1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package ir
import (
"fmt"
"go/constant"
"sort"
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// A Node is the abstract interface to an IR node.
type Node interface {
// Formatting
Format(s fmt.State, verb rune)
// Source position.
Pos() src.XPos
SetPos(x src.XPos)
// For making copies. For Copy and SepCopy.
copy() Node
doChildren(func(Node) bool) bool
editChildren(func(Node) Node)
editChildrenWithHidden(func(Node) Node)
// Abstract graph structure, for generic traversals.
Op() Op
Init() Nodes
// Fields specific to certain Ops only.
Type() *types.Type
SetType(t *types.Type)
Name() *Name
Sym() *types.Sym
Val() constant.Value
SetVal(v constant.Value)
// Storage for analysis passes.
Esc() uint16
SetEsc(x uint16)
// Typecheck values:
// 0 means the node is not typechecked
// 1 means the node is completely typechecked
// 2 means typechecking of the node is in progress
Typecheck() uint8
SetTypecheck(x uint8)
NonNil() bool
MarkNonNil()
}
// Line returns n's position as a string. If n has been inlined,
// it uses the outermost position where n has been inlined.
func Line(n Node) string {
return base.FmtPos(n.Pos())
}
func IsSynthetic(n Node) bool {
name := n.Sym().Name
return name[0] == '.' || name[0] == '~'
}
// IsAutoTmp indicates if n was created by the compiler as a temporary,
// based on the setting of the .AutoTemp flag in n's Name.
func IsAutoTmp(n Node) bool {
if n == nil || n.Op() != ONAME {
return false
}
return n.Name().AutoTemp()
}
// MayBeShared reports whether n may occur in multiple places in the AST.
// Extra care must be taken when mutating such a node.
func MayBeShared(n Node) bool {
switch n.Op() {
case ONAME, OLITERAL, ONIL, OTYPE:
return true
}
return false
}
type InitNode interface {
Node
PtrInit() *Nodes
SetInit(x Nodes)
}
func TakeInit(n Node) Nodes {
init := n.Init()
if len(init) != 0 {
n.(InitNode).SetInit(nil)
}
return init
}
//go:generate stringer -type=Op -trimprefix=O node.go
type Op uint8
// Node ops.
const (
OXXX Op = iota
// names
ONAME // var or func name
// Unnamed arg or return value: f(int, string) (int, error) { etc }
// Also used for a qualified package identifier that hasn't been resolved yet.
ONONAME
OTYPE // type name
OLITERAL // literal
ONIL // nil
// expressions
OADD // X + Y
OSUB // X - Y
OOR // X | Y
OXOR // X ^ Y
OADDSTR // +{List} (string addition, list elements are strings)
OADDR // &X
OANDAND // X && Y
OAPPEND // append(Args); after walk, X may contain elem type descriptor
OBYTES2STR // Type(X) (Type is string, X is a []byte)
OBYTES2STRTMP // Type(X) (Type is string, X is a []byte, ephemeral)
ORUNES2STR // Type(X) (Type is string, X is a []rune)
OSTR2BYTES // Type(X) (Type is []byte, X is a string)
OSTR2BYTESTMP // Type(X) (Type is []byte, X is a string, ephemeral)
OSTR2RUNES // Type(X) (Type is []rune, X is a string)
OSLICE2ARR // Type(X) (Type is [N]T, X is a []T)
OSLICE2ARRPTR // Type(X) (Type is *[N]T, X is a []T)
// X = Y or (if Def=true) X := Y
// If Def, then Init includes a DCL node for X.
OAS
// Lhs = Rhs (x, y, z = a, b, c) or (if Def=true) Lhs := Rhs
// If Def, then Init includes DCL nodes for Lhs
OAS2
OAS2DOTTYPE // Lhs = Rhs (x, ok = I.(int))
OAS2FUNC // Lhs = Rhs (x, y = f())
OAS2MAPR // Lhs = Rhs (x, ok = m["foo"])
OAS2RECV // Lhs = Rhs (x, ok = <-c)
OASOP // X AsOp= Y (x += y)
OCALL // X(Args) (function call, method call or type conversion)
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
// Prior to walk, they are: X(Args), where Args is all regular arguments.
// After walk, if any argument whose evaluation might requires temporary variable,
// that temporary variable will be pushed to Init, Args will contains an updated
// set of arguments.
OCALLFUNC // X(Args) (function call f(args))
OCALLMETH // X(Args) (direct method call x.Method(args))
OCALLINTER // X(Args) (interface method call x.Method(args))
OCAP // cap(X)
OCLEAR // clear(X)
OCLOSE // close(X)
OCLOSURE // func Type { Func.Closure.Body } (func literal)
OCOMPLIT // Type{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array)
OSLICELIT // Type{List} (composite literal, Type is slice), Len is slice length.
OPTRLIT // &X (X is composite literal)
OCONV // Type(X) (type conversion)
OCONVIFACE // Type(X) (type conversion, to interface)
OCONVNOP // Type(X) (type conversion, no effect)
OCOPY // copy(X, Y)
ODCL // var X (declares X of type X.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODELETE // delete(Args)
ODOT // X.Sel (X is of struct type)
ODOTPTR // X.Sel (X is of pointer to struct type)
ODOTMETH // X.Sel (X is non-interface, Sel is method name)
ODOTINTER // X.Sel (X is interface, Sel is method name)
OXDOT // X.Sel (before rewrite to one of the preceding)
ODOTTYPE // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved); after walk, Itab contains address of interface type descriptor and Itab.X contains address of concrete type descriptor
ODOTTYPE2 // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, Itab contains address of interface type descriptor
OEQ // X == Y
ONE // X != Y
OLT // X < Y
OLE // X <= Y
OGE // X >= Y
OGT // X > Y
ODEREF // *X
OINDEX // X[Index] (index of array or slice)
OINDEXMAP // X[Index] (index of map)
OKEY // Key:Value (key:value in struct/array/map literal)
OSTRUCTKEY // Field:Value (key:value in struct literal, after type checking)
OLEN // len(X)
OMAKE // make(Args) (before type checking converts to one of the following)
OMAKECHAN // make(Type[, Len]) (type is chan)
OMAKEMAP // make(Type[, Len]) (type is map)
OMAKESLICE // make(Type[, Len[, Cap]]) (type is slice)
OMAKESLICECOPY // makeslicecopy(Type, Len, Cap) (type is slice; Len is length and Cap is the copied from slice)
// OMAKESLICECOPY is created by the order pass and corresponds to:
// s = make(Type, Len); copy(s, Cap)
//
// Bounded can be set on the node when Len == len(Cap) is known at compile time.
//
// This node is created so the walk pass can optimize this pattern which would
// otherwise be hard to detect after the order pass.
OMUL // X * Y
ODIV // X / Y
OMOD // X % Y
OLSH // X << Y
ORSH // X >> Y
OAND // X & Y
OANDNOT // X &^ Y
ONEW // new(X); corresponds to calls to new in source code
ONOT // !X
OBITNOT // ^X
OPLUS // +X
ONEG // -X
OOROR // X || Y
OPANIC // panic(X)
OPRINT // print(List)
OPRINTLN // println(List)
OPAREN // (X)
OSEND // Chan <- Value
OSLICE // X[Low : High] (X is untypechecked or slice)
OSLICEARR // X[Low : High] (X is pointer to array)
OSLICESTR // X[Low : High] (X is string)
OSLICE3 // X[Low : High : Max] (X is untypedchecked or slice)
OSLICE3ARR // X[Low : High : Max] (X is pointer to array)
OSLICEHEADER // sliceheader{Ptr, Len, Cap} (Ptr is unsafe.Pointer, Len is length, Cap is capacity)
OSTRINGHEADER // stringheader{Ptr, Len} (Ptr is unsafe.Pointer, Len is length)
ORECOVER // recover()
ORECOVERFP // recover(Args) w/ explicit FP argument
ORECV // <-X
ORUNESTR // Type(X) (Type is string, X is rune)
OSELRECV2 // like OAS2: Lhs = Rhs where len(Lhs)=2, len(Rhs)=1, Rhs[0].Op = ORECV (appears as .Var of OCASE)
OMIN // min(List)
OMAX // max(List)
OREAL // real(X)
OIMAG // imag(X)
OCOMPLEX // complex(X, Y)
OUNSAFEADD // unsafe.Add(X, Y)
OUNSAFESLICE // unsafe.Slice(X, Y)
OUNSAFESLICEDATA // unsafe.SliceData(X)
OUNSAFESTRING // unsafe.String(X, Y)
OUNSAFESTRINGDATA // unsafe.StringData(X)
OMETHEXPR // X(Args) (method expression T.Method(args), first argument is the method receiver)
OMETHVALUE // X.Sel (method expression t.Method, not called)
// statements
OBLOCK // { List } (block of code)
OBREAK // break [Label]
// OCASE: case List: Body (List==nil means default)
// For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
// for nil) or an ODYNAMICTYPE indicating a runtime type for generics.
// If a type-switch variable is specified, Var is an
// ONAME for the version of the type-switch variable with the specified
// type.
OCASE
OCONTINUE // continue [Label]
ODEFER // defer Call
OFALL // fallthrough
OFOR // for Init; Cond; Post { Body }
OGOTO // goto Label
OIF // if Init; Cond { Then } else { Else }
OLABEL // Label:
OGO // go Call
ORANGE // for Key, Value = range X { Body }
ORETURN // return Results
OSELECT // select { Cases }
OSWITCH // switch Init; Expr { Cases }
// OTYPESW: X := Y.(type) (appears as .Tag of OSWITCH)
// X is nil if there is no type-switch variable
OTYPESW
// misc
// intermediate representation of an inlined call. Uses Init (assignments
// for the captured variables, parameters, retvars, & INLMARK op),
// Body (body of the inlined function), and ReturnVars (list of
// return values)
OINLCALL // intermediary representation of an inlined call.
OMAKEFACE // construct an interface value from rtype/itab and data pointers
OITAB // rtype/itab pointer of an interface value
OIDATA // data pointer of an interface value
OSPTR // base pointer of a slice or string. Bounded==1 means known non-nil.
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
ORESULT // result of a function call; Xoffset is stack offset
OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
OLINKSYMOFFSET // offset within a name
OJUMPTABLE // A jump table structure for implementing dense expression switches
OINTERFACESWITCH // A type switch with interface cases
// opcodes for generics
ODYNAMICDOTTYPE // x = i.(T) where T is a type parameter (or derived from a type parameter)
ODYNAMICDOTTYPE2 // x, ok = i.(T) where T is a type parameter (or derived from a type parameter)
ODYNAMICTYPE // a type node for type switches (represents a dynamic target type for a type switch)
// arch-specific opcodes
OTAILCALL // tail call to another function
OGETG // runtime.getg() (read g pointer)
OGETCALLERPC // runtime.getcallerpc() (continuation PC in caller frame)
OGETCALLERSP // runtime.getcallersp() (stack pointer in caller frame)
OEND
)
// IsCmp reports whether op is a comparison operation (==, !=, <, <=,
// >, or >=).
func (op Op) IsCmp() bool {
switch op {
case OEQ, ONE, OLT, OLE, OGT, OGE:
return true
}
return false
}
// Nodes is a slice of Node.
type Nodes []Node
// ToNodes returns s as a slice of Nodes.
func ToNodes[T Node](s []T) Nodes {
res := make(Nodes, len(s))
for i, n := range s {
res[i] = n
}
return res
}
// Append appends entries to Nodes.
func (n *Nodes) Append(a ...Node) {
if len(a) == 0 {
return
}
*n = append(*n, a...)
}
// Prepend prepends entries to Nodes.
// If a slice is passed in, this will take ownership of it.
func (n *Nodes) Prepend(a ...Node) {
if len(a) == 0 {
return
}
*n = append(a, *n...)
}
// Take clears n, returning its former contents.
func (n *Nodes) Take() []Node {
ret := *n
*n = nil
return ret
}
// Copy returns a copy of the content of the slice.
func (n Nodes) Copy() Nodes {
if n == nil {
return nil
}
c := make(Nodes, len(n))
copy(c, n)
return c
}
// NameQueue is a FIFO queue of *Name. The zero value of NameQueue is
// a ready-to-use empty queue.
type NameQueue struct {
ring []*Name
head, tail int
}
// Empty reports whether q contains no Names.
func (q *NameQueue) Empty() bool {
return q.head == q.tail
}
// PushRight appends n to the right of the queue.
func (q *NameQueue) PushRight(n *Name) {
if len(q.ring) == 0 {
q.ring = make([]*Name, 16)
} else if q.head+len(q.ring) == q.tail {
// Grow the ring.
nring := make([]*Name, len(q.ring)*2)
// Copy the old elements.
part := q.ring[q.head%len(q.ring):]
if q.tail-q.head <= len(part) {
part = part[:q.tail-q.head]
copy(nring, part)
} else {
pos := copy(nring, part)
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
}
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
}
q.ring[q.tail%len(q.ring)] = n
q.tail++
}
// PopLeft pops a Name from the left of the queue. It panics if q is
// empty.
func (q *NameQueue) PopLeft() *Name {
if q.Empty() {
panic("dequeue empty")
}
n := q.ring[q.head%len(q.ring)]
q.head++
return n
}
// NameSet is a set of Names.
type NameSet map[*Name]struct{}
// Has reports whether s contains n.
func (s NameSet) Has(n *Name) bool {
_, isPresent := s[n]
return isPresent
}
// Add adds n to s.
func (s *NameSet) Add(n *Name) {
if *s == nil {
*s = make(map[*Name]struct{})
}
(*s)[n] = struct{}{}
}
// Sorted returns s sorted according to less.
func (s NameSet) Sorted(less func(*Name, *Name) bool) []*Name {
var res []*Name
for n := range s {
res = append(res, n)
}
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
return res
}
type PragmaFlag uint16
const (
// Func pragmas.
Nointerface PragmaFlag = 1 << iota
Noescape // func parameters don't escape
Norace // func must not have race detector annotations
Nosplit // func should not execute on separate stack
Noinline // func should not be inlined
NoCheckPtr // func should not be instrumented by checkptr
CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
UintptrKeepAlive // pointers converted to uintptr must be kept alive
UintptrEscapes // pointers converted to uintptr escape
// Runtime-only func pragmas.
// See ../../../../runtime/HACKING.md for detailed descriptions.
Systemstack // func must run on system stack
Nowritebarrier // emit compiler error instead of write barrier
Nowritebarrierrec // error on write barrier in this or recursive callees
Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
// Go command pragmas
GoBuildPragma
RegisterParams // TODO(register args) remove after register abi is working
)
var BlankNode *Name
func IsConst(n Node, ct constant.Kind) bool {
return ConstType(n) == ct
}
// IsNil reports whether n represents the universal untyped zero value "nil".
func IsNil(n Node) bool {
return n != nil && n.Op() == ONIL
}
func IsBlank(n Node) bool {
if n == nil {
return false
}
return n.Sym().IsBlank()
}
// IsMethod reports whether n is a method.
// n must be a function or a method.
func IsMethod(n Node) bool {
return n.Type().Recv() != nil
}
// HasUniquePos reports whether n has a unique position that can be
// used for reporting error messages.
//
// It's primarily used to distinguish references to named objects,
// whose Pos will point back to their declaration position rather than
// their usage position.
func HasUniquePos(n Node) bool {
switch n.Op() {
case ONAME:
return false
case OLITERAL, ONIL, OTYPE:
if n.Sym() != nil {
return false
}
}
if !n.Pos().IsKnown() {
if base.Flag.K != 0 {
base.Warn("setlineno: unknown position (line 0)")
}
return false
}
return true
}
func SetPos(n Node) src.XPos {
lno := base.Pos
if n != nil && HasUniquePos(n) {
base.Pos = n.Pos()
}
return lno
}
// The result of InitExpr MUST be assigned back to n, e.g.
//
// n.X = InitExpr(init, n.X)
func InitExpr(init []Node, expr Node) Node {
if len(init) == 0 {
return expr
}
n, ok := expr.(InitNode)
if !ok || MayBeShared(n) {
// Introduce OCONVNOP to hold init list.
n = NewConvExpr(base.Pos, OCONVNOP, nil, expr)
n.SetType(expr.Type())
n.SetTypecheck(1)
}
n.PtrInit().Prepend(init...)
return n
}
// what's the outer value that a write to n affects?
// outer value means containing struct or array.
func OuterValue(n Node) Node {
for {
switch nn := n; nn.Op() {
case OXDOT:
base.FatalfAt(n.Pos(), "OXDOT in OuterValue: %v", n)
case ODOT:
nn := nn.(*SelectorExpr)
n = nn.X
continue
case OPAREN:
nn := nn.(*ParenExpr)
n = nn.X
continue
case OCONVNOP:
nn := nn.(*ConvExpr)
n = nn.X
continue
case OINDEX:
nn := nn.(*IndexExpr)
if nn.X.Type() == nil {
base.Fatalf("OuterValue needs type for %v", nn.X)
}
if nn.X.Type().IsArray() {
n = nn.X
continue
}
}
return n
}
}
const (
EscUnknown = iota
EscNone // Does not escape to heap, result, or parameters.
EscHeap // Reachable from the heap
EscNever // By construction will not escape.
)
|