1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package devirtualize implements two "devirtualization" optimization passes:
//
// - "Static" devirtualization which replaces interface method calls with
// direct concrete-type method calls where possible.
// - "Profile-guided" devirtualization which replaces indirect calls with a
// conditional direct call to the hottest concrete callee from a profile, as
// well as a fallback using the original indirect call.
package devirtualize
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
)
// StaticCall devirtualizes the given call if possible when the concrete callee
// is available statically.
func StaticCall(call *ir.CallExpr) {
// For promoted methods (including value-receiver methods promoted
// to pointer-receivers), the interface method wrapper may contain
// expressions that can panic (e.g., ODEREF, ODOTPTR,
// ODOTINTER). Devirtualization involves inlining these expressions
// (and possible panics) to the call site. This normally isn't a
// problem, but for go/defer statements it can move the panic from
// when/where the call executes to the go/defer statement itself,
// which is a visible change in semantics (e.g., #52072). To prevent
// this, we skip devirtualizing calls within go/defer statements
// altogether.
if call.GoDefer {
return
}
if call.Op() != ir.OCALLINTER {
return
}
sel := call.Fun.(*ir.SelectorExpr)
r := ir.StaticValue(sel.X)
if r.Op() != ir.OCONVIFACE {
return
}
recv := r.(*ir.ConvExpr)
typ := recv.X.Type()
if typ.IsInterface() {
return
}
// If typ is a shape type, then it was a type argument originally
// and we'd need an indirect call through the dictionary anyway.
// We're unable to devirtualize this call.
if typ.IsShape() {
return
}
// If typ *has* a shape type, then it's a shaped, instantiated
// type like T[go.shape.int], and its methods (may) have an extra
// dictionary parameter. We could devirtualize this call if we
// could derive an appropriate dictionary argument.
//
// TODO(mdempsky): If typ has has a promoted non-generic method,
// then that method won't require a dictionary argument. We could
// still devirtualize those calls.
//
// TODO(mdempsky): We have the *runtime.itab in recv.TypeWord. It
// should be possible to compute the represented type's runtime
// dictionary from this (e.g., by adding a pointer from T[int]'s
// *runtime._type to .dict.T[int]; or by recognizing static
// references to go:itab.T[int],iface and constructing a direct
// reference to .dict.T[int]).
if typ.HasShape() {
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "cannot devirtualize %v: shaped receiver %v", call, typ)
}
return
}
// Further, if sel.X's type has a shape type, then it's a shaped
// interface type. In this case, the (non-dynamic) TypeAssertExpr
// we construct below would attempt to create an itab
// corresponding to this shaped interface type; but the actual
// itab pointer in the interface value will correspond to the
// original (non-shaped) interface type instead. These are
// functionally equivalent, but they have distinct pointer
// identities, which leads to the type assertion failing.
//
// TODO(mdempsky): We know the type assertion here is safe, so we
// could instead set a flag so that walk skips the itab check. For
// now, punting is easy and safe.
if sel.X.Type().HasShape() {
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "cannot devirtualize %v: shaped interface %v", call, sel.X.Type())
}
return
}
dt := ir.NewTypeAssertExpr(sel.Pos(), sel.X, nil)
dt.SetType(typ)
x := typecheck.XDotMethod(sel.Pos(), dt, sel.Sel, true)
switch x.Op() {
case ir.ODOTMETH:
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "devirtualizing %v to %v", sel, typ)
}
call.SetOp(ir.OCALLMETH)
call.Fun = x
case ir.ODOTINTER:
// Promoted method from embedded interface-typed field (#42279).
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "partially devirtualizing %v to %v", sel, typ)
}
call.SetOp(ir.OCALLINTER)
call.Fun = x
default:
base.FatalfAt(call.Pos(), "failed to devirtualize %v (%v)", x, x.Op())
}
// Duplicated logic from typecheck for function call return
// value types.
//
// Receiver parameter size may have changed; need to update
// call.Type to get correct stack offsets for result
// parameters.
types.CheckSize(x.Type())
switch ft := x.Type(); ft.NumResults() {
case 0:
case 1:
call.SetType(ft.Result(0).Type)
default:
call.SetType(ft.ResultsTuple())
}
// Desugar OCALLMETH, if we created one (#57309).
typecheck.FixMethodCall(call)
}
|