summaryrefslogtreecommitdiffstats
path: root/src/runtime/mfinal.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/mfinal.go')
-rw-r--r--src/runtime/mfinal.go552
1 files changed, 552 insertions, 0 deletions
diff --git a/src/runtime/mfinal.go b/src/runtime/mfinal.go
new file mode 100644
index 0000000..7d9d547
--- /dev/null
+++ b/src/runtime/mfinal.go
@@ -0,0 +1,552 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Garbage collector: finalizers and block profiling.
+
+package runtime
+
+import (
+ "internal/abi"
+ "internal/goarch"
+ "internal/goexperiment"
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// finblock is an array of finalizers to be executed. finblocks are
+// arranged in a linked list for the finalizer queue.
+//
+// finblock is allocated from non-GC'd memory, so any heap pointers
+// must be specially handled. GC currently assumes that the finalizer
+// queue does not grow during marking (but it can shrink).
+type finblock struct {
+ _ sys.NotInHeap
+ alllink *finblock
+ next *finblock
+ cnt uint32
+ _ int32
+ fin [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
+}
+
+var fingStatus atomic.Uint32
+
+// finalizer goroutine status.
+const (
+ fingUninitialized uint32 = iota
+ fingCreated uint32 = 1 << (iota - 1)
+ fingRunningFinalizer
+ fingWait
+ fingWake
+)
+
+var finlock mutex // protects the following variables
+var fing *g // goroutine that runs finalizers
+var finq *finblock // list of finalizers that are to be executed
+var finc *finblock // cache of free blocks
+var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte
+
+var allfin *finblock // list of all blocks
+
+// NOTE: Layout known to queuefinalizer.
+type finalizer struct {
+ fn *funcval // function to call (may be a heap pointer)
+ arg unsafe.Pointer // ptr to object (may be a heap pointer)
+ nret uintptr // bytes of return values from fn
+ fint *_type // type of first argument of fn
+ ot *ptrtype // type of ptr to object (may be a heap pointer)
+}
+
+var finalizer1 = [...]byte{
+ // Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here)
+ // Each byte describes 8 words.
+ // Need 8 Finalizers described by 5 bytes before pattern repeats:
+ // ptr ptr INT ptr ptr
+ // ptr ptr INT ptr ptr
+ // ptr ptr INT ptr ptr
+ // ptr ptr INT ptr ptr
+ // ptr ptr INT ptr ptr
+ // ptr ptr INT ptr ptr
+ // ptr ptr INT ptr ptr
+ // ptr ptr INT ptr ptr
+ // aka
+ //
+ // ptr ptr INT ptr ptr ptr ptr INT
+ // ptr ptr ptr ptr INT ptr ptr ptr
+ // ptr INT ptr ptr ptr ptr INT ptr
+ // ptr ptr ptr INT ptr ptr ptr ptr
+ // INT ptr ptr ptr ptr INT ptr ptr
+ //
+ // Assumptions about Finalizer layout checked below.
+ 1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7,
+ 1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7,
+ 1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7,
+ 1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7,
+ 0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7,
+}
+
+// lockRankMayQueueFinalizer records the lock ranking effects of a
+// function that may call queuefinalizer.
+func lockRankMayQueueFinalizer() {
+ lockWithRankMayAcquire(&finlock, getLockRank(&finlock))
+}
+
+func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
+ if gcphase != _GCoff {
+ // Currently we assume that the finalizer queue won't
+ // grow during marking so we don't have to rescan it
+ // during mark termination. If we ever need to lift
+ // this assumption, we can do it by adding the
+ // necessary barriers to queuefinalizer (which it may
+ // have automatically).
+ throw("queuefinalizer during GC")
+ }
+
+ lock(&finlock)
+ if finq == nil || finq.cnt == uint32(len(finq.fin)) {
+ if finc == nil {
+ finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys))
+ finc.alllink = allfin
+ allfin = finc
+ if finptrmask[0] == 0 {
+ // Build pointer mask for Finalizer array in block.
+ // Check assumptions made in finalizer1 array above.
+ if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize ||
+ unsafe.Offsetof(finalizer{}.fn) != 0 ||
+ unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize ||
+ unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize ||
+ unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize ||
+ unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) {
+ throw("finalizer out of sync")
+ }
+ for i := range finptrmask {
+ finptrmask[i] = finalizer1[i%len(finalizer1)]
+ }
+ }
+ }
+ block := finc
+ finc = block.next
+ block.next = finq
+ finq = block
+ }
+ f := &finq.fin[finq.cnt]
+ atomic.Xadd(&finq.cnt, +1) // Sync with markroots
+ f.fn = fn
+ f.nret = nret
+ f.fint = fint
+ f.ot = ot
+ f.arg = p
+ unlock(&finlock)
+ fingStatus.Or(fingWake)
+}
+
+//go:nowritebarrier
+func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
+ for fb := allfin; fb != nil; fb = fb.alllink {
+ for i := uint32(0); i < fb.cnt; i++ {
+ f := &fb.fin[i]
+ callback(f.fn, f.arg, f.nret, f.fint, f.ot)
+ }
+ }
+}
+
+func wakefing() *g {
+ if ok := fingStatus.CompareAndSwap(fingCreated|fingWait|fingWake, fingCreated); ok {
+ return fing
+ }
+ return nil
+}
+
+func createfing() {
+ // start the finalizer goroutine exactly once
+ if fingStatus.Load() == fingUninitialized && fingStatus.CompareAndSwap(fingUninitialized, fingCreated) {
+ go runfinq()
+ }
+}
+
+func finalizercommit(gp *g, lock unsafe.Pointer) bool {
+ unlock((*mutex)(lock))
+ // fingStatus should be modified after fing is put into a waiting state
+ // to avoid waking fing in running state, even if it is about to be parked.
+ fingStatus.Or(fingWait)
+ return true
+}
+
+// This is the goroutine that runs all of the finalizers.
+func runfinq() {
+ var (
+ frame unsafe.Pointer
+ framecap uintptr
+ argRegs int
+ )
+
+ gp := getg()
+ lock(&finlock)
+ fing = gp
+ unlock(&finlock)
+
+ for {
+ lock(&finlock)
+ fb := finq
+ finq = nil
+ if fb == nil {
+ gopark(finalizercommit, unsafe.Pointer(&finlock), waitReasonFinalizerWait, traceBlockSystemGoroutine, 1)
+ continue
+ }
+ argRegs = intArgRegs
+ unlock(&finlock)
+ if raceenabled {
+ racefingo()
+ }
+ for fb != nil {
+ for i := fb.cnt; i > 0; i-- {
+ f := &fb.fin[i-1]
+
+ var regs abi.RegArgs
+ // The args may be passed in registers or on stack. Even for
+ // the register case, we still need the spill slots.
+ // TODO: revisit if we remove spill slots.
+ //
+ // Unfortunately because we can have an arbitrary
+ // amount of returns and it would be complex to try and
+ // figure out how many of those can get passed in registers,
+ // just conservatively assume none of them do.
+ framesz := unsafe.Sizeof((any)(nil)) + f.nret
+ if framecap < framesz {
+ // The frame does not contain pointers interesting for GC,
+ // all not yet finalized objects are stored in finq.
+ // If we do not mark it as FlagNoScan,
+ // the last finalized object is not collected.
+ frame = mallocgc(framesz, nil, true)
+ framecap = framesz
+ }
+
+ if f.fint == nil {
+ throw("missing type in runfinq")
+ }
+ r := frame
+ if argRegs > 0 {
+ r = unsafe.Pointer(&regs.Ints)
+ } else {
+ // frame is effectively uninitialized
+ // memory. That means we have to clear
+ // it before writing to it to avoid
+ // confusing the write barrier.
+ *(*[2]uintptr)(frame) = [2]uintptr{}
+ }
+ switch f.fint.Kind_ & kindMask {
+ case kindPtr:
+ // direct use of pointer
+ *(*unsafe.Pointer)(r) = f.arg
+ case kindInterface:
+ ityp := (*interfacetype)(unsafe.Pointer(f.fint))
+ // set up with empty interface
+ (*eface)(r)._type = &f.ot.Type
+ (*eface)(r).data = f.arg
+ if len(ityp.Methods) != 0 {
+ // convert to interface with methods
+ // this conversion is guaranteed to succeed - we checked in SetFinalizer
+ (*iface)(r).tab = assertE2I(ityp, (*eface)(r)._type)
+ }
+ default:
+ throw("bad kind in runfinq")
+ }
+ fingStatus.Or(fingRunningFinalizer)
+ reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz), uint32(framesz), &regs)
+ fingStatus.And(^fingRunningFinalizer)
+
+ // Drop finalizer queue heap references
+ // before hiding them from markroot.
+ // This also ensures these will be
+ // clear if we reuse the finalizer.
+ f.fn = nil
+ f.arg = nil
+ f.ot = nil
+ atomic.Store(&fb.cnt, i-1)
+ }
+ next := fb.next
+ lock(&finlock)
+ fb.next = finc
+ finc = fb
+ unlock(&finlock)
+ fb = next
+ }
+ }
+}
+
+func isGoPointerWithoutSpan(p unsafe.Pointer) bool {
+ // 0-length objects are okay.
+ if p == unsafe.Pointer(&zerobase) {
+ return true
+ }
+
+ // Global initializers might be linker-allocated.
+ // var Foo = &Object{}
+ // func main() {
+ // runtime.SetFinalizer(Foo, nil)
+ // }
+ // The relevant segments are: noptrdata, data, bss, noptrbss.
+ // We cannot assume they are in any order or even contiguous,
+ // due to external linking.
+ for datap := &firstmoduledata; datap != nil; datap = datap.next {
+ if datap.noptrdata <= uintptr(p) && uintptr(p) < datap.enoptrdata ||
+ datap.data <= uintptr(p) && uintptr(p) < datap.edata ||
+ datap.bss <= uintptr(p) && uintptr(p) < datap.ebss ||
+ datap.noptrbss <= uintptr(p) && uintptr(p) < datap.enoptrbss {
+ return true
+ }
+ }
+ return false
+}
+
+// blockUntilEmptyFinalizerQueue blocks until either the finalizer
+// queue is emptied (and the finalizers have executed) or the timeout
+// is reached. Returns true if the finalizer queue was emptied.
+// This is used by the runtime and sync tests.
+func blockUntilEmptyFinalizerQueue(timeout int64) bool {
+ start := nanotime()
+ for nanotime()-start < timeout {
+ lock(&finlock)
+ // We know the queue has been drained when both finq is nil
+ // and the finalizer g has stopped executing.
+ empty := finq == nil
+ empty = empty && readgstatus(fing) == _Gwaiting && fing.waitreason == waitReasonFinalizerWait
+ unlock(&finlock)
+ if empty {
+ return true
+ }
+ Gosched()
+ }
+ return false
+}
+
+// SetFinalizer sets the finalizer associated with obj to the provided
+// finalizer function. When the garbage collector finds an unreachable block
+// with an associated finalizer, it clears the association and runs
+// finalizer(obj) in a separate goroutine. This makes obj reachable again,
+// but now without an associated finalizer. Assuming that SetFinalizer
+// is not called again, the next time the garbage collector sees
+// that obj is unreachable, it will free obj.
+//
+// SetFinalizer(obj, nil) clears any finalizer associated with obj.
+//
+// The argument obj must be a pointer to an object allocated by calling
+// new, by taking the address of a composite literal, or by taking the
+// address of a local variable.
+// The argument finalizer must be a function that takes a single argument
+// to which obj's type can be assigned, and can have arbitrary ignored return
+// values. If either of these is not true, SetFinalizer may abort the
+// program.
+//
+// Finalizers are run in dependency order: if A points at B, both have
+// finalizers, and they are otherwise unreachable, only the finalizer
+// for A runs; once A is freed, the finalizer for B can run.
+// If a cyclic structure includes a block with a finalizer, that
+// cycle is not guaranteed to be garbage collected and the finalizer
+// is not guaranteed to run, because there is no ordering that
+// respects the dependencies.
+//
+// The finalizer is scheduled to run at some arbitrary time after the
+// program can no longer reach the object to which obj points.
+// There is no guarantee that finalizers will run before a program exits,
+// so typically they are useful only for releasing non-memory resources
+// associated with an object during a long-running program.
+// For example, an [os.File] object could use a finalizer to close the
+// associated operating system file descriptor when a program discards
+// an os.File without calling Close, but it would be a mistake
+// to depend on a finalizer to flush an in-memory I/O buffer such as a
+// [bufio.Writer], because the buffer would not be flushed at program exit.
+//
+// It is not guaranteed that a finalizer will run if the size of *obj is
+// zero bytes, because it may share same address with other zero-size
+// objects in memory. See https://go.dev/ref/spec#Size_and_alignment_guarantees.
+//
+// It is not guaranteed that a finalizer will run for objects allocated
+// in initializers for package-level variables. Such objects may be
+// linker-allocated, not heap-allocated.
+//
+// Note that because finalizers may execute arbitrarily far into the future
+// after an object is no longer referenced, the runtime is allowed to perform
+// a space-saving optimization that batches objects together in a single
+// allocation slot. The finalizer for an unreferenced object in such an
+// allocation may never run if it always exists in the same batch as a
+// referenced object. Typically, this batching only happens for tiny
+// (on the order of 16 bytes or less) and pointer-free objects.
+//
+// A finalizer may run as soon as an object becomes unreachable.
+// In order to use finalizers correctly, the program must ensure that
+// the object is reachable until it is no longer required.
+// Objects stored in global variables, or that can be found by tracing
+// pointers from a global variable, are reachable. For other objects,
+// pass the object to a call of the [KeepAlive] function to mark the
+// last point in the function where the object must be reachable.
+//
+// For example, if p points to a struct, such as os.File, that contains
+// a file descriptor d, and p has a finalizer that closes that file
+// descriptor, and if the last use of p in a function is a call to
+// syscall.Write(p.d, buf, size), then p may be unreachable as soon as
+// the program enters [syscall.Write]. The finalizer may run at that moment,
+// closing p.d, causing syscall.Write to fail because it is writing to
+// a closed file descriptor (or, worse, to an entirely different
+// file descriptor opened by a different goroutine). To avoid this problem,
+// call KeepAlive(p) after the call to syscall.Write.
+//
+// A single goroutine runs all finalizers for a program, sequentially.
+// If a finalizer must run for a long time, it should do so by starting
+// a new goroutine.
+//
+// In the terminology of the Go memory model, a call
+// SetFinalizer(x, f) “synchronizes before” the finalization call f(x).
+// However, there is no guarantee that KeepAlive(x) or any other use of x
+// “synchronizes before” f(x), so in general a finalizer should use a mutex
+// or other synchronization mechanism if it needs to access mutable state in x.
+// For example, consider a finalizer that inspects a mutable field in x
+// that is modified from time to time in the main program before x
+// becomes unreachable and the finalizer is invoked.
+// The modifications in the main program and the inspection in the finalizer
+// need to use appropriate synchronization, such as mutexes or atomic updates,
+// to avoid read-write races.
+func SetFinalizer(obj any, finalizer any) {
+ if debug.sbrk != 0 {
+ // debug.sbrk never frees memory, so no finalizers run
+ // (and we don't have the data structures to record them).
+ return
+ }
+ e := efaceOf(&obj)
+ etyp := e._type
+ if etyp == nil {
+ throw("runtime.SetFinalizer: first argument is nil")
+ }
+ if etyp.Kind_&kindMask != kindPtr {
+ throw("runtime.SetFinalizer: first argument is " + toRType(etyp).string() + ", not pointer")
+ }
+ ot := (*ptrtype)(unsafe.Pointer(etyp))
+ if ot.Elem == nil {
+ throw("nil elem type!")
+ }
+
+ if inUserArenaChunk(uintptr(e.data)) {
+ // Arena-allocated objects are not eligible for finalizers.
+ throw("runtime.SetFinalizer: first argument was allocated into an arena")
+ }
+
+ // find the containing object
+ base, span, _ := findObject(uintptr(e.data), 0, 0)
+
+ if base == 0 {
+ if isGoPointerWithoutSpan(e.data) {
+ return
+ }
+ throw("runtime.SetFinalizer: pointer not in allocated block")
+ }
+
+ // Move base forward if we've got an allocation header.
+ if goexperiment.AllocHeaders && !span.spanclass.noscan() && !heapBitsInSpan(span.elemsize) && span.spanclass.sizeclass() != 0 {
+ base += mallocHeaderSize
+ }
+
+ if uintptr(e.data) != base {
+ // As an implementation detail we allow to set finalizers for an inner byte
+ // of an object if it could come from tiny alloc (see mallocgc for details).
+ if ot.Elem == nil || ot.Elem.PtrBytes != 0 || ot.Elem.Size_ >= maxTinySize {
+ throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
+ }
+ }
+
+ f := efaceOf(&finalizer)
+ ftyp := f._type
+ if ftyp == nil {
+ // switch to system stack and remove finalizer
+ systemstack(func() {
+ removefinalizer(e.data)
+ })
+ return
+ }
+
+ if ftyp.Kind_&kindMask != kindFunc {
+ throw("runtime.SetFinalizer: second argument is " + toRType(ftyp).string() + ", not a function")
+ }
+ ft := (*functype)(unsafe.Pointer(ftyp))
+ if ft.IsVariadic() {
+ throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string() + " because dotdotdot")
+ }
+ if ft.InCount != 1 {
+ throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
+ }
+ fint := ft.InSlice()[0]
+ switch {
+ case fint == etyp:
+ // ok - same type
+ goto okarg
+ case fint.Kind_&kindMask == kindPtr:
+ if (fint.Uncommon() == nil || etyp.Uncommon() == nil) && (*ptrtype)(unsafe.Pointer(fint)).Elem == ot.Elem {
+ // ok - not same type, but both pointers,
+ // one or the other is unnamed, and same element type, so assignable.
+ goto okarg
+ }
+ case fint.Kind_&kindMask == kindInterface:
+ ityp := (*interfacetype)(unsafe.Pointer(fint))
+ if len(ityp.Methods) == 0 {
+ // ok - satisfies empty interface
+ goto okarg
+ }
+ if itab := assertE2I2(ityp, efaceOf(&obj)._type); itab != nil {
+ goto okarg
+ }
+ }
+ throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
+okarg:
+ // compute size needed for return parameters
+ nret := uintptr(0)
+ for _, t := range ft.OutSlice() {
+ nret = alignUp(nret, uintptr(t.Align_)) + t.Size_
+ }
+ nret = alignUp(nret, goarch.PtrSize)
+
+ // make sure we have a finalizer goroutine
+ createfing()
+
+ systemstack(func() {
+ if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) {
+ throw("runtime.SetFinalizer: finalizer already set")
+ }
+ })
+}
+
+// Mark KeepAlive as noinline so that it is easily detectable as an intrinsic.
+//
+//go:noinline
+
+// KeepAlive marks its argument as currently reachable.
+// This ensures that the object is not freed, and its finalizer is not run,
+// before the point in the program where KeepAlive is called.
+//
+// A very simplified example showing where KeepAlive is required:
+//
+// type File struct { d int }
+// d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
+// // ... do something if err != nil ...
+// p := &File{d}
+// runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
+// var buf [10]byte
+// n, err := syscall.Read(p.d, buf[:])
+// // Ensure p is not finalized until Read returns.
+// runtime.KeepAlive(p)
+// // No more uses of p after this point.
+//
+// Without the KeepAlive call, the finalizer could run at the start of
+// [syscall.Read], closing the file descriptor before syscall.Read makes
+// the actual system call.
+//
+// Note: KeepAlive should only be used to prevent finalizers from
+// running prematurely. In particular, when used with [unsafe.Pointer],
+// the rules for valid uses of unsafe.Pointer still apply.
+func KeepAlive(x any) {
+ // Introduce a use of x that the compiler can't eliminate.
+ // This makes sure x is alive on entry. We need x to be alive
+ // on entry for "defer runtime.KeepAlive(x)"; see issue 21402.
+ if cgoAlwaysFalse {
+ println(x)
+ }
+}