summaryrefslogtreecommitdiffstats
path: root/src/math/rand/v2/zipf.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/rand/v2/zipf.go')
-rw-r--r--src/math/rand/v2/zipf.go77
1 files changed, 77 insertions, 0 deletions
diff --git a/src/math/rand/v2/zipf.go b/src/math/rand/v2/zipf.go
new file mode 100644
index 0000000..f04c814
--- /dev/null
+++ b/src/math/rand/v2/zipf.go
@@ -0,0 +1,77 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// W.Hormann, G.Derflinger:
+// "Rejection-Inversion to Generate Variates
+// from Monotone Discrete Distributions"
+// http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz
+
+package rand
+
+import "math"
+
+// A Zipf generates Zipf distributed variates.
+type Zipf struct {
+ r *Rand
+ imax float64
+ v float64
+ q float64
+ s float64
+ oneminusQ float64
+ oneminusQinv float64
+ hxm float64
+ hx0minusHxm float64
+}
+
+func (z *Zipf) h(x float64) float64 {
+ return math.Exp(z.oneminusQ*math.Log(z.v+x)) * z.oneminusQinv
+}
+
+func (z *Zipf) hinv(x float64) float64 {
+ return math.Exp(z.oneminusQinv*math.Log(z.oneminusQ*x)) - z.v
+}
+
+// NewZipf returns a Zipf variate generator.
+// The generator generates values k ∈ [0, imax]
+// such that P(k) is proportional to (v + k) ** (-s).
+// Requirements: s > 1 and v >= 1.
+func NewZipf(r *Rand, s float64, v float64, imax uint64) *Zipf {
+ z := new(Zipf)
+ if s <= 1.0 || v < 1 {
+ return nil
+ }
+ z.r = r
+ z.imax = float64(imax)
+ z.v = v
+ z.q = s
+ z.oneminusQ = 1.0 - z.q
+ z.oneminusQinv = 1.0 / z.oneminusQ
+ z.hxm = z.h(z.imax + 0.5)
+ z.hx0minusHxm = z.h(0.5) - math.Exp(math.Log(z.v)*(-z.q)) - z.hxm
+ z.s = 1 - z.hinv(z.h(1.5)-math.Exp(-z.q*math.Log(z.v+1.0)))
+ return z
+}
+
+// Uint64 returns a value drawn from the Zipf distribution described
+// by the Zipf object.
+func (z *Zipf) Uint64() uint64 {
+ if z == nil {
+ panic("rand: nil Zipf")
+ }
+ k := 0.0
+
+ for {
+ r := z.r.Float64() // r on [0,1]
+ ur := z.hxm + r*z.hx0minusHxm
+ x := z.hinv(ur)
+ k = math.Floor(x + 0.5)
+ if k-x <= z.s {
+ break
+ }
+ if ur >= z.h(k+0.5)-math.Exp(-math.Log(k+z.v)*z.q) {
+ break
+ }
+ }
+ return uint64(k)
+}