(y)
+}
+
+// subU returns x-y. Requires that x-y does not underflow an int64.
+func subU(x int64, y uint64) int64 {
+ if y >= 1<<63 {
+ if x < 0 {
+ base.Fatalf("subU underflowed %d - %d", x, y)
+ }
+ x -= 1<<63 - 1
+ x -= 1
+ y -= 1 << 63
+ }
+ if subWillUnderflow(x, int64(y)) {
+ base.Fatalf("subU underflowed %d - %d", x, y)
+ }
+ return x - int64(y)
+}
+
+// if v is known to be x - c, where x is known to be nonnegative and c is a
+// constant, return x, c. Otherwise return nil, 0.
+func findKNN(v *Value) (*Value, int64) {
+ var x, y *Value
+ x = v
+ switch v.Op {
+ case OpSub64, OpSub32, OpSub16, OpSub8:
+ x = v.Args[0]
+ y = v.Args[1]
+
+ case OpAdd64, OpAdd32, OpAdd16, OpAdd8:
+ x = v.Args[0]
+ y = v.Args[1]
+ if x.isGenericIntConst() {
+ x, y = y, x
+ }
+ }
+ switch x.Op {
+ case OpSliceLen, OpStringLen, OpSliceCap:
+ default:
+ return nil, 0
+ }
+ if y == nil {
+ return x, 0
+ }
+ if !y.isGenericIntConst() {
+ return nil, 0
+ }
+ if v.Op == OpAdd64 || v.Op == OpAdd32 || v.Op == OpAdd16 || v.Op == OpAdd8 {
+ return x, -y.AuxInt
+ }
+ return x, y.AuxInt
+}
+
+func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
+ mb1, mb2 := "[", "]"
+ if flags&indVarMinExc != 0 {
+ mb1 = "("
+ }
+ if flags&indVarMaxInc == 0 {
+ mb2 = ")"
+ }
+
+ mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt)
+ if !min.isGenericIntConst() {
+ if b.Func.pass.debug >= 2 {
+ mlim1 = fmt.Sprint(min)
+ } else {
+ mlim1 = "?"
+ }
+ }
+ if !max.isGenericIntConst() {
+ if b.Func.pass.debug >= 2 {
+ mlim2 = fmt.Sprint(max)
+ } else {
+ mlim2 = "?"
+ }
+ }
+ extra := ""
+ if b.Func.pass.debug >= 2 {
+ extra = fmt.Sprintf(" (%s)", i)
+ }
+ b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra)
+}
+
+func minSignedValue(t *types.Type) int64 {
+ return -1 << (t.Size()*8 - 1)
+}
+
+func maxSignedValue(t *types.Type) int64 {
+ return 1<<((t.Size()*8)-1) - 1
+}