summaryrefslogtreecommitdiffstats
path: root/src/sort/zsortfunc.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/sort/zsortfunc.go')
-rw-r--r--src/sort/zsortfunc.go479
1 files changed, 479 insertions, 0 deletions
diff --git a/src/sort/zsortfunc.go b/src/sort/zsortfunc.go
new file mode 100644
index 0000000..49b6169
--- /dev/null
+++ b/src/sort/zsortfunc.go
@@ -0,0 +1,479 @@
+// Code generated by gen_sort_variants.go; DO NOT EDIT.
+
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package sort
+
+// insertionSort_func sorts data[a:b] using insertion sort.
+func insertionSort_func(data lessSwap, a, b int) {
+ for i := a + 1; i < b; i++ {
+ for j := i; j > a && data.Less(j, j-1); j-- {
+ data.Swap(j, j-1)
+ }
+ }
+}
+
+// siftDown_func implements the heap property on data[lo:hi].
+// first is an offset into the array where the root of the heap lies.
+func siftDown_func(data lessSwap, lo, hi, first int) {
+ root := lo
+ for {
+ child := 2*root + 1
+ if child >= hi {
+ break
+ }
+ if child+1 < hi && data.Less(first+child, first+child+1) {
+ child++
+ }
+ if !data.Less(first+root, first+child) {
+ return
+ }
+ data.Swap(first+root, first+child)
+ root = child
+ }
+}
+
+func heapSort_func(data lessSwap, a, b int) {
+ first := a
+ lo := 0
+ hi := b - a
+
+ // Build heap with greatest element at top.
+ for i := (hi - 1) / 2; i >= 0; i-- {
+ siftDown_func(data, i, hi, first)
+ }
+
+ // Pop elements, largest first, into end of data.
+ for i := hi - 1; i >= 0; i-- {
+ data.Swap(first, first+i)
+ siftDown_func(data, lo, i, first)
+ }
+}
+
+// pdqsort_func sorts data[a:b].
+// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
+// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
+// C++ implementation: https://github.com/orlp/pdqsort
+// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
+// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
+func pdqsort_func(data lessSwap, a, b, limit int) {
+ const maxInsertion = 12
+
+ var (
+ wasBalanced = true // whether the last partitioning was reasonably balanced
+ wasPartitioned = true // whether the slice was already partitioned
+ )
+
+ for {
+ length := b - a
+
+ if length <= maxInsertion {
+ insertionSort_func(data, a, b)
+ return
+ }
+
+ // Fall back to heapsort if too many bad choices were made.
+ if limit == 0 {
+ heapSort_func(data, a, b)
+ return
+ }
+
+ // If the last partitioning was imbalanced, we need to breaking patterns.
+ if !wasBalanced {
+ breakPatterns_func(data, a, b)
+ limit--
+ }
+
+ pivot, hint := choosePivot_func(data, a, b)
+ if hint == decreasingHint {
+ reverseRange_func(data, a, b)
+ // The chosen pivot was pivot-a elements after the start of the array.
+ // After reversing it is pivot-a elements before the end of the array.
+ // The idea came from Rust's implementation.
+ pivot = (b - 1) - (pivot - a)
+ hint = increasingHint
+ }
+
+ // The slice is likely already sorted.
+ if wasBalanced && wasPartitioned && hint == increasingHint {
+ if partialInsertionSort_func(data, a, b) {
+ return
+ }
+ }
+
+ // Probably the slice contains many duplicate elements, partition the slice into
+ // elements equal to and elements greater than the pivot.
+ if a > 0 && !data.Less(a-1, pivot) {
+ mid := partitionEqual_func(data, a, b, pivot)
+ a = mid
+ continue
+ }
+
+ mid, alreadyPartitioned := partition_func(data, a, b, pivot)
+ wasPartitioned = alreadyPartitioned
+
+ leftLen, rightLen := mid-a, b-mid
+ balanceThreshold := length / 8
+ if leftLen < rightLen {
+ wasBalanced = leftLen >= balanceThreshold
+ pdqsort_func(data, a, mid, limit)
+ a = mid + 1
+ } else {
+ wasBalanced = rightLen >= balanceThreshold
+ pdqsort_func(data, mid+1, b, limit)
+ b = mid
+ }
+ }
+}
+
+// partition_func does one quicksort partition.
+// Let p = data[pivot]
+// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
+// On return, data[newpivot] = p
+func partition_func(data lessSwap, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
+ data.Swap(a, pivot)
+ i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
+
+ for i <= j && data.Less(i, a) {
+ i++
+ }
+ for i <= j && !data.Less(j, a) {
+ j--
+ }
+ if i > j {
+ data.Swap(j, a)
+ return j, true
+ }
+ data.Swap(i, j)
+ i++
+ j--
+
+ for {
+ for i <= j && data.Less(i, a) {
+ i++
+ }
+ for i <= j && !data.Less(j, a) {
+ j--
+ }
+ if i > j {
+ break
+ }
+ data.Swap(i, j)
+ i++
+ j--
+ }
+ data.Swap(j, a)
+ return j, false
+}
+
+// partitionEqual_func partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
+// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
+func partitionEqual_func(data lessSwap, a, b, pivot int) (newpivot int) {
+ data.Swap(a, pivot)
+ i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
+
+ for {
+ for i <= j && !data.Less(a, i) {
+ i++
+ }
+ for i <= j && data.Less(a, j) {
+ j--
+ }
+ if i > j {
+ break
+ }
+ data.Swap(i, j)
+ i++
+ j--
+ }
+ return i
+}
+
+// partialInsertionSort_func partially sorts a slice, returns true if the slice is sorted at the end.
+func partialInsertionSort_func(data lessSwap, a, b int) bool {
+ const (
+ maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
+ shortestShifting = 50 // don't shift any elements on short arrays
+ )
+ i := a + 1
+ for j := 0; j < maxSteps; j++ {
+ for i < b && !data.Less(i, i-1) {
+ i++
+ }
+
+ if i == b {
+ return true
+ }
+
+ if b-a < shortestShifting {
+ return false
+ }
+
+ data.Swap(i, i-1)
+
+ // Shift the smaller one to the left.
+ if i-a >= 2 {
+ for j := i - 1; j >= 1; j-- {
+ if !data.Less(j, j-1) {
+ break
+ }
+ data.Swap(j, j-1)
+ }
+ }
+ // Shift the greater one to the right.
+ if b-i >= 2 {
+ for j := i + 1; j < b; j++ {
+ if !data.Less(j, j-1) {
+ break
+ }
+ data.Swap(j, j-1)
+ }
+ }
+ }
+ return false
+}
+
+// breakPatterns_func scatters some elements around in an attempt to break some patterns
+// that might cause imbalanced partitions in quicksort.
+func breakPatterns_func(data lessSwap, a, b int) {
+ length := b - a
+ if length >= 8 {
+ random := xorshift(length)
+ modulus := nextPowerOfTwo(length)
+
+ for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
+ other := int(uint(random.Next()) & (modulus - 1))
+ if other >= length {
+ other -= length
+ }
+ data.Swap(idx, a+other)
+ }
+ }
+}
+
+// choosePivot_func chooses a pivot in data[a:b].
+//
+// [0,8): chooses a static pivot.
+// [8,shortestNinther): uses the simple median-of-three method.
+// [shortestNinther,∞): uses the Tukey ninther method.
+func choosePivot_func(data lessSwap, a, b int) (pivot int, hint sortedHint) {
+ const (
+ shortestNinther = 50
+ maxSwaps = 4 * 3
+ )
+
+ l := b - a
+
+ var (
+ swaps int
+ i = a + l/4*1
+ j = a + l/4*2
+ k = a + l/4*3
+ )
+
+ if l >= 8 {
+ if l >= shortestNinther {
+ // Tukey ninther method, the idea came from Rust's implementation.
+ i = medianAdjacent_func(data, i, &swaps)
+ j = medianAdjacent_func(data, j, &swaps)
+ k = medianAdjacent_func(data, k, &swaps)
+ }
+ // Find the median among i, j, k and stores it into j.
+ j = median_func(data, i, j, k, &swaps)
+ }
+
+ switch swaps {
+ case 0:
+ return j, increasingHint
+ case maxSwaps:
+ return j, decreasingHint
+ default:
+ return j, unknownHint
+ }
+}
+
+// order2_func returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
+func order2_func(data lessSwap, a, b int, swaps *int) (int, int) {
+ if data.Less(b, a) {
+ *swaps++
+ return b, a
+ }
+ return a, b
+}
+
+// median_func returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
+func median_func(data lessSwap, a, b, c int, swaps *int) int {
+ a, b = order2_func(data, a, b, swaps)
+ b, c = order2_func(data, b, c, swaps)
+ a, b = order2_func(data, a, b, swaps)
+ return b
+}
+
+// medianAdjacent_func finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
+func medianAdjacent_func(data lessSwap, a int, swaps *int) int {
+ return median_func(data, a-1, a, a+1, swaps)
+}
+
+func reverseRange_func(data lessSwap, a, b int) {
+ i := a
+ j := b - 1
+ for i < j {
+ data.Swap(i, j)
+ i++
+ j--
+ }
+}
+
+func swapRange_func(data lessSwap, a, b, n int) {
+ for i := 0; i < n; i++ {
+ data.Swap(a+i, b+i)
+ }
+}
+
+func stable_func(data lessSwap, n int) {
+ blockSize := 20 // must be > 0
+ a, b := 0, blockSize
+ for b <= n {
+ insertionSort_func(data, a, b)
+ a = b
+ b += blockSize
+ }
+ insertionSort_func(data, a, n)
+
+ for blockSize < n {
+ a, b = 0, 2*blockSize
+ for b <= n {
+ symMerge_func(data, a, a+blockSize, b)
+ a = b
+ b += 2 * blockSize
+ }
+ if m := a + blockSize; m < n {
+ symMerge_func(data, a, m, n)
+ }
+ blockSize *= 2
+ }
+}
+
+// symMerge_func merges the two sorted subsequences data[a:m] and data[m:b] using
+// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
+// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
+// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
+// Computer Science, pages 714-723. Springer, 2004.
+//
+// Let M = m-a and N = b-n. Wolog M < N.
+// The recursion depth is bound by ceil(log(N+M)).
+// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
+// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
+//
+// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
+// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
+// in the paper carries through for Swap operations, especially as the block
+// swapping rotate uses only O(M+N) Swaps.
+//
+// symMerge assumes non-degenerate arguments: a < m && m < b.
+// Having the caller check this condition eliminates many leaf recursion calls,
+// which improves performance.
+func symMerge_func(data lessSwap, a, m, b int) {
+ // Avoid unnecessary recursions of symMerge
+ // by direct insertion of data[a] into data[m:b]
+ // if data[a:m] only contains one element.
+ if m-a == 1 {
+ // Use binary search to find the lowest index i
+ // such that data[i] >= data[a] for m <= i < b.
+ // Exit the search loop with i == b in case no such index exists.
+ i := m
+ j := b
+ for i < j {
+ h := int(uint(i+j) >> 1)
+ if data.Less(h, a) {
+ i = h + 1
+ } else {
+ j = h
+ }
+ }
+ // Swap values until data[a] reaches the position before i.
+ for k := a; k < i-1; k++ {
+ data.Swap(k, k+1)
+ }
+ return
+ }
+
+ // Avoid unnecessary recursions of symMerge
+ // by direct insertion of data[m] into data[a:m]
+ // if data[m:b] only contains one element.
+ if b-m == 1 {
+ // Use binary search to find the lowest index i
+ // such that data[i] > data[m] for a <= i < m.
+ // Exit the search loop with i == m in case no such index exists.
+ i := a
+ j := m
+ for i < j {
+ h := int(uint(i+j) >> 1)
+ if !data.Less(m, h) {
+ i = h + 1
+ } else {
+ j = h
+ }
+ }
+ // Swap values until data[m] reaches the position i.
+ for k := m; k > i; k-- {
+ data.Swap(k, k-1)
+ }
+ return
+ }
+
+ mid := int(uint(a+b) >> 1)
+ n := mid + m
+ var start, r int
+ if m > mid {
+ start = n - b
+ r = mid
+ } else {
+ start = a
+ r = m
+ }
+ p := n - 1
+
+ for start < r {
+ c := int(uint(start+r) >> 1)
+ if !data.Less(p-c, c) {
+ start = c + 1
+ } else {
+ r = c
+ }
+ }
+
+ end := n - start
+ if start < m && m < end {
+ rotate_func(data, start, m, end)
+ }
+ if a < start && start < mid {
+ symMerge_func(data, a, start, mid)
+ }
+ if mid < end && end < b {
+ symMerge_func(data, mid, end, b)
+ }
+}
+
+// rotate_func rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
+// Data of the form 'x u v y' is changed to 'x v u y'.
+// rotate performs at most b-a many calls to data.Swap,
+// and it assumes non-degenerate arguments: a < m && m < b.
+func rotate_func(data lessSwap, a, m, b int) {
+ i := m - a
+ j := b - m
+
+ for i != j {
+ if i > j {
+ swapRange_func(data, m-i, m, j)
+ i -= j
+ } else {
+ swapRange_func(data, m-i, m+j-i, i)
+ j -= i
+ }
+ }
+ // i == j
+ swapRange_func(data, m-i, m, i)
+}