1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package inlheur
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"encoding/json"
"fmt"
"internal/buildcfg"
"io"
"os"
"path/filepath"
"sort"
"strings"
)
const (
debugTraceFuncs = 1 << iota
debugTraceFuncFlags
debugTraceResults
debugTraceParams
debugTraceExprClassify
debugTraceCalls
debugTraceScoring
)
// propAnalyzer interface is used for defining one or more analyzer
// helper objects, each tasked with computing some specific subset of
// the properties we're interested in. The assumption is that
// properties are independent, so each new analyzer that implements
// this interface can operate entirely on its own. For a given analyzer
// there will be a sequence of calls to nodeVisitPre and nodeVisitPost
// as the nodes within a function are visited, then a followup call to
// setResults so that the analyzer can transfer its results into the
// final properties object.
type propAnalyzer interface {
nodeVisitPre(n ir.Node)
nodeVisitPost(n ir.Node)
setResults(funcProps *FuncProps)
}
// fnInlHeur contains inline heuristics state information about a
// specific Go function being analyzed/considered by the inliner. Note
// that in addition to constructing a fnInlHeur object by analyzing a
// specific *ir.Func, there is also code in the test harness
// (funcprops_test.go) that builds up fnInlHeur's by reading in and
// parsing a dump. This is the reason why we have file/fname/line
// fields below instead of just an *ir.Func field.
type fnInlHeur struct {
props *FuncProps
cstab CallSiteTab
fname string
file string
line uint
}
var fpmap = map[*ir.Func]fnInlHeur{}
// AnalyzeFunc computes function properties for fn and its contained
// closures, updating the global 'fpmap' table. It is assumed that
// "CanInline" has been run on fn and on the closures that feed
// directly into calls; other closures not directly called will also
// be checked inlinability for inlinability here in case they are
// returned as a result.
func AnalyzeFunc(fn *ir.Func, canInline func(*ir.Func), budgetForFunc func(*ir.Func) int32, inlineMaxBudget int) {
if fpmap == nil {
// If fpmap is nil this indicates that the main inliner pass is
// complete and we're doing inlining of wrappers (no heuristics
// used here).
return
}
if fn.OClosure != nil {
// closures will be processed along with their outer enclosing func.
return
}
enableDebugTraceIfEnv()
if debugTrace&debugTraceFuncs != 0 {
fmt.Fprintf(os.Stderr, "=-= AnalyzeFunc(%v)\n", fn)
}
// Build up a list containing 'fn' and any closures it contains. Along
// the way, test to see whether each closure is inlinable in case
// we might be returning it.
funcs := []*ir.Func{fn}
ir.VisitFuncAndClosures(fn, func(n ir.Node) {
if clo, ok := n.(*ir.ClosureExpr); ok {
funcs = append(funcs, clo.Func)
}
})
// Analyze the list of functions. We want to visit a given func
// only after the closures it contains have been processed, so
// iterate through the list in reverse order. Once a function has
// been analyzed, revisit the question of whether it should be
// inlinable; if it is over the default hairyness limit and it
// doesn't have any interesting properties, then we don't want
// the overhead of writing out its inline body.
nameFinder := newNameFinder(fn)
for i := len(funcs) - 1; i >= 0; i-- {
f := funcs[i]
if f.OClosure != nil && !f.InlinabilityChecked() {
canInline(f)
}
funcProps := analyzeFunc(f, inlineMaxBudget, nameFinder)
revisitInlinability(f, funcProps, budgetForFunc)
if f.Inl != nil {
f.Inl.Properties = funcProps.SerializeToString()
}
}
disableDebugTrace()
}
// TearDown is invoked at the end of the main inlining pass; doing
// function analysis and call site scoring is unlikely to help a lot
// after this point, so nil out fpmap and other globals to reclaim
// storage.
func TearDown() {
fpmap = nil
scoreCallsCache.tab = nil
scoreCallsCache.csl = nil
}
func analyzeFunc(fn *ir.Func, inlineMaxBudget int, nf *nameFinder) *FuncProps {
if funcInlHeur, ok := fpmap[fn]; ok {
return funcInlHeur.props
}
funcProps, fcstab := computeFuncProps(fn, inlineMaxBudget, nf)
file, line := fnFileLine(fn)
entry := fnInlHeur{
fname: fn.Sym().Name,
file: file,
line: line,
props: funcProps,
cstab: fcstab,
}
fn.SetNeverReturns(entry.props.Flags&FuncPropNeverReturns != 0)
fpmap[fn] = entry
if fn.Inl != nil && fn.Inl.Properties == "" {
fn.Inl.Properties = entry.props.SerializeToString()
}
return funcProps
}
// revisitInlinability revisits the question of whether to continue to
// treat function 'fn' as an inline candidate based on the set of
// properties we've computed for it. If (for example) it has an
// initial size score of 150 and no interesting properties to speak
// of, then there isn't really any point to moving ahead with it as an
// inline candidate.
func revisitInlinability(fn *ir.Func, funcProps *FuncProps, budgetForFunc func(*ir.Func) int32) {
if fn.Inl == nil {
return
}
maxAdj := int32(LargestNegativeScoreAdjustment(fn, funcProps))
budget := budgetForFunc(fn)
if fn.Inl.Cost+maxAdj > budget {
fn.Inl = nil
}
}
// computeFuncProps examines the Go function 'fn' and computes for it
// a function "properties" object, to be used to drive inlining
// heuristics. See comments on the FuncProps type for more info.
func computeFuncProps(fn *ir.Func, inlineMaxBudget int, nf *nameFinder) (*FuncProps, CallSiteTab) {
if debugTrace&debugTraceFuncs != 0 {
fmt.Fprintf(os.Stderr, "=-= starting analysis of func %v:\n%+v\n",
fn, fn)
}
funcProps := new(FuncProps)
ffa := makeFuncFlagsAnalyzer(fn)
analyzers := []propAnalyzer{ffa}
analyzers = addResultsAnalyzer(fn, analyzers, funcProps, inlineMaxBudget, nf)
analyzers = addParamsAnalyzer(fn, analyzers, funcProps, nf)
runAnalyzersOnFunction(fn, analyzers)
for _, a := range analyzers {
a.setResults(funcProps)
}
cstab := computeCallSiteTable(fn, fn.Body, nil, ffa.panicPathTable(), 0, nf)
return funcProps, cstab
}
func runAnalyzersOnFunction(fn *ir.Func, analyzers []propAnalyzer) {
var doNode func(ir.Node) bool
doNode = func(n ir.Node) bool {
for _, a := range analyzers {
a.nodeVisitPre(n)
}
ir.DoChildren(n, doNode)
for _, a := range analyzers {
a.nodeVisitPost(n)
}
return false
}
doNode(fn)
}
func propsForFunc(fn *ir.Func) *FuncProps {
if funcInlHeur, ok := fpmap[fn]; ok {
return funcInlHeur.props
} else if fn.Inl != nil && fn.Inl.Properties != "" {
// FIXME: considering adding some sort of cache or table
// for deserialized properties of imported functions.
return DeserializeFromString(fn.Inl.Properties)
}
return nil
}
func fnFileLine(fn *ir.Func) (string, uint) {
p := base.Ctxt.InnermostPos(fn.Pos())
return filepath.Base(p.Filename()), p.Line()
}
func Enabled() bool {
return buildcfg.Experiment.NewInliner || UnitTesting()
}
func UnitTesting() bool {
return base.Debug.DumpInlFuncProps != "" ||
base.Debug.DumpInlCallSiteScores != 0
}
// DumpFuncProps computes and caches function properties for the func
// 'fn', writing out a description of the previously computed set of
// properties to the file given in 'dumpfile'. Used for the
// "-d=dumpinlfuncprops=..." command line flag, intended for use
// primarily in unit testing.
func DumpFuncProps(fn *ir.Func, dumpfile string) {
if fn != nil {
if fn.OClosure != nil {
// closures will be processed along with their outer enclosing func.
return
}
captureFuncDumpEntry(fn)
ir.VisitFuncAndClosures(fn, func(n ir.Node) {
if clo, ok := n.(*ir.ClosureExpr); ok {
captureFuncDumpEntry(clo.Func)
}
})
} else {
emitDumpToFile(dumpfile)
}
}
// emitDumpToFile writes out the buffer function property dump entries
// to a file, for unit testing. Dump entries need to be sorted by
// definition line, and due to generics we need to account for the
// possibility that several ir.Func's will have the same def line.
func emitDumpToFile(dumpfile string) {
mode := os.O_WRONLY | os.O_CREATE | os.O_TRUNC
if dumpfile[0] == '+' {
dumpfile = dumpfile[1:]
mode = os.O_WRONLY | os.O_APPEND | os.O_CREATE
}
if dumpfile[0] == '%' {
dumpfile = dumpfile[1:]
d, b := filepath.Dir(dumpfile), filepath.Base(dumpfile)
ptag := strings.ReplaceAll(types.LocalPkg.Path, "/", ":")
dumpfile = d + "/" + ptag + "." + b
}
outf, err := os.OpenFile(dumpfile, mode, 0644)
if err != nil {
base.Fatalf("opening function props dump file %q: %v\n", dumpfile, err)
}
defer outf.Close()
dumpFilePreamble(outf)
atline := map[uint]uint{}
sl := make([]fnInlHeur, 0, len(dumpBuffer))
for _, e := range dumpBuffer {
sl = append(sl, e)
atline[e.line] = atline[e.line] + 1
}
sl = sortFnInlHeurSlice(sl)
prevline := uint(0)
for _, entry := range sl {
idx := uint(0)
if prevline == entry.line {
idx++
}
prevline = entry.line
atl := atline[entry.line]
if err := dumpFnPreamble(outf, &entry, nil, idx, atl); err != nil {
base.Fatalf("function props dump: %v\n", err)
}
}
dumpBuffer = nil
}
// captureFuncDumpEntry grabs the function properties object for 'fn'
// and enqueues it for later dumping. Used for the
// "-d=dumpinlfuncprops=..." command line flag, intended for use
// primarily in unit testing.
func captureFuncDumpEntry(fn *ir.Func) {
// avoid capturing compiler-generated equality funcs.
if strings.HasPrefix(fn.Sym().Name, ".eq.") {
return
}
funcInlHeur, ok := fpmap[fn]
if !ok {
// Missing entry is expected for functions that are too large
// to inline. We still want to write out call site scores in
// this case however.
funcInlHeur = fnInlHeur{cstab: callSiteTab}
}
if dumpBuffer == nil {
dumpBuffer = make(map[*ir.Func]fnInlHeur)
}
if _, ok := dumpBuffer[fn]; ok {
return
}
if debugTrace&debugTraceFuncs != 0 {
fmt.Fprintf(os.Stderr, "=-= capturing dump for %v:\n", fn)
}
dumpBuffer[fn] = funcInlHeur
}
// dumpFilePreamble writes out a file-level preamble for a given
// Go function as part of a function properties dump.
func dumpFilePreamble(w io.Writer) {
fmt.Fprintf(w, "// DO NOT EDIT (use 'go test -v -update-expected' instead.)\n")
fmt.Fprintf(w, "// See cmd/compile/internal/inline/inlheur/testdata/props/README.txt\n")
fmt.Fprintf(w, "// for more information on the format of this file.\n")
fmt.Fprintf(w, "// %s\n", preambleDelimiter)
}
// dumpFnPreamble writes out a function-level preamble for a given
// Go function as part of a function properties dump. See the
// README.txt file in testdata/props for more on the format of
// this preamble.
func dumpFnPreamble(w io.Writer, funcInlHeur *fnInlHeur, ecst encodedCallSiteTab, idx, atl uint) error {
fmt.Fprintf(w, "// %s %s %d %d %d\n",
funcInlHeur.file, funcInlHeur.fname, funcInlHeur.line, idx, atl)
// emit props as comments, followed by delimiter
fmt.Fprintf(w, "%s// %s\n", funcInlHeur.props.ToString("// "), comDelimiter)
data, err := json.Marshal(funcInlHeur.props)
if err != nil {
return fmt.Errorf("marshall error %v\n", err)
}
fmt.Fprintf(w, "// %s\n", string(data))
dumpCallSiteComments(w, funcInlHeur.cstab, ecst)
fmt.Fprintf(w, "// %s\n", fnDelimiter)
return nil
}
// sortFnInlHeurSlice sorts a slice of fnInlHeur based on
// the starting line of the function definition, then by name.
func sortFnInlHeurSlice(sl []fnInlHeur) []fnInlHeur {
sort.SliceStable(sl, func(i, j int) bool {
if sl[i].line != sl[j].line {
return sl[i].line < sl[j].line
}
return sl[i].fname < sl[j].fname
})
return sl
}
// delimiters written to various preambles to make parsing of
// dumps easier.
const preambleDelimiter = "<endfilepreamble>"
const fnDelimiter = "<endfuncpreamble>"
const comDelimiter = "<endpropsdump>"
const csDelimiter = "<endcallsites>"
// dumpBuffer stores up function properties dumps when
// "-d=dumpinlfuncprops=..." is in effect.
var dumpBuffer map[*ir.Func]fnInlHeur
|