summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/escape/call.go
blob: 4a3753ada9cc91226a498d904bed201229e20cc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package escape

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

// call evaluates a call expressions, including builtin calls. ks
// should contain the holes representing where the function callee's
// results flows.
func (e *escape) call(ks []hole, call ir.Node) {
	argument := func(k hole, arg ir.Node) {
		// TODO(mdempsky): Should be "call argument".
		e.expr(k.note(call, "call parameter"), arg)
	}

	switch call.Op() {
	default:
		ir.Dump("esc", call)
		base.Fatalf("unexpected call op: %v", call.Op())

	case ir.OCALLFUNC, ir.OCALLINTER:
		call := call.(*ir.CallExpr)
		typecheck.AssertFixedCall(call)

		// Pick out the function callee, if statically known.
		//
		// TODO(mdempsky): Change fn from *ir.Name to *ir.Func, but some
		// functions (e.g., runtime builtins, method wrappers, generated
		// eq/hash functions) don't have it set. Investigate whether
		// that's a concern.
		var fn *ir.Name
		switch call.Op() {
		case ir.OCALLFUNC:
			v := ir.StaticValue(call.Fun)
			fn = ir.StaticCalleeName(v)
		}

		fntype := call.Fun.Type()
		if fn != nil {
			fntype = fn.Type()
		}

		if ks != nil && fn != nil && e.inMutualBatch(fn) {
			for i, result := range fn.Type().Results() {
				e.expr(ks[i], result.Nname.(*ir.Name))
			}
		}

		var recvArg ir.Node
		if call.Op() == ir.OCALLFUNC {
			// Evaluate callee function expression.
			calleeK := e.discardHole()
			if fn == nil { // unknown callee
				for _, k := range ks {
					if k.dst != &e.blankLoc {
						// The results flow somewhere, but we don't statically
						// know the callee function. If a closure flows here, we
						// need to conservatively assume its results might flow to
						// the heap.
						calleeK = e.calleeHole().note(call, "callee operand")
						break
					}
				}
			}
			e.expr(calleeK, call.Fun)
		} else {
			recvArg = call.Fun.(*ir.SelectorExpr).X
		}

		// argumentParam handles escape analysis of assigning a call
		// argument to its corresponding parameter.
		argumentParam := func(param *types.Field, arg ir.Node) {
			e.rewriteArgument(arg, call, fn)
			argument(e.tagHole(ks, fn, param), arg)
		}

		args := call.Args
		if recvParam := fntype.Recv(); recvParam != nil {
			if recvArg == nil {
				// Function call using method expression. Receiver argument is
				// at the front of the regular arguments list.
				recvArg, args = args[0], args[1:]
			}

			argumentParam(recvParam, recvArg)
		}

		for i, param := range fntype.Params() {
			argumentParam(param, args[i])
		}

	case ir.OINLCALL:
		call := call.(*ir.InlinedCallExpr)
		e.stmts(call.Body)
		for i, result := range call.ReturnVars {
			k := e.discardHole()
			if ks != nil {
				k = ks[i]
			}
			e.expr(k, result)
		}

	case ir.OAPPEND:
		call := call.(*ir.CallExpr)
		args := call.Args

		// Appendee slice may flow directly to the result, if
		// it has enough capacity. Alternatively, a new heap
		// slice might be allocated, and all slice elements
		// might flow to heap.
		appendeeK := e.teeHole(ks[0], e.mutatorHole())
		if args[0].Type().Elem().HasPointers() {
			appendeeK = e.teeHole(appendeeK, e.heapHole().deref(call, "appendee slice"))
		}
		argument(appendeeK, args[0])

		if call.IsDDD {
			appendedK := e.discardHole()
			if args[1].Type().IsSlice() && args[1].Type().Elem().HasPointers() {
				appendedK = e.heapHole().deref(call, "appended slice...")
			}
			argument(appendedK, args[1])
		} else {
			for i := 1; i < len(args); i++ {
				argument(e.heapHole(), args[i])
			}
		}
		e.discard(call.RType)

	case ir.OCOPY:
		call := call.(*ir.BinaryExpr)
		argument(e.mutatorHole(), call.X)

		copiedK := e.discardHole()
		if call.Y.Type().IsSlice() && call.Y.Type().Elem().HasPointers() {
			copiedK = e.heapHole().deref(call, "copied slice")
		}
		argument(copiedK, call.Y)
		e.discard(call.RType)

	case ir.OPANIC:
		call := call.(*ir.UnaryExpr)
		argument(e.heapHole(), call.X)

	case ir.OCOMPLEX:
		call := call.(*ir.BinaryExpr)
		e.discard(call.X)
		e.discard(call.Y)

	case ir.ODELETE, ir.OPRINT, ir.OPRINTLN, ir.ORECOVERFP:
		call := call.(*ir.CallExpr)
		for _, arg := range call.Args {
			e.discard(arg)
		}
		e.discard(call.RType)

	case ir.OMIN, ir.OMAX:
		call := call.(*ir.CallExpr)
		for _, arg := range call.Args {
			argument(ks[0], arg)
		}
		e.discard(call.RType)

	case ir.OLEN, ir.OCAP, ir.OREAL, ir.OIMAG, ir.OCLOSE:
		call := call.(*ir.UnaryExpr)
		e.discard(call.X)

	case ir.OCLEAR:
		call := call.(*ir.UnaryExpr)
		argument(e.mutatorHole(), call.X)

	case ir.OUNSAFESTRINGDATA, ir.OUNSAFESLICEDATA:
		call := call.(*ir.UnaryExpr)
		argument(ks[0], call.X)

	case ir.OUNSAFEADD, ir.OUNSAFESLICE, ir.OUNSAFESTRING:
		call := call.(*ir.BinaryExpr)
		argument(ks[0], call.X)
		e.discard(call.Y)
		e.discard(call.RType)
	}
}

// goDeferStmt analyzes a "go" or "defer" statement.
func (e *escape) goDeferStmt(n *ir.GoDeferStmt) {
	k := e.heapHole()
	if n.Op() == ir.ODEFER && e.loopDepth == 1 && n.DeferAt == nil {
		// Top-level defer arguments don't escape to the heap,
		// but they do need to last until they're invoked.
		k = e.later(e.discardHole())

		// force stack allocation of defer record, unless
		// open-coded defers are used (see ssa.go)
		n.SetEsc(ir.EscNever)
	}

	// If the function is already a zero argument/result function call,
	// just escape analyze it normally.
	//
	// Note that the runtime is aware of this optimization for
	// "go" statements that start in reflect.makeFuncStub or
	// reflect.methodValueCall.

	call, ok := n.Call.(*ir.CallExpr)
	if !ok || call.Op() != ir.OCALLFUNC {
		base.FatalfAt(n.Pos(), "expected function call: %v", n.Call)
	}
	if sig := call.Fun.Type(); sig.NumParams()+sig.NumResults() != 0 {
		base.FatalfAt(n.Pos(), "expected signature without parameters or results: %v", sig)
	}

	if clo, ok := call.Fun.(*ir.ClosureExpr); ok && n.Op() == ir.OGO {
		clo.IsGoWrap = true
	}

	e.expr(k, call.Fun)
}

// rewriteArgument rewrites the argument arg of the given call expression.
// fn is the static callee function, if known.
func (e *escape) rewriteArgument(arg ir.Node, call *ir.CallExpr, fn *ir.Name) {
	if fn == nil || fn.Func == nil {
		return
	}
	pragma := fn.Func.Pragma
	if pragma&(ir.UintptrKeepAlive|ir.UintptrEscapes) == 0 {
		return
	}

	// unsafeUintptr rewrites "uintptr(ptr)" arguments to syscall-like
	// functions, so that ptr is kept alive and/or escaped as
	// appropriate. unsafeUintptr also reports whether it modified arg0.
	unsafeUintptr := func(arg ir.Node) {
		// If the argument is really a pointer being converted to uintptr,
		// arrange for the pointer to be kept alive until the call
		// returns, by copying it into a temp and marking that temp still
		// alive when we pop the temp stack.
		conv, ok := arg.(*ir.ConvExpr)
		if !ok || conv.Op() != ir.OCONVNOP {
			return // not a conversion
		}
		if !conv.X.Type().IsUnsafePtr() || !conv.Type().IsUintptr() {
			return // not an unsafe.Pointer->uintptr conversion
		}

		// Create and declare a new pointer-typed temp variable.
		//
		// TODO(mdempsky): This potentially violates the Go spec's order
		// of evaluations, by evaluating arg.X before any other
		// operands.
		tmp := e.copyExpr(conv.Pos(), conv.X, call.PtrInit())
		conv.X = tmp

		k := e.mutatorHole()
		if pragma&ir.UintptrEscapes != 0 {
			k = e.heapHole().note(conv, "//go:uintptrescapes")
		}
		e.flow(k, e.oldLoc(tmp))

		if pragma&ir.UintptrKeepAlive != 0 {
			tmp.SetAddrtaken(true) // ensure SSA keeps the tmp variable
			call.KeepAlive = append(call.KeepAlive, tmp)
		}
	}

	// For variadic functions, the compiler has already rewritten:
	//
	//     f(a, b, c)
	//
	// to:
	//
	//     f([]T{a, b, c}...)
	//
	// So we need to look into slice elements to handle uintptr(ptr)
	// arguments to variadic syscall-like functions correctly.
	if arg.Op() == ir.OSLICELIT {
		list := arg.(*ir.CompLitExpr).List
		for _, el := range list {
			if el.Op() == ir.OKEY {
				el = el.(*ir.KeyExpr).Value
			}
			unsafeUintptr(el)
		}
	} else {
		unsafeUintptr(arg)
	}
}

// copyExpr creates and returns a new temporary variable within fn;
// appends statements to init to declare and initialize it to expr;
// and escape analyzes the data flow.
func (e *escape) copyExpr(pos src.XPos, expr ir.Node, init *ir.Nodes) *ir.Name {
	if ir.HasUniquePos(expr) {
		pos = expr.Pos()
	}

	tmp := typecheck.TempAt(pos, e.curfn, expr.Type())

	stmts := []ir.Node{
		ir.NewDecl(pos, ir.ODCL, tmp),
		ir.NewAssignStmt(pos, tmp, expr),
	}
	typecheck.Stmts(stmts)
	init.Append(stmts...)

	e.newLoc(tmp, true)
	e.stmts(stmts)

	return tmp
}

// tagHole returns a hole for evaluating an argument passed to param.
// ks should contain the holes representing where the function
// callee's results flows. fn is the statically-known callee function,
// if any.
func (e *escape) tagHole(ks []hole, fn *ir.Name, param *types.Field) hole {
	// If this is a dynamic call, we can't rely on param.Note.
	if fn == nil {
		return e.heapHole()
	}

	if e.inMutualBatch(fn) {
		if param.Nname == nil {
			return e.discardHole()
		}
		return e.addr(param.Nname.(*ir.Name))
	}

	// Call to previously tagged function.

	var tagKs []hole
	esc := parseLeaks(param.Note)

	if x := esc.Heap(); x >= 0 {
		tagKs = append(tagKs, e.heapHole().shift(x))
	}
	if x := esc.Mutator(); x >= 0 {
		tagKs = append(tagKs, e.mutatorHole().shift(x))
	}
	if x := esc.Callee(); x >= 0 {
		tagKs = append(tagKs, e.calleeHole().shift(x))
	}

	if ks != nil {
		for i := 0; i < numEscResults; i++ {
			if x := esc.Result(i); x >= 0 {
				tagKs = append(tagKs, ks[i].shift(x))
			}
		}
	}

	return e.teeHole(tagKs...)
}