1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"net/url"
"os"
"path/filepath"
"runtime"
"runtime/pprof"
tracepkg "runtime/trace"
"strings"
"cmd/compile/internal/base"
)
func profileName(fn, suffix string) string {
if strings.HasSuffix(fn, string(os.PathSeparator)) {
err := os.MkdirAll(fn, 0755)
if err != nil {
base.Fatalf("%v", err)
}
}
if fi, statErr := os.Stat(fn); statErr == nil && fi.IsDir() {
fn = filepath.Join(fn, url.PathEscape(base.Ctxt.Pkgpath)+suffix)
}
return fn
}
func startProfile() {
if base.Flag.CPUProfile != "" {
fn := profileName(base.Flag.CPUProfile, ".cpuprof")
f, err := os.Create(fn)
if err != nil {
base.Fatalf("%v", err)
}
if err := pprof.StartCPUProfile(f); err != nil {
base.Fatalf("%v", err)
}
base.AtExit(pprof.StopCPUProfile)
}
if base.Flag.MemProfile != "" {
if base.Flag.MemProfileRate != 0 {
runtime.MemProfileRate = base.Flag.MemProfileRate
}
const (
gzipFormat = 0
textFormat = 1
)
// compilebench parses the memory profile to extract memstats,
// which are only written in the legacy (text) pprof format.
// See golang.org/issue/18641 and runtime/pprof/pprof.go:writeHeap.
// gzipFormat is what most people want, otherwise
var format = textFormat
fn := base.Flag.MemProfile
if strings.HasSuffix(fn, string(os.PathSeparator)) {
err := os.MkdirAll(fn, 0755)
if err != nil {
base.Fatalf("%v", err)
}
}
if fi, statErr := os.Stat(fn); statErr == nil && fi.IsDir() {
fn = filepath.Join(fn, url.PathEscape(base.Ctxt.Pkgpath)+".memprof")
format = gzipFormat
}
f, err := os.Create(fn)
if err != nil {
base.Fatalf("%v", err)
}
base.AtExit(func() {
// Profile all outstanding allocations.
runtime.GC()
if err := pprof.Lookup("heap").WriteTo(f, format); err != nil {
base.Fatalf("%v", err)
}
})
} else {
// Not doing memory profiling; disable it entirely.
runtime.MemProfileRate = 0
}
if base.Flag.BlockProfile != "" {
f, err := os.Create(profileName(base.Flag.BlockProfile, ".blockprof"))
if err != nil {
base.Fatalf("%v", err)
}
runtime.SetBlockProfileRate(1)
base.AtExit(func() {
pprof.Lookup("block").WriteTo(f, 0)
f.Close()
})
}
if base.Flag.MutexProfile != "" {
f, err := os.Create(profileName(base.Flag.MutexProfile, ".mutexprof"))
if err != nil {
base.Fatalf("%v", err)
}
runtime.SetMutexProfileFraction(1)
base.AtExit(func() {
pprof.Lookup("mutex").WriteTo(f, 0)
f.Close()
})
}
if base.Flag.TraceProfile != "" {
f, err := os.Create(profileName(base.Flag.TraceProfile, ".trace"))
if err != nil {
base.Fatalf("%v", err)
}
if err := tracepkg.Start(f); err != nil {
base.Fatalf("%v", err)
}
base.AtExit(tracepkg.Stop)
}
}
|