diff options
Diffstat (limited to 'src/cmd/compile/internal/ssa/sparsetree.go')
-rw-r--r-- | src/cmd/compile/internal/ssa/sparsetree.go | 242 |
1 files changed, 242 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/sparsetree.go b/src/cmd/compile/internal/ssa/sparsetree.go new file mode 100644 index 0000000..6f2bd04 --- /dev/null +++ b/src/cmd/compile/internal/ssa/sparsetree.go @@ -0,0 +1,242 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ssa + +import ( + "fmt" + "strings" +) + +type SparseTreeNode struct { + child *Block + sibling *Block + parent *Block + + // Every block has 6 numbers associated with it: + // entry-1, entry, entry+1, exit-1, and exit, exit+1. + // entry and exit are conceptually the top of the block (phi functions) + // entry+1 and exit-1 are conceptually the bottom of the block (ordinary defs) + // entry-1 and exit+1 are conceptually "just before" the block (conditions flowing in) + // + // This simplifies life if we wish to query information about x + // when x is both an input to and output of a block. + entry, exit int32 +} + +func (s *SparseTreeNode) String() string { + return fmt.Sprintf("[%d,%d]", s.entry, s.exit) +} + +func (s *SparseTreeNode) Entry() int32 { + return s.entry +} + +func (s *SparseTreeNode) Exit() int32 { + return s.exit +} + +const ( + // When used to lookup up definitions in a sparse tree, + // these adjustments to a block's entry (+adjust) and + // exit (-adjust) numbers allow a distinction to be made + // between assignments (typically branch-dependent + // conditionals) occurring "before" the block (e.g., as inputs + // to the block and its phi functions), "within" the block, + // and "after" the block. + AdjustBefore = -1 // defined before phi + AdjustWithin = 0 // defined by phi + AdjustAfter = 1 // defined within block +) + +// A SparseTree is a tree of Blocks. +// It allows rapid ancestor queries, +// such as whether one block dominates another. +type SparseTree []SparseTreeNode + +// newSparseTree creates a SparseTree from a block-to-parent map (array indexed by Block.ID). +func newSparseTree(f *Func, parentOf []*Block) SparseTree { + t := make(SparseTree, f.NumBlocks()) + for _, b := range f.Blocks { + n := &t[b.ID] + if p := parentOf[b.ID]; p != nil { + n.parent = p + n.sibling = t[p.ID].child + t[p.ID].child = b + } + } + t.numberBlock(f.Entry, 1) + return t +} + +// newSparseOrderedTree creates a SparseTree from a block-to-parent map (array indexed by Block.ID) +// children will appear in the reverse of their order in reverseOrder +// in particular, if reverseOrder is a dfs-reversePostOrder, then the root-to-children +// walk of the tree will yield a pre-order. +func newSparseOrderedTree(f *Func, parentOf, reverseOrder []*Block) SparseTree { + t := make(SparseTree, f.NumBlocks()) + for _, b := range reverseOrder { + n := &t[b.ID] + if p := parentOf[b.ID]; p != nil { + n.parent = p + n.sibling = t[p.ID].child + t[p.ID].child = b + } + } + t.numberBlock(f.Entry, 1) + return t +} + +// treestructure provides a string description of the dominator +// tree and flow structure of block b and all blocks that it +// dominates. +func (t SparseTree) treestructure(b *Block) string { + return t.treestructure1(b, 0) +} +func (t SparseTree) treestructure1(b *Block, i int) string { + s := "\n" + strings.Repeat("\t", i) + b.String() + "->[" + for i, e := range b.Succs { + if i > 0 { + s += "," + } + s += e.b.String() + } + s += "]" + if c0 := t[b.ID].child; c0 != nil { + s += "(" + for c := c0; c != nil; c = t[c.ID].sibling { + if c != c0 { + s += " " + } + s += t.treestructure1(c, i+1) + } + s += ")" + } + return s +} + +// numberBlock assigns entry and exit numbers for b and b's +// children in an in-order walk from a gappy sequence, where n +// is the first number not yet assigned or reserved. N should +// be larger than zero. For each entry and exit number, the +// values one larger and smaller are reserved to indicate +// "strictly above" and "strictly below". numberBlock returns +// the smallest number not yet assigned or reserved (i.e., the +// exit number of the last block visited, plus two, because +// last.exit+1 is a reserved value.) +// +// examples: +// +// single node tree Root, call with n=1 +// entry=2 Root exit=5; returns 7 +// +// two node tree, Root->Child, call with n=1 +// entry=2 Root exit=11; returns 13 +// entry=5 Child exit=8 +// +// three node tree, Root->(Left, Right), call with n=1 +// entry=2 Root exit=17; returns 19 +// entry=5 Left exit=8; entry=11 Right exit=14 +// +// This is the in-order sequence of assigned and reserved numbers +// for the last example: +// root left left right right root +// 1 2e 3 | 4 5e 6 | 7 8x 9 | 10 11e 12 | 13 14x 15 | 16 17x 18 + +func (t SparseTree) numberBlock(b *Block, n int32) int32 { + // reserve n for entry-1, assign n+1 to entry + n++ + t[b.ID].entry = n + // reserve n+1 for entry+1, n+2 is next free number + n += 2 + for c := t[b.ID].child; c != nil; c = t[c.ID].sibling { + n = t.numberBlock(c, n) // preserves n = next free number + } + // reserve n for exit-1, assign n+1 to exit + n++ + t[b.ID].exit = n + // reserve n+1 for exit+1, n+2 is next free number, returned. + return n + 2 +} + +// Sibling returns a sibling of x in the dominator tree (i.e., +// a node with the same immediate dominator) or nil if there +// are no remaining siblings in the arbitrary but repeatable +// order chosen. Because the Child-Sibling order is used +// to assign entry and exit numbers in the treewalk, those +// numbers are also consistent with this order (i.e., +// Sibling(x) has entry number larger than x's exit number). +func (t SparseTree) Sibling(x *Block) *Block { + return t[x.ID].sibling +} + +// Child returns a child of x in the dominator tree, or +// nil if there are none. The choice of first child is +// arbitrary but repeatable. +func (t SparseTree) Child(x *Block) *Block { + return t[x.ID].child +} + +// Parent returns the parent of x in the dominator tree, or +// nil if x is the function's entry. +func (t SparseTree) Parent(x *Block) *Block { + return t[x.ID].parent +} + +// IsAncestorEq reports whether x is an ancestor of or equal to y. +func (t SparseTree) IsAncestorEq(x, y *Block) bool { + if x == y { + return true + } + xx := &t[x.ID] + yy := &t[y.ID] + return xx.entry <= yy.entry && yy.exit <= xx.exit +} + +// isAncestor reports whether x is a strict ancestor of y. +func (t SparseTree) isAncestor(x, y *Block) bool { + if x == y { + return false + } + xx := &t[x.ID] + yy := &t[y.ID] + return xx.entry < yy.entry && yy.exit < xx.exit +} + +// domorder returns a value for dominator-oriented sorting. +// Block domination does not provide a total ordering, +// but domorder two has useful properties. +// 1. If domorder(x) > domorder(y) then x does not dominate y. +// 2. If domorder(x) < domorder(y) and domorder(y) < domorder(z) and x does not dominate y, +// then x does not dominate z. +// +// Property (1) means that blocks sorted by domorder always have a maximal dominant block first. +// Property (2) allows searches for dominated blocks to exit early. +func (t SparseTree) domorder(x *Block) int32 { + // Here is an argument that entry(x) provides the properties documented above. + // + // Entry and exit values are assigned in a depth-first dominator tree walk. + // For all blocks x and y, one of the following holds: + // + // (x-dom-y) x dominates y => entry(x) < entry(y) < exit(y) < exit(x) + // (y-dom-x) y dominates x => entry(y) < entry(x) < exit(x) < exit(y) + // (x-then-y) neither x nor y dominates the other and x walked before y => entry(x) < exit(x) < entry(y) < exit(y) + // (y-then-x) neither x nor y dominates the other and y walked before y => entry(y) < exit(y) < entry(x) < exit(x) + // + // entry(x) > entry(y) eliminates case x-dom-y. This provides property (1) above. + // + // For property (2), assume entry(x) < entry(y) and entry(y) < entry(z) and x does not dominate y. + // entry(x) < entry(y) allows cases x-dom-y and x-then-y. + // But by supposition, x does not dominate y. So we have x-then-y. + // + // For contradiction, assume x dominates z. + // Then entry(x) < entry(z) < exit(z) < exit(x). + // But we know x-then-y, so entry(x) < exit(x) < entry(y) < exit(y). + // Combining those, entry(x) < entry(z) < exit(z) < exit(x) < entry(y) < exit(y). + // By supposition, entry(y) < entry(z), which allows cases y-dom-z and y-then-z. + // y-dom-z requires entry(y) < entry(z), but we have entry(z) < entry(y). + // y-then-z requires exit(y) < entry(z), but we have entry(z) < exit(y). + // We have a contradiction, so x does not dominate z, as required. + return t[x.ID].entry +} |